
Command Design Pattern
Actions as objects

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Little motivation
 Power of reification of actions
 Command Design Pattern
 Glimpse at Commander: a command framework

M5S3 2 / 23

Imagine a scriptable robot

testExecute
| rb b |
rb := RbsRobot new.
rb startLocation: 4@1.
rb execute:
'dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4

M5S3 3 / 23

Execute (first version)

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
each first = 'mov'
ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [each first = 'dir'

ifTrue: [self direction: (Object readFrom: each second)]]]

M5S3 4 / 23

Execute (more actions)

RbsRobot >> execute: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
each first = 'mov'
ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [each first = 'dir'

ifTrue: [self direction: (Object readFrom: each second)]
ifFalse: [each first = 'drop']]
...
each first = 'pick'
...
each first = 'return']

M5S3 5 / 23

Analysis

 Each time we add a new order we have to modify execute:
 Imagine if a mov order cost a lot

◦ Better to have one over many ones
◦ mov 10 mov 10 mov 10 -> mov 30
◦ Not simple to perform a simple path optimization

 How to replay the exact low-level executions

M5S3 6 / 23

Command Design Pattern

Intent from the book: Encapsulate a request or operation as an object, thereby
letting you parametrize clients with different operations, queue or log request, and
support undoable operations

M5S3 7 / 23

A command

 A command is a reification of an order/action
 A command encapsulates an action and optionally its context

◦ menu item
◦ log action

 Commands are often the basis for Undo

M5S3 8 / 23

Command core

execute

Concrete
Command

Invoker

execute

Concrete
Command2

execute
Command

Receiver

M5S3 9 / 23

Robot direction command

RbsCommand << #RbsDirectionCommand
slots: { #direction };
tag: 'Commands';
package: 'Robots'

RbsDirectionCommand << handleArguments: aCollection
direction := aCollection first asSymbol

RbsDirectionCommand << executeOn: aRobot
aRobot direction: direction

M5S3 10 / 23

Robot move command

RbsCommand << #RbsMoveCommand
slots: { #distance };
tag: 'Commands';
package: 'Robots'

RbsMoveCommand << handleArguments: aCollection
direction := Object readFrom: aCollection first

RbsMoveCommand << executeOn: aRobot
aRobot move: distance

M5S3 11 / 23

Modular execution logic

RbsRobot >> executeCommandBased: aString

orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space].
orders do: [:each |
(self commandClassFor: each first) new
handleArguments: each allButFirst;
executeOn: self]

M5S3 12 / 23

Analysis of extensibility in place

executeOn:
handleArguments:

Move
Command

executeOn:
handleArguments:

Direction
Command

executeOn:
handleArguments:

Command

RbsRobot
executeOn:
handleArguments:

Drop
Command

executeOn:
handleArguments:

Pick
Command

 Each command is responsible for handling its own data
 Each command encapsulates its state, applicability and action
 Can now manipulate actions (log, sort, undo....)

M5S3 13 / 23

Command cons

 Not all operations should be turned into Command objects
 Produce large hierarchies of simple classes
 Pay attention not to externalize key object behavior

◦ a class should still be complete
◦ better if a command represents an existing behavior

M5S3 14 / 23

Commander: a Command framework

Commander is a little framework for commands using decorators
 Can produce a toolbar or menus
 UI is optional

(EgAddContactCommand new context: aPresenter) execute

M5S3 15 / 23

Core commander

name
description
decorateWith:

CmCommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

CmUICommand

execute
context
canBeExecuted
acceptVisitor:
forContext:

CmAbstractCommand

decorated

name
description
block:
canBeExecutedBlock:

CmBlock
Command name

description
context
decoratedCommand

CmCommandDecorator

M5S3 16 / 23

Add Contact

EgContactBookCommand << #EgAddContactCommand
package: 'EgContactBook'

CmAddContactCommand >> initialize
super initialize.
self
basicName: 'New contact';
basicDescription: 'Creates a new contact and add it to the contact

book.'

M5S3 17 / 23

Add Contact: Behavior

CmAddContactCommand >> execute
| contact |
contact := self contactBookPresenter newContact.
self hasSelectedContact
ifTrue: [self contactBook

addContact: contact
a�er: self selectedContact]

ifFalse: [self contactBook addContact: contact].
self contactBookPresenter updateView

M5S3 18 / 23

Commander and its decorators

name
description
decorateWith:
asSpecCommand

CmCommand

icon
shortcutKey
beDisabledWhenCantBeRun
beDisplayedOnLeftSide

CmUICommand

execute
context
canBeExecuted
acceptVisitor:
forContext:

CmAbstractCommand decorated

asSpecCommand
execute

StCommand

name
description
block:
canBeExecutedBlock:

CmBlock
Command name

description
context
decoratedCommand

CmCommandDecorator

asButtonPresenter
SpCommand SpecSpec

Usage

UI

Core

execute
StPlaygroundDoItCommand

M5S3 19 / 23

Commander and its decorators

CmCommand >> asSpecCommand
"Subclasses might override this method to define default icon and shortcut."
^ self decorateWith: SpCommand

StCommand >> asSpecCommand

| command |
command := super asSpecCommand
iconProvider: self application;
iconName: self class defaultIconName;
yourself.
self class defaultShortcut
ifNotNil: [:keyCombination | command shortcutKey: keyCombination].
^ command

M5S3 20 / 23

One Command

StCommand << StPlaygroundDoItCommand
package: 'NewTools−Playground'

StCommand >> execute
context doEvaluateAllAndGo

M5S3 21 / 23

Conclusion

 Commands are first class actions
 Adapted for manipulation of actions (undo, replay)

M5S3 22 / 23

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

