
Essence of Dispatch
Let the receiver decide

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Remember: Implementing not in two methods

not
or:
|
ifTrue:ifFalse:

Boolean
<<abstract>>

not
or:
|
ifTrue:ifFalse:

True
not
or:
|
ifTrue:ifFalse:

False

true
false

^ true^ false

notnot
M1S2 2 / 18

What is the point?

 You will probably never implement Booleans in the future
 So, is it really useful?
 What are the lessons to learn?
 What are the properties of the solution?

M1S2 3 / 18

Imagine having more than two classes

MicAbstractBlock
MicAbstractAnnotatedBlock

MicAnnotatedBlock
MicContinuousMarkedBlock

MicCommentBlock
MicQuoteBlock
MicTableBlock

MicListBlock
MicOrderedListBlock
MicUnorderedListBlock

MicParagraphBlock
MacParagraphBlock
MacRawParagraphBlock

MicRootBlock
MicSectionBlock

MicSingleLineBlock
MicAnchorBlock
MicHeaderBlock
MicHorizontalLineBlock

MicStartStopMarkupBlock
MicEnvironmentBlock
...
MicMetaDataBlock
MicSameStartStopMarkupBlock
MicCodeBlock
MicMathBlock
MicMathBlockExtensionForTest
MicMultilineComment

Imagine a method that has one condition for
each of these cases!

M1S2 4 / 18

A message send is an open conditional

Sending a message
 selects the right method to execute based on the class of the receiver
 can be seen as a condition without explicit ifs
 is a dynamic choice

M1S2 5 / 18

Select the right method

aCollection := {a . bb . c}.
...
aCollection do: [:e |
e operation]

operation
A

operation
BB

operation
CC

operation
attribute2

B
operation

C

operation
attribute1

Root

M1S2 6 / 18

But dynamically: new objects can be chosen

aCollection := {a . bb . c . aa}.
...
aCollection do: [:e |
e operation]

operation
A

operation
BB

operation
CC

operation
attribute2

B
operation

C

operation
attribute1

Root

operation
AA

M1S2 7 / 18

Sending a message is making a choice

 Message sending is a choice operator
 Each time you send a message, the execution engine selects the right method

depending on the class of the receiver
 So, the next question is:

◦ How do we express choices?

M1S2 8 / 18

How do we express choices?

 Could we have the same solution for not with a single Boolean class?
 No! We would have conditionals in the not and or methods!

not
or

Boolean not
or

Boolean

not
or

True
not
or

False

M1S2 9 / 18

Classes play case distinct choices

 To activate the choice operator we must have choices
 A class represents a choice (a case)

M1S2 10 / 18

One class vs. a hierarchy

operation1
operation2

attribute1
attribute2

Fat Class
operation

A

operation
BB

operation
CC

operation
attribute2

B
operation

C

operation
attribute1

Root

operation
AA

M1S2 11 / 18

Class hierarchy supports dynamic dispatch
 More modular
 No need to introduce complex conditions
 A hierarchy provides a way to specialize behavior
 No need to recompile existing methods
 You only focus on one class at a time

operation1
operation2

attribute1
attribute2

Fat Class
operation

A

operation
BB

operation
CC

operation
attribute2

B
operation

C

operation
attribute1

Root

operation
AA

M1S2 12 / 18

Message dispatch supports modularity

Package

Class

operation
A

operation
BB

operation
CC

operation
attribute

B
operation

C

operation
D

Library Extension

We can package different classes into different packages (better modularity)

M1S2 13 / 18

Limit impact of changes

Package

Class

operation
A

operation
BB

operation
CC

operation
attribute

B
operation

C

operation
D

Library Extension

 If a client receives instances of D (in addition to classes of first package), its
code does not have to change

 Method operation of D instances will be executed naturally

M1S2 14 / 18

Message send is powerful

 Message sends are supporting choices
 The execution engine acts as a conditional switch: Use it!
 Classes act as "cases/choices"
 But with messages, the case statement is extensible:

◦ adding new classes without breaking client code

M1S2 15 / 18

Let the receiver decide

 Sending a message lets the receiver decide
 Client does not have to decide
 Client code is more declarative: give orders
 Different receivers may be substituted dynamically

M1S2 16 / 18

Summary: a cornerstone of OOP

 Avoid conditionals (see AntiIfCampaign)
 Use objects and messages whenever you can
 Let the receiver decide: Do not ask, tell
 Class hierarchy supports for dynamic dispatch

M1S2 17 / 18

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

