
Advanced Object-Oriented Design

Key OO concepts in Java
S. Ducasse

http://www.pharo.org

http://www.pharo.org


Objectives

 Illustrate key OO concepts
 In Java but limited as much as possible to the essential points

Thanks Alexandre Bergel for parts of the materials used in this lecture!

Core 2 / 14



Quotes of the day

 "Perfection is attained, not when no more can be added, but when no more can
be removed." Antoine de Saint-Exupéry

 "I invented the term ’Object-Oriented’, and I can tell you I did not have C++ in
mind." Alan Kay (nor Java :))

Core 3 / 14



Simple Java is an oxymoron

 Java is gigantic and even more... (looks more and more like an old verbose
language)

 Full of conceptual glitches (public fields, strange protected semantics,
overloading...)

This lecture will not cover: packaging, enums, lambdas, generics, inner classes,
modules, private methods, visibility, synchronised, meta data, overloading,
primitives vs. boxed....
 But we will provide extras slides on more advanced topics

Core 4 / 14



Java

Not pure object-oriented programming language
 Static methods are not looked up
 Primitive types are not objects: int and Integer....
 Classes are not first class: cannot send messages to classes
 Mixing physical representation (files) with concepts

◦ there is not need to have files to have classes
◦ class definitions can be saved in databases

Core 5 / 14



Outline

 Instances, instance creation
 Classes / instance variables
 Methods
 Inheritance (single)
 Method lookup
 this / super
 Constructor
 Dynamic type vs. static types
 Interface
 Cast

Core 6 / 14



Instances

 Remember: one state, identity, behavior
 Created using new construct

new Tomagotchi()

Often

Tomagotchi t = new Tomagotchi()

Core 7 / 14



Class

 Mold/Generators of instances

public class Rectangle {
protected int length;
protected int width;
...

public class Box extends Rectangle {
protected int height;

}

Core 8 / 14



Class

 Class import packages (group of classes)

O_o
 One public class per file (well)
 File name should have the name of the public class

Core 9 / 14



Instance variables

 Describe instance structure
 Have a visibility: Avoid public, private and final :)
 Better use protected (see companion extra lectures)

public class Rectangle {
protected int length;
protected int width;
...

 Accessible by method of the class and subclasses

Core 10 / 14



Methods

 this represents the receiver
 The lookup of methods at runtime starts in the class of the receiver.

public class Rectangle{
protected int length;
protected int width;

public int getArea() {
return length *width;
}

Core 11 / 14



Constructor (I)
 A Constructor is a static function, it is not a method!
 Responsible to properly initialize an object
 <class>() is a default constructor

public Rectangle() {
length = 0;
width = 0;
}

Multiple constructors in a class

public Rectangle(int length, int width) {
this.length = length;
this.width = width;
}

Core 12 / 14



What you should know

 Class/Instances
 Methods
 Constructors = functions

Core 13 / 14



A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

