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Private Methods

Are private methods inherited?

class A {
public void m() { this.p(); }
private void p() { println("A.p()"); }
}
class B extends A {
private void p() { println("B.p()"); }
}

Which is called? A.p() or B.p()?

A b = new B();
b.m();
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A.p()

Because private methods are statically bound in Java
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Private Methods in C++

 In C++ private can also be virtual
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Private Methods in Ruby

In Ruby private methods are dynamically bound :)
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Private Methods in Ruby
class C
def fooAccessingX; x; end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

Results:
C.new.fooAccessingX ==> 1
D.new.fooAccessingX ==> 2

 The private method x is publicly redefined in a subclass
 Template superclass senders invoke the overriden method x
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Private methods are accessible internally
Different ways to invoke methods:
 self.x uses the "external" interface while x the internal one

class C
def fooSendingSelfX ; self.x end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

Results:

C.new.fooSendingSelfX ==> failed
D.new.fooSendingSelfX ==> 2
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Object arguments uses the "external" interface

class C
def zork(arg) ; return arg.x ; end
def fooSendingSelfX ; self.x end
def fooAccessingX; x; end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

C.new.zork(C.new) ==> failed
C.new.zork(D.new) ==> 2
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Conclusion

Pay attention when using a private method
 You do not create a hook creation

◦ Remember sending a message is a plan for reuse
 You break the extender interface (See Dual Interface Lecture)
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