
Practical Versionning with Git

Guille Polito, Stéphane Ducasse

July 10, 2019

Copyright 2017 by Guille Polito, Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Expert Git 1

1.1 Some Git Internals . 1

1.2 Commit in workflow . 5

1.3 Creating new history lines with branches 6

1.4 Creating Tags . 8

1.5 Merging history lines . 10

1.6 Interacting with Remote Repositories . 13

1.7 SSH or HTTPS access? . 18

1.8 Exercises . 19

i

Illustrations

1-1 Git repository structure . 2

1-2 Graph of commits . 3

1-3 Git references . 4

1-4 Commit is an operation that stores things from your working copy into

your local repository . 5

1-5 History graph after our first commit . 5

1-6 History graph after our second commit . 6

1-7 History lines can be branched from a commit 6

1-8 A new branch points by default to the same commit as the current branch . 7

1-9 Divergent history . 9

1-10 Detached HEAD after checking out a tag 10

1-11 Merging the history with a merge commit 11

1-12 Fetch is an operation that brings things from a remote into your local

repository. Merge will join the remote history with your current history

and update your working copy. Pull will do both of them. 16

1-13 Push is an operation that sends commits from your local repository to a

remote repository. 17

ii

CHA P T E R 1
Expert Git

1.1 Some Git Internals

Before going on with the reproducibility concerns that brought you here to
read this chapter and even before continuing with practical Git commands,
we will dive a bit into Git concepts. Understanding a bit how Git works is use-
ful when doing some more complicated stuff such as merging and branching.
If you already know what is a Git commit, a Git reference and how the graph
of Git objects is managed, you can skip this section.

Dissecting a Git Repository

Before starting explaining what is a commit, what is a branch, and so on, let’s
start easy by understanding the parts that compose our Git repository. When
you create a Git repository as we did in the last section, or you clone an old
repository that already has some files in it, you will find that there is more
than meets the eye. A Git repository has usually three core collaborating
components: the working copy, the repository, and the remotes. You can
see an schematics on Figure 1-1.

What you usually see in your disk when you clone is not actually the Git
repository but the working copy. The working copy is the directory where
your files are, where you work and apply modifications. It is called a working
copy because what you see is actually a copy of what is in the repository. The
working copy is a write-able copy: you can freely modify it, break it, add new
things or remove things.

Actually, you can do whatever change you want in your working copy, that
Git will not take it into account, at least not automatically. Once your changes
are ready, you have to commit them into your repository to store them in

1

Expert Git

github.com
Your PC

repository github
repository

Working Copy

remote

Figure 1-1 Git repository structure

your repository. A commit will take your changes, freeze them, and store
them in the local database. Just for the curious ones, the local database (also
known as the BLOB in the Git jargon) is stored inside your working copy, in a
hidden directory called .git.

The commits you create from your changes live only inside your machine by
default. If you want to share your commits with others, or to import commits
from some fellow colleague, you have to interact with a remote repository
(also called just remote). A remote is a distant Git repository that you will
synchronize with your local one from time to time (this is where the famous
pull and push come into play!).

Of course, this is an utterly simplified scenario. You could have a repository
without a working copy. And your repository may have many remotes to
synchronize with. But we will get into more complex stuff early on, no need
to rush now.

A history-aware transactional database?

As we explained before, we usually work on the working copy, modifying our
files and directories. Once we finished some work, we can freeze it and store
it in the repository. That’s what we call a commit.

From this perspective, a Git repository works as a transactional database.
You are working on the changes of your disk, but they will not be effectively
applied until you finish your transaction. Finishing your transaction is done,
as in the database world, using the commit command. The result of this
transaction is to create a new commit object in the Git repository. This com-
mit object will contain an id (usually a hash such as 7ba52e5) plus all changes
we wanted to apply.

Git will store your last changes but also remember the entire history of changes
you did. It keeps a list of all changes you did so you can do some nice stuff
like for example:

• come back in time to recover some old change

2

1.1 Some Git Internals

Labels:

b8bfed7

7ba52e5

35ac17f

a4153b1

b01aba4

parent

Figure 1-2 Graph of commits

• trace the changes in a file to see who (and why!) did a change

• analyze your repository and do some archeology, to see how your
project evolved

It’s a just graph of commits

The history of commits we explained before is not stored in a list form but
in a graph form. A commit is a node connected to other commits by par-
enthood. A commit is said to be parent of another commit if it is the exact
previous version. In other words, when we create a new commit, the parent
of our new commit is the previous commit. A commit is said to be an ances-
tor of another commit if it preceeds it in history. Moreover, a commit can
have one or many parents, and many commits can have the same commit as
parent.

For instance, take a look at the schema of a typical commit graph repre-
sented in Figure 1-2.

• Commit a4153b1 is the first commit in the graph, with no parents. A
commit with no parents represents the first commit in a repository,
when no previous history was available.

• Commit 35ac17f’s parent is a4153b1 and commit 7ba52e5’s parent is
35ac17f.

• Commit b01aba4’s parent is also a4153b1.

• Commit b8bfed7 has two parents: 7ba52e5 and b01aba4.

3

Expert Git

b8bfed7

7ba52e5

35ac17f

a4153b1

b01aba4 feature_branch

master_branch

v1.0	<tag>

HEAD

parent

reference
Labels:

Figure 1-3 Git references

You may be asking yourself how can we arrive to such a situation. In short,
a commit that is parent of many commits is creating an alternative history
line: it is the result of a branch operation. Likewise, a commit that has many
parents is joining two histories: it is the result of amerge operation.

Naming commits with references

You probably noticed that referring to commits by their id is awkward. Com-
mit ids are generated automatically as hashes that avoid duplications as
much as possible. However, they are not handy to work on a daily basis since
they are hard to remember and type.

To solve this, Git provides a second kind of objects: Git references. A Git ref-
erence is like a label that you put on a commit, to be able to identify that
commit by a much much simpler name afterwards. For example, you can
name a commit as release 1.0 or you can name it as current development
commit.

As we show in Figure 1-3, there are two main kinds of references in Git:

• tags: tags are fixed labels that once created are not meant to be re-
moved or moved. They are useful for doing releases: people will expect
that a release does not change, otherwise they cannot depend on it.

• branches: branches are transferable labels that can be moved from
commit to commit. They are used to maintain the different history
lines of your project.

Another special reference, called HEAD is internally used by Git to know
what is our current working branch. While it would look like an implementa-

4

1.2 Commit in workflow

github.com
Your PC

repository github
repository

Working Copy

remoteCommit

Figure 1-4 Commit is an operation that stores things from your working copy

into your local repository

37adf4e master HEAD

reference
Labels:

Figure 1-5 History graph after our first commit

tion detail, knowing that HEAD is there can save you many headaches as we
will see later.

Now that you have built some strong conceptual Git muscles, we can con-
tinue in the next sections with some practical Git. Do not hesitate to come
back to these sections to refresh some of the basics. As with any sport or dis-
cipline, understanding and practicing the basics is really important, since
everything else is based on them.

1.2 Commit in workflow

We have already studied the commit operation ans saw that it moves changes
from our working copy to our local repository, as it is shown in Figure 1-4.
In additio to this staging view, we can see what the commit operation does
from a graph point of view: The commit command creates a new node in our
history graph. It then updates the master branch label to point to this new
commit. The commit graph in this case will look as in Figure 1-5.

If we repeat the process, i.e. we apply a change to one of our files, add and
commit our commit graph will change again. A new commit with a new
commit id will be created having as parent our previous commit. The mas-
ter branch label will be updated and point to this new commit. The commit

5

Expert Git

37adf4e

master HEAD0c0e5ff

parent

reference
Labels:

Figure 1-6 History graph after our second commit

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

Figure 1-7 History lines can be branched from a commit

graph in this case will look as in Figure 1-6 Notice how our old commit is still
there, but he’s accessible as the parent of our new commit.

$ git add README.md
$ git commit -m "Adding a title"
[master 0c0e5ff] Adding a title
1 file changed, 1 insertion(+)

1.3 Creating new history lines with branches

Branches in Git represent different histories. As in one of science fiction
time-travel theories, Git branching is equivalent to take one moment in time
have several alternative time-lines from there. Figure 1-7 illustrates the idea,
showing that you can have two different futures from commit _0c0e5ff_.

By default, a Git repository will include a single branch, calledmaster. Most
people only need a single branch to work. However, it may be useful to split
work in several branches as we will see later. You can ask Git for the branches
in the repository using the command git branch -v.

6

1.3 Creating new history lines with branches

37adf4e

master0c0e5ff

development

HEAD

parent

reference
Labels:

Figure 1-8 A new branch points by default to the same commit as the current

branch

$ git branch -v
* master 0c0e5ff Adding a title

This command shows all branches in the repository, one per line. Then, for
each branch it shows what commit it points, and the comment on that com-
mit.

Creating a new branch

To create a new branch, we can use the command git branch [branch_name]
giving as argument the new branch name. This will create a new branch
from our current commit, the one that can be resolved from HEAD. Figure
1-8 shows what happens in the graph view.

$ git branch development

However, as we see in the graph view, creating a new branch does not modify
HEAD. Indeed, our current branch/commit did not move. We will observe
the same in the command line, if we ask the list of branches. The branch
master is marked with a star, indicating it is the actual branch. And both
branches point to the same commit.

$ git branch -v
* master 0c0e5ff Adding a title

development 0c0e5ff Adding a title

To start working on our new branch, we just need to use the same checkout
command we used for tags.

$ git checkout development
Switched to branch 'development'

Or alternatively, we could have created our branch using the checkout -b
command, which performs a git branch and a git checkout one after the

7

Expert Git

other. Useful since these operations are usually done together most of the
time.

Instead of branch and then checkout
$ git checkout -b development
Switched to branch 'development'

Then, doing some work and creating a commit will only modify our current
branch and leave master as it was before.

$ touch somefile
$ git add somefile
$ git commit -m "added somefile"
[development b894b84] added somefile
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 somefile
$ git branch -v

master 0c0e5ff Adding a title
* development b894b84 added somefile

Diverging history

Now that we have done some work in a branch, we can make our branches
diverge. We only need to checkout another branch, existing or new, and
start working from there.

$ git checkout master
Switched to branch 'master'
$ touch someotherfile
$ git add someotherfile
$ git commit -m "added someotherfile"
[master dc4a3e7] added someotherfile
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 someotherfile
$ git branch -v
* master dc4a3e7 added someotherfile

development b894b84 added somefile

This change will create two diffent history lines, as shown in Figure 1-9. One
history line represented by the master branch, and another history line rep-
resented by the development branch.

1.4 Creating Tags

When your project is in a stable state, it is often good to freeze it and put
a name to that version. That way, other users can load the frozen version
using that well-known name, and also be sure that version will not change.
Freezing a version is particularly useful to reproduce a piece of sofware. A
frozen version can be reloaded exactly as it is right now but in some point in

8

1.4 Creating Tags

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

Figure 1-9 Divergent history

the future. Thus, software that depends on a frozen version can also benefit
from its stability.

In Git, releasing is done via tags. A tag is a label that we put on a particular
commit to be able to find it easily later on, so remember to put short, read-
able names to them. One particular consideration about tags is that they are
not meant to be modified, although you will find in Git’s documentation that
you have special operations (that we do not recommend) to do that.

To create a tag, use the command git tag giving as argument a name for
the tag and a descriptive message. Usual tag names use semantic version
conventions, prefixed with a v. For example version 1 would be v1.0.0.

$ git tag -a v1.0.0 -m "First stable release"

You can afterwards list all your tags using the git tag command without
arguments:

$ git tag
v0.1.1-alpha
v1.0.0

Finally, if you want to recover the code that you tagged at some point, you
can use the checkout command with the name of your tag.

$ git checkout v1.0.0
Note: checking out 'v1.0.0'.

You are in 'detached HEAD' state. You can look around, make
experimental changes and commit them, and you can discard any
commits you make in this state without impacting any branches by
performing another checkout.

If you want to create a new branch to retain commits you create, you
may do so (now or later) by using -b with the checkout command
again. Example:

9

Expert Git

37adf4e

master

HEAD

0c0e5ff

v1.0.0

parent

reference
Labels:

Figure 1-10 Detached HEAD after checking out a tag

git checkout -b <new-branch-name>

HEAD is now at 0c0e5ff... Adding a title

When checking out a tag, Git tells you that we are in detached HEAD state.
And that whatever commit we do in this state will be lost unless we create
a branch. What happened here is that the checkout command modified
the HEAD reference to point to the commit pointed by the tag, instead of a
branch. Figure 1-10 shows the commit graph for this particular case.

1.5 Merging history lines

The most complicated part of Git is not branching or commiting, but merg-
ing. In our time-travel, time-line metaphores we said that branching is equiv-
alent to open new time-lines. Merging is the equivalent to join them into a
single history.

The concept behind merging is not difficult. Using the same idea of graph of
commits that we used before, a merge can be represented as a commit that
has several parents, thus joining several histories. Figure 1-11 illustrates
such a merge commit.

However, as you see also in the picture, a merge commit will be referenced
by one of the branches but not both. In other words, a merge operation means
that a first branch will be merged into a second one. Thus the first one will
remain intact. To perform a merge we need to checkout the branch that will
host the changes, and then use the merge command with a branch name as
argument. The following example shows how we can merge the development
branch into the master branch.

10

1.5 Merging history lines

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

2dae910

Figure 1-11 Merging the history with a merge commit

$ git checkout master
...
$ git merge development
[Merge made by the 'recursive' strategy.
...
1 file changed, 0 insertions(+), 0 deletions(-)
...]

Managing Conflicts

When merging different history lines, things can go wrong if both history
lines modified the same file or ressource. Such a problem is also called a
conflict.

To understand the issue, let’s generate a conflict on purpose. We can create
two branches called future-1 and future-2 adding each the same file but
with different contents:

$ git checkout -b future-1
$ echo "I'm in future-1" > conflicting.txt
$ git add conflicting.txt
$ git commit -m "Maybe will cause a conflict"

Let's go back to master and redo the same in another branch
$ git checkout master

$ git checkout -b future-2
$ echo "I'm in future-2" > conflicting.txt
$ git add conflicting.txt
$ git commit -m "I'm sure it will cause a conflict!"

11

Expert Git

And then trigger a conflict when trying to merge:

We are in future-2 so we will try to merge future-1
$ git merge future-1
Auto-merging conflicting.txt
CONFLICT (add/add): Merge conflict in conflicting.txt
Automatic merge failed; fix conflicts and then commit the result.

We see that as soon as we merge, Git tries to automatically merge the file
conflicting.txt. It detects however a merge conflict that does not allow it
to continue. If we check Git’s status, you will now see:

$ git status
On branch future-2
You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both added: conflicting.txt

no changes added to commit (use "git add" and/or "git commit -a")

Git tells us that conflicting.txt is not merged and that we should fix it. To
continue working, we should resolve such a conflict, telling Git what version
we want to keep. Several solutions work: either we keep the version we had
in future-2, we keep the version incoming from future-1, or we keep a can
manually resolve the conflict and keep whatever version we want.

The easiest, non-thinking, way to merge is to open the conflicting file and
resolve the conflict. For example, if we open our conflicting.txt file with
a text editor we will see:

<<<<<<< HEAD
I'm in future-2
=======
I'm in future-1
>>>>>>> future-1

Git modified our file adding some <<<<<<<, >>>>>>> and =======markers in
our file. What this markers delimit is the conflicts Git found. As the first line
says, the first region (what is between the <<<<<<< and the =======) corre-
sponds at the version that was in HEAD (i.e., future-2). As the last line says,
the last region (what is between the ======= and the >>>>>>>) corresponds
to the version that was in future-1.

To resolve the conflict, you should: - remove all the special markers - keep
only the version you want (or edit it to be different) - add and commit the
conflicting file

12

1.6 Interacting with Remote Repositories

For example, let’s say we wanted to keep the version in future-2, we can edit
the file leaving only

I'm in future-2

and then commit the resolved conflict:

$ git add conflicting.txt
$ git commit -m "Resolve conflict"

1.6 Interacting with Remote Repositories

So far we have worked only on the repository that resides locally in our ma-
chine. This means that mostly all of Git features are available without requir-
ing an internet connection, making it suitable for working off-line (think on
working on the train or with a constrained connection!). However, working
off-line is a two-edged weapon: all your changes are captive in your machine.
While your changes are in your machine, nobody else can contribute or col-
laborate to them. Moreover, losing your machine would mean losing all your
changes too.

Keeping your changes safe means to synchronize them from time to time
with a remote repository. A remote repository is a copy of your local reposi-
tory that is stored remotely, that is, in somewhere else’s machine. This could
be, for example, in your company’s or university’s server, the cloud, etc.

In this section we will see how to interact with remotes, how to configure
them, and how to synchronize our local repository with them.

Git Remotes

A Git remote is a Git server that is hosted in some machine other than ours.
Usually, a remote will be hosted by some company like GitHub or GitLab, but
it can be hosted also within our own company/university/research labora-
tory. Actually, we have already worked with a remote without knowing it,
when we have cloned our repository in Section ??. The code we used in that
moment was:

$ git clone git@github.com:[your_username]/[your_repo_name].git

Which can be generalized as:

$ git clone [remote]

Once created, we can interrogate our repository for its remotes using the
command git remote -v. We will then observe that git created automati-
cally a remote named origin pointing to the location that we just cloned.

13

Expert Git

$ git remote -v
origin git@github.com:[your_username]/[your_repo_name].git (fetch)
origin git@github.com:[your_username]/[your_repo_name].git (push)

This first means that Git allows us to assign a name to avoid using urls all the
way. In addition, we can see that Git differentiates remotes used for fetching
from those used for pushing. Those differences are important for more ad-
vanced git configuration, that we will not cover in this chapter.

Adding and Removing Remotes

For advanced scenarios, when we need more than the default origin remote,
we will need to use different remotes. All git commands interacting with a
remote repository will have a variant accepting a remote repository as argu-
ment, as we will see later. In those cases, we can specify the remote’s url on
each of those commands to interact with the desired remote.

However, to avoid copy-pasting different remote urls all the time, Git pro-
vides us with the possibility of configuring new named remotes such as ori-
gin. The drawback of such an approach is that our list of remotes will need
to be maintained from time to time, for example, if urls become invalid or
our repository moves. In such cases, we will want to modify or remove old
remotes to keep avoid errors or mistakes.

To create a new named remote we can execute the command git remote
add [remote_name] [url].

$ git remote add someRemote [url]
$ git remote -v
origin git@github.com:[your_username]/[your_repo_name].git (fetch)
origin git@github.com:[your_username]/[your_repo_name].git (push)
someRemote [url] (fetch)
someRemote [url] (push)

Existing remotes can then be renamed using the git remote rename [old_name]
[new_name]. And in case the remote name you wanted to rename does not
exist, Git will answer you with a falta error.

$ git remote rename someRemote company_remote
$ git remote rename non_existent newname
fatal: No such remote: non_existent

Existing remotes can then be renamed using the git remote rename [old_name]
[new_name]. And in case the remote name you wanted to rename does not
exist, Git will answer you with a falta error.

$ git remote rename someRemote company_remote
$ git remote rename non_existent newname
fatal: No such remote: non_existent

14

1.6 Interacting with Remote Repositories

Finally, to remove an existing named remote you can use the git remote
remove [remote_name]. And in case the remote name you wanted to re-
name does not exist, Git will answer you with a falta error.

$ git remote remove company_remote
$ git remote remove non_existent
fatal: No such remote: non_existent

Update your repository: Fetching and Pulling

Before being able to share our commits in some external server, we need be-
fore to update our repository to avoid them being out of synchronization.
While you can always try to share your commits by pushing (see Section 1.6),
you will see with experience that Git favors pulling before pushing. This is,
among others, because in your local repository you can do whatever manip-
ulation you want to solve mistakes and merge conflicts, while you cannot do
the same in your remote repository.

Concretely, when using Git you have to have a state of mind where: 1. you
update your repository 2. you fix locally whatever existing conflict between
your work and the remote work 3. you then publish your changes.

Note Actually, our recommended workflow has one more step before
updating: commit. If you try to update when your working copy is dirty,
updating can destroy your changes. Instead, if you commit before doing
an update, your changes will be safely stored in the database. You’ll be
able to do any expert manipulation with your changes once they are in
the repository.

As we said before, a Git repository is no other than a database. It is a database
that stores commits and references to those commits. And to update this
database, we require two basic operations:

• fetch. Bring the commits and references from a remote repository to
your local repository without affecting your own.

• merge. Merge the remote references with your own references, the
same operation explained in Section 1.5.

In addition, the pull operation does both fetch and merge in a single opera-
tion (Figure 1-12).

Fetching is done through the git fetch [remote] command, where we
can specify both a remote url or a remote name as remote. Or, if we don’t
specify a remote, Git will by default fetch from whatever remote is specified
as origin. Executing a fetch will show an output like the following:

15

Expert Git

github.com

Your PC

repository github
repositoryWorking Copy remote

fetch

merge

pull

Figure 1-12 Fetch is an operation that brings things from a remote into your lo-

cal repository. Merge will join the remote history with your current history and

update your working copy. Pull will do both of them.

$ git fetch [remote_name]
remote: Counting objects: 79, done.
remote: Compressing objects: 100% (23/23), done.
remote: Total 79 (delta 52), reused 74 (delta 52), pack-reused 4
Unpacking objects: 100% (79/79), done.
From git://github.com/[project_owner]/[your_repo_name]

6b52ae6..5c53245 development -> [remote_name]/development
* [new branch] issue/876 -> [remote_name]/issue/876
* [new tag] v1.0 -> v1.0

Indeed, fetch will bring some objects (e.g., commits) to our repository, bring
new branches and so on, but it will not update any of your branches or tags.
We can then procceed to merge our local branch with the one in the remote
by doing a normal merge operation but indicating a remote branch (that is,
a branch prefixed by its remote name). Of course, as any merge operation,
this can incurr into a conflict, that we should fix locally before continuing.

$ git merge [remote_name]/master
[Merge made by the 'recursive' strategy.
...
1 file changed, 10 insertions(+), 1 deletions(-)
...]

These both operations could have been replaced by a git pull [remote_name]
[branch_name] command. Pulling will fetch all commits from the branch
named [branch_name] in the remote [remote_name] and then merge those
commits with your current branch.

Share your commits: Pushing

The final step in our Git journey is to share our changes to the world. Such
sharing is done by pushing commits to a remote repository, as shown in Fig-
ure 1-13. To push, you need to use the git command git push [remote]

16

1.6 Interacting with Remote Repositories

github.com

Your PC

repository github
repositoryWorking Copy remote

push

commit

Figure 1-13 Push is an operation that sends commits from your local repository

to a remote repository.

[remote_branch]. This command will send the commits pointed from your
your current branch to the remote [remote] in the branch [remote_branch].

$ git push origin temp
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> temp

To avoid specifying the remote and destination branch on every push (which
may be a bit verbose), you can avoid those parameters and rely on Git default
values. By default the git push operation will try to push to the branch’s
upstream. A branch’s upstream is the per-branch configuration saying to
which remote/branch pair it should push by default. When we clone a repos-
itory, the default branch comes with an already configured upstream. We
can interrogate Git for the branch’s upstreams with the super verbose flag in
the branch command, i.e., git branch -vv, where we can see for example
that ourmaster branch’s upstream is origin/master, while our develop-
ment branch has no upstream.

$ git branch -vv # doubly verbose!
development 1656797 This commit adds a new feature
master f269295 [origin/master] First commit

On the other side, when a branch has no upstream, a push operation will by
default fail with a Git error. Git will ask us to set an upstream, or otherwise
specify a pair remote/branch for each push.

17

Expert Git

$ git push
fatal: The current branch test has no upstream branch.
To push the current branch and set the remote as upstream, use

git push --set-upstream origin test

$ git push --set-upstream origin test
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> test

Finally, another thing may happen while pushing: Git may reject our changes.

$ git push
To git@github.com:guillep/test.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to

'git@github.com:[your_username]/[your_repo_name].git'
hint: Updates were rejected because the remote contains work that

you do
hint: not have locally. This is usually caused by another repository

pushing
hint: to the same ref. You may want to first integrate the remote

changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for

details.

As the error message says, the remote has changes that we do not have lo-
cally, so we need to update our repository first. This can be solved with a pull
(Section ??) and a merge (1.5)

1.7 SSH or HTTPS access?

When cloning a repository or adding a remote, we will face the question of
the URL: should we use HTTPS or SSH? Both HTTPS and SSH are secure ways
of communication with remote machines. The main responsibilities of these
communication protocols are: authentication (i.e., ensure that the two par-
ties communicating are who they say they are) and secure transport through
data encryption.

Although there are technical differences between the two, and both are capa-
ble of doing well their job, there is a main key difference between them: ease
of setup, particularly for Windows users. Most Git repository hosts recom-
mend using HTTPS because of this reason, and we do so as well.

18

1.8 Exercises

We leave for the reader the task of investigating more about the differences
between these protocols and setup SSH if he wants to.

1.8 Exercises

1. Exercise 1. Get a repository with many commits and checkout the par-
ent of the current commit. This will put you in ”Detached HEAD” state.
Solve it using a new branch.

1. Exercise 2. Try to merge your previous branch into your new branch.
What kind of merge is it?

1. Exercise 3. Repeat the scenario of the first exercise, apply a change
to your one of your files and commit it. Try to merge your previous
branch into your new branch. What kind of merge is it?

1. Exercise 4. Create a new online repository and push your changes into
it.

1. Exercise 5. What is the smaller set of steps you could imagine to create
a conflict?

19

	Illustrations
	Expert Git
	Some Git Internals
	Dissecting a Git Repository
	A history-aware transactional database?
	It's a just graph of commits
	Naming commits with references

	Commit in workflow
	Creating new history lines with branches
	Creating a new branch
	Diverging history

	Creating Tags
	Merging history lines
	Managing Conflicts

	Interacting with Remote Repositories
	Git Remotes
	Adding and Removing Remotes
	Update your repository: Fetching and Pulling
	Share your commits: Pushing

	SSH or HTTPS access?
	Exercises

