
Inheritance and Lookup:
Self
Understand lookup once for all

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

Understand:
 Sending a message
 Method lookup
 Semantics of self/this

M1S4 2 / 20

Remember inheritance

 Inheritance of state is static (done at compile time)
 Inheritance of behavior is dynamic
 In this lecture we focus on the behavior part

M1S4 3 / 20

Message sending

Sending a message is a
two-step process:
1. look up the method

matching the message
2. execute this method on the

receiver

Object

aColoredRectangle

area()
...

width
height

Rectangle

color()
...

color
borderColor

ColoredRectangle

area
 ^ width * height

area

2 execution on
receiver

1 lookup

M1S4 4 / 20

Method lookup

The lookup starts in the class
of the receiver then:
 if the method is defined in

the class, it is returned
 otherwise the search

continues in the superclass

Object

aColoredRectangle

area()
...

width
height

Rectangle

color()
...

color
borderColor

ColoredRectangle

area

1 go to the
class

2 look in
superclasses

M1S4 5 / 20

Some lookup cases

Sending the message color to
aColoredRectangle

Object

aColoredRectangle

area()
...

width
height

Rectangle

color()
...

color
borderColor

ColoredRectangle

M1S4 6 / 20

Some lookup cases

Sending the message area to
aColoredRectangle

Object

aColoredRectangle

area()
...

width
height

Rectangle

color()
...

color
borderColor

ColoredRectangle

M1S4 7 / 20

About lookup implementation

 Most of the time, the result of a lookup is cached and a lookup happens only
once

 In some languages, there are dispatch tables
 The point is that conceptually there is a lookup at execution

M1S4 8 / 20

What is self/this?

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA

 Take 5 min and write the definition of
self (this in Java)

 Your definition should have two points:
◦ what does self represent?
◦ how is a method looked up when a

message is sent to self?

M1S4 9 / 20

Let us explore a bit

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA

 aA is an instance of A
(obtained executing A new)

 aB is an instance of B
(obtained executing B new)

M1S4 10 / 20

Let us explore a bit

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA
> aA foo
...
> aB foo
...

M1S4 11 / 20

self always represents the receiver

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA
> aA foo
10
> aB foo
50

M1S4 12 / 20

self always represents the receiver

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA
> aA bar
...
> aB bar
...

M1S4 13 / 20

self always represents the receiver

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA
> aA bar
10
> aB bar
50

M1S4 14 / 20

Following message lookup and execution

foo
bar

A

foo
B

aB

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

aA

> aB bar
50

Evaluation of aB bar
1. aB’s class is B
2. no method bar in B
3. look up in A - bar is found
4. method bar is executed
5. self refers to the receiver aB
6. foo is sent to self
7. look up foo in the aB’s class: B
8. foo is found there and executed

M1S4 15 / 20

self/this in two sentences

 self represents the receiver of the message
◦ self in Pharo, this in Java

 The method lookup starts in the class of the receiver

M1S4 16 / 20

self always represents the receiver

foo
bar

A

foo
C

aC

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

B

> aA bar
...
> aB bar
...
> aC bar
...

M1S4 17 / 20

self always represents the receiver

foo
bar

A

foo
C

aC

foo
 ^ 10

bar
 ^ self foo

foo
 ^ 50

B

> aA bar
10
> aB bar
10
> aC bar
50

M1S4 18 / 20

What you should know

 self always represents the receiver
 Sending a message is a two-step process:

1. Look up the method matching the message
2. Execute this method on the receiver

 Method lookup maps a message to a method
 Method lookup starts in the class of the receiver

◦ ...and goes up in the hierarchy

M1S4 19 / 20

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

