
Advanced Object-Oriented Design

Private Methods in Java

http://www.pharo.org

http://www.pharo.org


Private Methods

Are private methods inherited?

class A {
public void m() { this.p(); }
private void p() { println("A.p()"); }
}
class B extends A {
private void p() { println("B.p()"); }
}

Which is called? A.p() or B.p()?

A b = new B();
b.m();

From the Design Corner 2 / 10



Private Methods
Are private methods inherited?

class A {
public void m() { this.p(); }
private void p() { println("A.p()"); }
}
class B extends A {
private void p() { println("B.p()"); }
}

Which is called? A.p() or B.p()?

A b = new B();
b.m();

A.p()

Because private methods are statically bound in Java

From the Design Corner 3 / 10



Private Methods in C++

 In C++ private can also be virtual

From the Design Corner 4 / 10



Private Methods in Ruby

In Ruby private methods are dynamically bound :)

From the Design Corner 5 / 10



Private Methods in Ruby
class C
def fooAccessingX; x; end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

Results:
C.new.fooAccessingX ==> 1
D.new.fooAccessingX ==> 2

 The private method x is publicly redefined in a subclass
 Template superclass senders invoke the overriden method x

From the Design Corner 6 / 10



Private methods are accessible internally
Different ways to invoke methods:
 self.x uses the "external" interface while x the internal one

class C
def fooSendingSelfX ; self.x end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

Results:

C.new.fooSendingSelfX ==> failed
D.new.fooSendingSelfX ==> 2

From the Design Corner 7 / 10



Object arguments uses the "external" interface

class C
def zork(arg) ; return arg.x ; end
def fooSendingSelfX ; self.x end
def fooAccessingX; x; end
private
def x; return 1; end
end
class D < C
public
def x; return 2; end
end

C.new.zork(C.new) ==> failed
C.new.zork(D.new) ==> 2

From the Design Corner 8 / 10



Conclusion

Pay attention when using a private method
 You do not create a hook creation

◦ Remember sending a message is a plan for reuse
 You break the extender interface (See Dual Interface Lecture)

From the Design Corner 9 / 10



A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

