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Message Sending

Sending a message is a
two-step process:
1. look up the method

matching the message
2. execute this method on the

receiver
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Method lookup

The lookup starts in the class
of the receiver then:
 if the method is defined in

the class, it is returned
 otherwise the search

continues in the superclass
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self/this always represents the receiver

A new foo
> ...
B new foo
> ...
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self/this always represents the receiver

A new foo
> 10
B new foo
> 50
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It was the essence

Questions:
 How types influence (polute) this beautiful model?
 Static types, dynamic types, overloading
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Static type

Consider:

A a = new B();

 The static type of variable a is A i.e., the statically declared class to which it
refers.

 The static type never changes.
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Dynamic type

Consider:

A a = new B();

 The dynamic type of a is B i.e., the class of the object currently bound to a.
 The dynamic type may change throughout the program.

a = new A();

Now the dynamic type is also A!
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Static type

Pay attention method signatures also define static types

foo (A a){

}

foo(new B());

static type of a is A, dynamic type of a is B
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Overloading

How are overloaded method calls resolved?

class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

a and b have a dynamic type B
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How are overloaded method calls resolved?
class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

Which is considered: the static or dynamic argument type?

m(a, a);
m(a, b);
m(b, a);
m(b, b);
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How are overloaded method calls resolved?
class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

Which is considered: the static or dynamic argument type?

m(a, a); m(A,A)
m(a, b); m(A,B)
m(b, a); m(B,A)
m(b, b); m(B,B)

The static type of arguments is always used to resolve overloaded method calls.
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Overloaded method calls

The static type of argument is always used
 no dynamic dispatch
 force you to cast
 force you to use getClass

Avoid overloading (See the Lecture on Overloading)
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How do static and dynamic types interact?

class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a);
a.m(b);
b.m(a);
b.m(b);
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How do static and dynamic types interact?
class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a); A.m(A)
a.m(b); A.m(A)
b.m(a); A.m(A)
b.m(b); B.m(B)

 Static types determine which message is sent.
 Dynamic types determine which method is called.
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Compilation vs. execution

At compilation:
 First, the static type of the receiver determines which class we consider
 Second, does the class define the method?
 Third, does the static type of the arguments fit the static type of the parameter?
 Fourth, find the best fit

At execution:
 the lookup starts in the class of the receiver
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a.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we look in A
 Step 2: there is a method m
 Step 3: static type of a matches A a we will be looking for "m(A a)"

The dynamic type of a is B. The lookup starts in class B but looks for "m(A a)" >
A.m(A)
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b.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: the static type of b is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b)
 Step 3: the static type of a is A we will be looking for m(A a)

The dynamic type of b is B.
 The lookup starts in class B and looks for m(A a)

> A.m(A)

From the Design Corner 19 / 24



b.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: b static type is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b)
 Step 3: the static type of b is B we will be looking for m(B b)""

the lookup starts in class B and looks for m(B b) > B.m(B)
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a.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we only look in A
 Step 2: there is a method m
 Step 3: the static type of b is B but since A is a supertype of B this is ok we will

be looking for m(A a)

The dynamic type of a is B
 The lookup starts in class B and looks for m(A a)

> A.m(A)
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a.m(c)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b; C c = new C;

 Step 1: We look only in A
 Step 2: there is a method m
 Step 3: C the static type of c does not match A there is no subtype relations

Does not compile!
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Conclusion

 Avoid overloading as much as possible (it is cool 2min and painful all the rest of
the time)

 Avoid direct class in fields and signature
◦ Better use interfaces
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