
G. Polito, S. Ducasse

Reverse Engineering
Pharo’s LRUCache

The Task

• We need to use an LRUCache for some project

• We need to understand

• What it is

• How it is used

• A bit the implementation just in case

How are we going to do?
BACKLOGFOCUS

a.k.a.

the
ignore
list

First: What is an LRUCache?

• A cache => known from previous courses

• With a least recently used policy => it removes elements when full!

• General info on how caches work, from wikipedia

FOCUS: High-level view BACKLOG

A Map of the Code

• Statically learn what is there

• Focus on the main class: LRUCache

• Read the comment!

FOCUS: High-level view BACKLOG

TTLCache
Weight
Statistics
Extensions?

User perspective - How does it work?

• Learned from the comment:

• It seems to work as a dictionary and store (key, value) pairs

• There are examples!

• Important method: at:ifAbsentPut:

primeFactorsCache	:=	LRUCache	new.	

50	timesRepeat:	[
|	n	|	
n	:=	100	atRandom.	
primeFactorsCache	
at:	n	ifAbsentPut:	[n	primeFactors]].

FOCUS: API BACKLOG

TTLCache
Weight
Statistics
Extensions?

Pharo things:
 atRandom
 primes

User perspective - How is it used?

• Senders of at:ifAbsentPut:

• Bad idea! same API as Dictionary, lots of false positives

BACKLOG

TTLCache
Weight
Statistics
Extensions?

FOCUS: API

Pharo things:
 atRandom
 primes
 classes

User perspective - How is it used? Try #2

• References of the LRUCache class

• Better! Only 11 users. We can read them all!

BACKLOG

TTLCache
Weight
Statistics
Extensions?

FOCUS: API

Pharo things:
 atRandom
 primes
 classes

FOCUS: API
Analysis of Class Users

• 2 tests, 9 “other” legitimate users

• Other 9 usages use two new API methods we did not check

LRUCache	new	
maximumWeight:	20;	
factory:	[:key	|	…];	
yourself

LRUCache	new	
maximumWeight:	20

BACKLOG

TTLCache
Weight
Statistics
Extensions?

Pharo things:
 atRandom
 primes
 classes

FOCUS: API
• 2 tests, 9 “other” legitimate users

• Other 9 usages use two new API methods we did not check

LRUCache	new	
maximumWeight:	20;	
factory:	[:key	|	…];	
yourself

LRUCache	new	
maximumWeight:	20

BACKLOG

TTLCache
Weight
Statistics
Extensions?
factory:

A Decision: Where to Continue?

For later
at:ifAbsentPut: seems enough 

to add elements for now

Pharo things:
 atRandom
 primes
 classes

Advanced Usage - Maximum Weight

• The comment says nothing about the weight!

• Let’s check the implementation => read some code

• maximumWeight: is not in LRUCache

• => check the superclass

• Found in AbstractCache

FOCUS: API - weight BACKLOG

TTLCache
Weight
Statistics
Extensions?
factory:

Pharo things:
 atRandom
 primes
 classes

AbstractCache

• AbstractCache defines weight

• AbstractCache comment says what this is about

FOCUS: API - weight BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!

Pharo things:
 atRandom
 primes
 classes

Information Confirmed by the Comment

• at:ifAbsentPut: is the primary API method (interface) !

• It contains (key,value) pairs

• New information

• a cache has a weight (capacity)

• a cache has a max weight (max capacity)

FOCUS: API - weight BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!

Pharo things:
 atRandom
 primes
 classes

Implementor’s Hat: How Insertions Work

• Hypothesis

• A hit means we find an element in the cache

• A miss means we did not find it, we should add it

• If we reach the capacity, we should evict something (LRU policy)

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!

Pharo things:
 atRandom
 primes
 classes

Insertion Implementation

LRUCache	>>	at:	key	ifAbsentPut:	block	
[…]	
association	:=	keyIndex	

associationAt:	key	
ifAbsent:	[|	value	|	

value	:=	block	cull:	key.	
[…]	
association	:=	self	newAssociationKey:	key	value:	value.	
[…]	
^	self	handleMiss:	association].	

^	self	handleHit:	association

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!

Pharo things:
 atRandom
 primes
 classes

LRUCache	>>	at:	key	ifAbsentPut:	block	
[…]	
association	:=	keyIndex	

associationAt:	key	
ifAbsent:	[|	value	|	

value	:=	block	cull:	key.	
[…]	
association	:=	self	newAssociationKey:	key	value:	value.	
[…]	
^	self	handleMiss:	association].	

^	self	handleHit:	association

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!

Ignoring Complex Details at First

Semaphores

Double checks
Pharo things:
 atRandom
 primes
 classes

LRUCache	>>	at:	key	ifAbsentPut:	block	
[…]	
association	:=	keyIndex	

associationAt:	key	
ifAbsent:	[|	value	|	

value	:=	block	cull:	key.	
[…]	
association	:=	self	newAssociationKey:	key	value:	value.	
[…]	
^	self	handleMiss:	association].	

^	self	handleHit:	association

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks

Focus on the Important

Pharo things:
 atRandom
 primes
 classes
 concurrency

LRUCache	>>	at:	key	ifAbsentPut:	block	
[…]	
association	:=	keyIndex	

associationAt:	key	
ifAbsent:	[|	value	|	

value	:=	block	cull:	key.	
[…]	
association	:=	self	newAssociationKey:	key	value:	value.	
[…]	
^	self	handleMiss:	association].	

^	self	handleHit:	association

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

Where is the Insertion?

If we “miss”,
we should insert

the value
Pharo things:
 atRandom
 primes
 classes
 concurrency

Confirming the Hypothesis

handleMiss:	association	
|	link	|	
statistics	addMiss.	
self	addWeight:	association	value.	
link	:=	lruList	addLast:	association.	
keyIndex	at:	association	key	put:	link.	
^	association	value

Bingo!

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

Pharo things:
 atRandom
 primes
 classes
 concurrency

Where is the eviction?

handleMiss:	association	
|	link	|	
statistics	addMiss.	
self	addWeight:	association	value.	
link	:=	lruList	addLast:	association.	
keyIndex	at:	association	key	put:	link.	
^	association	value

Candidates

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

Pharo things:
 atRandom
 primes
 classes
 concurrency

Looking in the Statistics

• Implementors of addMiss

CacheStatistics	>>	addMiss	
misses	:=	misses	+	1

Nope, just an increment

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

addWeight:

Pharo things:
 atRandom
 primes
 classes
 concurrency

Stepping Back

• Implementors of addMiss

handleMiss:	association	
|	link	|	
statistics	addMiss.	
self	addWeight:	association	value.	
link	:=	lruList	addLast:	association.	
keyIndex	at:	association	key	put:	link.	
^	association	value

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

Pharo things:
 atRandom
 primes
 classes
 concurrency

Backtracking and Trying Other Path

• Implementors of addWeight:

addWeight:	value	
weight	add:	value.	
[weight	isBelowMaximum]	

whileFalse:	[
self	isEmpty	

ifTrue:	[self	error:	‘…’]	
ifFalse:	[self	evict]]

Bingo again!

FOCUS: Implementation insert + evict BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

LRU?
why loop?

Pharo things:
 atRandom
 primes
 classes
 concurrency

What did we learn?

• LRU Cache is a cache with a Least Recently Used policy

• Works as a (key, value) pair

• Main API: at:ifAbsentPut:

• Has a max capacity, evicts elements to not surpass it

What did we NOT learn?

• How the LRU policy is implemented

• How is the weight/eviction implemented?

• Is it thread-safe? How? How does Pharo concurrency work?

• Many classes: Statistics, TTLCache…

• How do Pharo random generators work?

• …

BACKLOG

TTLCache
Statistics
Extensions?
factory:
weight impl!
Semaphores
Two checks
hits

LRU?
why loop?

Pharo things:
 atRandom
 primes
 classes
 concurrencyWe ignored more than what we learned

How did we learn?

• We focused on the target

• Flow: High-level View => Usage => Implementation

• We ignored things not in focus, and kept a log for later

• Comments had important info: the why of the design

• Senders show examples of users!

• Methods were too detailed: learn what lines to ignore

