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Goals

Understand:
 Sending a message
 Method lookup
 Semantics of self/this
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Remember inheritance

 Inheritance of state is static (done at compile time)
 Inheritance of behavior is dynamic
 In this lecture we focus on the behavior part
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Message sending

Sending a message is a
two-step process:
1. look up the method

matching the message
2. execute this method on the

receiver
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Method lookup

The lookup starts in the class
of the receiver then:
 if the method is defined in

the class, it is returned
 otherwise the search

continues in the superclass
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Some lookup cases

Sending the message color to
aColoredRectangle
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Some lookup cases

Sending the message area to
aColoredRectangle
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About lookup implementation

 Most of the time, the result of a lookup is cached and a lookup happens only
once

 In some languages, there are dispatch tables
 The point is that conceptually there is a lookup at execution
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What is self/this?

foo
bar

A

foo
B

aB

foo
   ^ 10

bar 
   ^ self foo

foo
   ^ 50

aA

 Take 5 min and write the definition of
self (this in Java)

 Your definition should have two points:
◦ what does self represent?
◦ how is a method looked up when a

message is sent to self?
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Let us explore a bit

foo
bar

A

foo
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 aA is an instance of A
(obtained executing A new)

 aB is an instance of B
(obtained executing B new)
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self always represents the receiver
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Following message lookup and execution

foo
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Evaluation of aB bar
1. aB’s class is B
2. no method bar in B
3. look up in A - bar is found
4. method bar is executed
5. self refers to the receiver aB
6. foo is sent to self
7. look up foo in the aB’s class: B
8. foo is found there and executed
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self/this in two sentences

 self represents the receiver of the message
◦ self in Pharo, this in Java

 The method lookup starts in the class of the receiver
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self always represents the receiver
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What you should know

 self always represents the receiver
 Sending a message is a two-step process:

1. Look up the method matching the message
2. Execute this method on the receiver

 Method lookup maps a message to a method
 Method lookup starts in the class of the receiver

◦ ...and goes up in the hierarchy
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