
Advanced Object-Oriented Design

About type and method
lookup

http://www.pharo.org

http://www.pharo.org


Outline

 Lookup (remember)
 Static type vs Dynamic type
 Overloading and types
 Method lookup

From the Design Corner 2 / 24



Message Sending

Sending a message is a
two-step process:
1. look up the method

matching the message
2. execute this method on the

receiver

From the Design Corner 3 / 24



Method lookup

The lookup starts in the class
of the receiver then:
 if the method is defined in

the class, it is returned
 otherwise the search

continues in the superclass

From the Design Corner 4 / 24



self/this always represents the receiver

A new foo
> ...
B new foo
> ...

From the Design Corner 5 / 24



self/this always represents the receiver

A new foo
> 10
B new foo
> 50

From the Design Corner 6 / 24



It was the essence

Questions:
 How types influence (polute) this beautiful model?
 Static types, dynamic types, overloading

From the Design Corner 7 / 24



Static type

Consider:

A a = new B();

 The static type of variable a is A i.e., the statically declared class to which it
refers.

 The static type never changes.

From the Design Corner 8 / 24



Dynamic type

Consider:

A a = new B();

 The dynamic type of a is B i.e., the class of the object currently bound to a.
 The dynamic type may change throughout the program.

a = new A();

Now the dynamic type is also A!

From the Design Corner 9 / 24



Static type

Pay attention method signatures also define static types

foo (A a){

}

foo(new B());

static type of a is A, dynamic type of a is B

From the Design Corner 10 / 24



Overloading

How are overloaded method calls resolved?

class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

a and b have a dynamic type B

From the Design Corner 11 / 24



How are overloaded method calls resolved?
class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

Which is considered: the static or dynamic argument type?

m(a, a);
m(a, b);
m(b, a);
m(b, b);

From the Design Corner 12 / 24



How are overloaded method calls resolved?
class A { }
class B extends A { }
void m(A a1, A a2) { println("m(A,A)"); };
void m(A a1, B b1) { println("m(A,B)"); };
void m(B b1, A a1) { println("m(B,A)"); };
void m(B b1, B b2) { println("m(B,B)"); };

B b = new B();
A a = b;

Which is considered: the static or dynamic argument type?

m(a, a); m(A,A)
m(a, b); m(A,B)
m(b, a); m(B,A)
m(b, b); m(B,B)

The static type of arguments is always used to resolve overloaded method calls.

From the Design Corner 13 / 24



Overloaded method calls

The static type of argument is always used
 no dynamic dispatch
 force you to cast
 force you to use getClass

Avoid overloading (See the Lecture on Overloading)

From the Design Corner 14 / 24



How do static and dynamic types interact?

class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a);
a.m(b);
b.m(a);
b.m(b);

From the Design Corner 15 / 24



How do static and dynamic types interact?
class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a); A.m(A)
a.m(b); A.m(A)
b.m(a); A.m(A)
b.m(b); B.m(B)

 Static types determine which message is sent.
 Dynamic types determine which method is called.

From the Design Corner 16 / 24



Compilation vs. execution

At compilation:
 First, the static type of the receiver determines which class we consider
 Second, does the class define the method?
 Third, does the static type of the arguments fit the static type of the parameter?
 Fourth, find the best fit

At execution:
 the lookup starts in the class of the receiver

From the Design Corner 17 / 24



a.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we look in A
 Step 2: there is a method m
 Step 3: static type of a matches A a we will be looking for "m(A a)"

The dynamic type of a is B. The lookup starts in class B but looks for "m(A a)" >
A.m(A)

From the Design Corner 18 / 24



b.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: the static type of b is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b)
 Step 3: the static type of a is A we will be looking for m(A a)

The dynamic type of b is B.
 The lookup starts in class B and looks for m(A a)

> A.m(A)

From the Design Corner 19 / 24



b.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: b static type is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b)
 Step 3: the static type of b is B we will be looking for m(B b)""

the lookup starts in class B and looks for m(B b) > B.m(B)

From the Design Corner 20 / 24



a.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we only look in A
 Step 2: there is a method m
 Step 3: the static type of b is B but since A is a supertype of B this is ok we will

be looking for m(A a)

The dynamic type of a is B
 The lookup starts in class B and looks for m(A a)

> A.m(A)

From the Design Corner 21 / 24



a.m(c)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b; C c = new C;

 Step 1: We look only in A
 Step 2: there is a method m
 Step 3: C the static type of c does not match A there is no subtype relations

Does not compile!

From the Design Corner 22 / 24



Conclusion

 Avoid overloading as much as possible (it is cool 2min and painful all the rest of
the time)

 Avoid direct class in fields and signature
◦ Better use interfaces

From the Design Corner 23 / 24



A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

