
Practical Versionning with Git

Guille Polito, Stéphane Ducasse

July 10, 2019



Copyright 2017 by Guille Polito, Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode


Contents

Illustrations ii

1 Practical Git by Scenarios 1

1.1 Exploring the History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Discarding your local changes . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Ignoring files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Getting out of Detached HEAD . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Accessing your Repository through SSH . . . . . . . . . . . . . . . . . . . . 5

1.6 Rewriting the history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 How to overwrite/modify commits . . . . . . . . . . . . . . . . . . . . . . 7

i



Illustrations

1-1 Example of SourceTree’s commit graph view . . . . . . . . . . . . . . . . . 3

1-2 Example of Github’s commit graph view . . . . . . . . . . . . . . . . . . . 3

ii



CHA P T E R 1
Practical Git by Scenarios

1.1 Exploring the History

The git log command

The commit graphs we have shown so far are not evident at all while when
we use the git status command. There is however a way to ask Git about
them using the git log command.

$ git log
commit 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 15:37:32 2018 +0100

Adding a title

commit 37adf4eaa945cbd7460991f88bff5aa902db06ce
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 14:02:43 2018 +0100

first version

git log prints the list of commits in order of parenthood. The one on the
top is the most recent commit, our last commit. The one below is its par-
ent, and so on. As you can see, each commit has an id, the author name, the
timestamp and its message.

To display a more compact version (commit ids + message) of the log use

git log --oneline

We can also ask Git what are the changes introduced in a particular commit

1



Practical Git by Scenarios

using the command git show.

$ git show 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
commit 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 15:37:32 2018 +0100

Adding a title

diff --git a/README.md b/README.md
index e69de29..cad05f1 100644
--- a/README.md
+++ b/README.md
@@ -0,0 +1 @@
+! a title
\ No newline at end of file

That will give us the commit description as in git log plus a (not so read-
able) diff of the modified files showing the inserted, modified and deleted
lines. More advanced graphical tools are able to read this description and
show a more user-friendly diff.

Seeing the history graph

Git’s log provides a more graphish view on the terminal using some cute ascii
art. This view can be accesses through the git log --graph --oneline
--all command. Here is an example of this view for a more complex project.
In this view, stars represent the commits with their ids and commit mes-
sages, and lines represent the parenthood relationships.

$ git log --graph --oneline --all
* 4eb8446 Documenting
* e5a3e2e Add tests
* 680a79a Some other
| * ed4854f Merge pull request #1137
| |\
| | * 9e30e37 Some feature
| * | ba7f65c Merge pull request #1138
| |\ \
| | * | 31a40c4 Some Enhancement
| | |/
| * | 2d4698d Merge pull request #1139
| |\ \
| | * | 20c0ff4 Some fix
| | |/
| * | ae3ec45 Merge pull request #1136

However, we are not always in the mood of using the terminal, or of wanting
to decode what was done in ascii art. There are tools that are more suitable
to explore the history of a project, usually providing some nice graphical ca-

2



1.2 Discarding your local changes

Figure 1-1 Example of SourceTree’s commit graph view

Figure 1-2 Example of Github’s commit graph view

pabilities. This is the case of tools such as SourceTree (Figure 1-1) or Github’s
network view (Figure 1-2).

1.2 Discarding your local changes

It comes the time for every woman/men to make mistakes and want to dis-
card them. Doing so may be dangerous, since once discarded you will not
able to recover your changes. It is however possible to instruct Git to do so.
For it, there are two Git comments that will perform the task for you and
when combined they will completely discard every dirty file and directory in
your repository: git reset and git clean

$ git reset --hard <commit_id>
$ git clean -df

The -d option removes untracked directories in addition to untracked files,
while the -f option is a shortcut --force, forcing the corresponding dele-
tions.

The reason for needing two commands instead of one relies on the fact that
Git has several staging areas (such as the ones used to keep the tracked files),

3



Practical Git by Scenarios

which we usually would like to clean when we discard the repository. Of
course, experienced readers may search why they would need both in Git’s
documentation.

To do what about this1 ?

1.3 Ignoring files

Many times we will find that we do not want to commit some files that are
in our repository’s directory. This is mostly the case of generated or auto-
matically downloaded files. For example, imagine you have a C project and
some makefiles to compile it, generating a binary library. While it would be
good to store the result of compilation from time to time, storing it in a Git
repository (or SVN, or Bazar) may be a cause of headaches. First, as you will
see in ??, this may be a cause for conflicts. Second, since we should be able to
generated such binary library from the sources, having the already compiled
result in the repository does not add so much value.

This same ideas can be used to ignore any kind of generated file. For exam-
ple, pdfs generated by document generation tools, meta-data files generated
by IDEs and tools (e.g., Eclipse), compiled libraries (e.g., dll, so, or dylib files).

In such cases, we can tell Git to ignore cetain files using the .gitignore file.
The .gitignore file is an optional text file that we can write in the root of
our repository with a list of file paths to ignore.

# Example of .gitignore file

# Lines starting with hashtags are comments

# A file name will ignore that file
someignoredfile.txt

# A file name will ignore that file
someignoredfile.txt

# A file pattern will ignore all pdf files
*.pdf

Once your file is ready, you have to add it and commit it to Git to make it
take effect.

$ git add .gitignore
$ git commit -m "Added gitignore"

From this moment on, all listed files will be ignored by git add and git
status. And you will be able to perform further commands to add ”all but
ignored files”:

$ git add .

4

https://stackoverflow.com/a/21718540


1.4 Getting out of Detached HEAD

Note If a file or a file type is tracked but you want git to ignore its
changes afterward, adding it to .gitignore file will not make the job i.e.
git will continue to track it.

To avoid keeping track of it in the future, but secure it locally in your work-
ing directory, it must be removed from the tracking list using ==git rm –cached
<file> (.<file_type>)==. Nevertheless, be aware that the file is still present in
the past history!

To do Link to ?? to remove a (sensitive) file from history

1.4 Getting out of Detached HEAD

Detached head means no other than ”HEAD is not pointing to a branch”. Be-
ing in a detached HEAD state is not bad in itself, but it may provoke loss of
changes. As a matter of fact, any commit that is not properly referenced by
another commit or by another Git reference (tag, branch) may be garbage
collected.

Git will not forbid you to commit in this state, but any new commit you cre-
ate will only reachable if you remember the commit hash. To get out of det-
tached HEAD, the easiest solution is to checkout a branch, as we will see in
the next section. Checking out a branch will set HEAD to point to a branch
instead of a commit, saving you some HEADaches.

1.5 Accessing your Repository through SSH

To be able to access your repository from your local machine, you need to
setup your credentials. Think it this way: you need to tell the server who you
are on every interaction you have with it. Otherwise, Github will reject any
operation against your repository. Such a setup requires the creation and
uploading of SSH keys.

An SSH key works as a lock: a key is actually a pair of a public and a private
key. The private key is meant to reside in your machine and not be published
at all. A public key is meant to be shared with others to prove your identity.
Whenever you want to prove your identity, SSH will exchange messages en-
crypted with your public key, and see if you are able to decrypt it using your
private key.

To create an SSH key, in *nix systems you can simply type in your terminal

$ ssh-keygen -t rsa -b 4096 -C "your_email@some_domain.com"

Follow the instructions in your terminal such as setting the location for your
key pair (usually it is $HOME/.ssh) and the passphrase (a kind of password).

5



Practical Git by Scenarios

Finally, you’ll end up with your public/private pair on the selected location.
It is now time to upload it to Github.

Connect yourself to your Github settings (usually https://github.com/set-
tings/profile) and go to the ”SSH and GPG keys” menu. Import there the con-
tents of your public key file. You should be now able to use your repository.

1.6 Rewriting the history

Many times it happens that we accidentally commit something wrong. Maybe
we wanted to commit more or less things, maybe a completely different con-
tent, or we did a mistake in the commit’s message. In these cases, we can
rewrite Git’s history, e.g, undo our current commit and go back to the previ-
ous commit, or rewrite the current commit with some new properties.

Be careful! Rewriting the history can have severe consequences. Imagine
that the commit you want to undo was already pushed. This means that
somebody else could have pulled this commit into her/his repository. If we
undo this already publised commit, we are making everybody else’s repos-
itories obsolete! This can be indeed problematic depending on the number
of users the project has, and their knowledge on Git to be able to solve this
issue.

Undo a commit using git reset --hard

To undo the last commit, it is as easy as:

$ git reset --hard HEAD~1

git reset --hard [commitish]makes your current branch point to [com-
mitish]. HEAD is your current head, and you can read ~1 as ”minus one”. In
other words, HEAD~1 is head minus one, which boils down to the parent of
head, our previous commit.

You can use this same trick to rewrite the history in any other way, since
you can use any commitish expression to reset. For example, HEAD~17means
17 versions before head, or someBranch~4means four commits before the
branch someBranch.

Update a commit’s message using git commit --amend

To change our current commit’s message you can use the following com-
mand:

$ git commit --amend -m "New commit message"

Or, if you don’t use the -m option, a text editor will be prompt so you can edit
a commit message.

6



1.7 How to overwrite/modify commits

$ git commit --amend

You can use the same trick not only to modify a commit’s message but to
modify your entire commit. Actually, just adding new things with git add
before an --amend will replace the current commit with a new commit merg-
ing the previous commit changes with what you just added.

1.7 How to overwrite/modify commits

WARNING: It is highly not recommended to rewrite the history of a repo es-
pecially when part of it has already been pushed to a remote. Modifying the
history will most likely break the history shared by the different collabora-
tors and you may deal with an inextricable merge conflict.

Change the last commit

Imagine you have just committed your changes and have not pushed them
yet, but

1. you are not satified with the commit message

$ git log --oneline
$ git commit --amend -m "Updated commit message"
$ git log --oneline

2. you forgot to save some modification or to add some files before commit-
ting. Then make your changes and use

$ git commit -a --amend --no-edit

Merge two commits

First, it is worth repeating that you must think twice before modifying the
history of the repo. Now, assume that you have not pushed the correspond-
ing commits. Merging two consecutive commits is a way to work with a cleaner
tree. Consider you want to merge commits ”Intermediate” and ”Old”

$ git log --oneline

eae7846 New
71c0c64 Intermediate
f039832 Old
cca92f1 Even older

Then, you can interactively -i focus on the last three HEAD~3 commit.

7



Practical Git by Scenarios

$ git rebase -i HEAD~3

pick f039832 Old
pick 71c0c64 Intermidiate
pick eae7846 New

Note Observe that the commits are displayed in the reversed order.

Now you can squash the commit ”Intermediate” into its parent commit ”Old”

pick f039832 Old
squash 71c0c64 Intermidiate
pick eae7846 New

And set the message e.g. ”Merge intermediate + old” attached to the single.

# This is a combination of 2 commits.
# This is the 1st commit message:

Old

# This is the commit message #2:

Intermediate

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.

$ git log --oneline

eae7846 New
651375a Merge intermediate + old
cca92f1 Even older

Note The commit id has changed

Pushing rewritten history

As soon as the history we have rewritten was never pushed before, we can
continue working normally and pushing our changes then without problems.
However, if we have already pushed the commit we want to undo, this means
that we are potentially impacting all users of our repository. Because of the
problems it can pose to other people, pushing a rewritten history is not a
completely favoured by Git. Better said, it is not allowed by default and you’ll
be warned about it:

$ git push
To git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git
! [rejected] YOUR_BRANCH -> YOUR_BRANCH (non-fast-forward)

8



1.7 How to overwrite/modify commits

error: failed to push some refs to
'git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git'

hint: Updates were rejected because the tip of your current branch
is behind

hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for

details.

With this message Git means that you should not blindly overwrite the his-
tory. Also, it suggests to pull changes from the remote repository. How-
ever, doing that will bring back to our repository the history we wanted to
undo! What we want to do is to impose our current (undone) state in the re-
mote repository. To do that, we need to force the push using the git push
--force or the git push -f option.

$git push -f
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git
+ a1713f3...6e0c7bf YOUR_BRANCH -> YOUR_BRANCH (forced update)

9




	Illustrations
	Practical Git by Scenarios 
	Exploring the History
	The git log command
	Seeing the history graph

	Discarding your local changes
	Ignoring files
	Getting out of Detached HEAD
	Accessing your Repository through SSH
	Rewriting the history
	Undo a commit using git reset –hard
	Update a commit's message using git commit –amend

	How to overwrite/modify commits
	Change the last commit
	Merge two commits
	Pushing rewritten history



