
Advanced Object-Oriented Design

Builder API variations
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal

 Discuss about builder API
 Identify and understand variations

2022 2 / 25

Microdown

A better markdown :)
 compact (subset of markdown)
 more extensible (superset of markdown)

Used for:
 class comments
 slides, books, and documentation

2022 3 / 25

Example

Hello Pharo

Microdown is a cool markdown.
It is used to generate
− slides
− books
− class comments

<!slide|title=This is a cool title&tag=nh5p

− a list of bullet
− bullet 2
− bullet 3
!>

2022 4 / 25

Default Microdown class comment

2022 5 / 25

Specialized Microdown class comment

2022 6 / 25

Specialized Microdown class comment

2022 7 / 25

How to programmatically generate Microdown?

No string concatenation:
 Expose users to possible syntax changes
 Tool builders do not have to learn syntactic quirks

Better provide a scripting API
 Abstract away details
 Support future changes

Hooks/Extensibility
 Every single class can customize ‘buildMicroDownUsing: aBuilder

withComment: aString‘ hook

2022 8 / 25

Microdown class comment hook

renderComment: aString of: aClassOrPackage
"Return aString as part of the templated class comment, when rendering is on.
Else aString."

| builder |
builder := Microdown builder.
aClassOrPackage buildMicroDownUsing: builder withComment: aString.
^ self render: builder contents

2022 9 / 25

Default class comments

Class >> buildMicroDownUsing: aBuilder withComment: aString

aBuilder
header: [
aBuilder text: 'Class: '.
aBuilder text: self name]

withLevel: 1;
horizontalLine;
text: aString

2022 10 / 25

Hook for widgets

SpAbstractWidget >> buildMicroDownUsing: aBuilder withComment: aString

super buildMicroDownUsing: aBuilder withComment: aString.
self addDocumentSectionExampleCode: aBuilder.
self addDocumentSectionFactoryMethod: aBuilder.
self documentSections keysAndValuesDo: [:label :methods |
self addDocumentSection: aBuilder label: label methods: methods].

self addDocumentExtraSections: aBuilder.
self addDocumentSectionHierarchy: aBuilder.
self addDocumentSectionTransmissions: aBuilder.

2022 11 / 25

Hook for widgets (2)

BaselineOf >> addDocumentSection: aBuilder label: label methods: methods

methods ifEmpty: [^ self].
aBuilder newLine.
aBuilder header: [:builder | builder text: label] withLevel: 2.
aBuilder unorderedListDuring: [
(methods sorted: #selector ascending) do: [:each |
aBuilder item: [
aBuilder monospace: (each methodClass name, '>>#', each selector)]]]

2022 12 / 25

About builder API

All microdown elements and their parametrization
 text:, bold:, anchor:, codeblock:,
 comment:
 item...

2022 13 / 25

About generation of leave elements

For leaves, i.e., unstructured text or elements
 Just pass the argument
 Give simple order

builder text: 'Bold'

aBuilder newLine

2022 14 / 25

Codeblock is also a leave element

aBuilder codeblock:
'this is the contents
of a code block.
It will be displayed with ``` around.'

2022 15 / 25

About generation of composite/nested elements

 Should provide a way to let the user defines the inner part
 Use blocks as a way to support element wrapping

builder bold: [builder text: 'This is a text in bold']

builder bold: [builder italic: [builder text: 'This is a text in bold and italic']]

builder
header: [
builder bold: [builder text: 'Very'].
builder text: 'Important']
withLevel: 2.

2022 16 / 25

Composite example: Cell

testCell

self
assert: (builder
cell: [
builder text: 'this is '.
builder bold: [builder text: 'bold']]) contents

equals: '| this is **bold** '

2022 17 / 25

Comparing alternate designs

What is the difference between

aBuilder header: [:builder | builder text: 'Factory method'] withLevel: 2.

And

aBuilder header: [aBuilder text: 'Factory method'] withLevel: 2.

2022 18 / 25

No parameter design

aBuilder header: [aBuilder text: 'Factory method'] withLevel: 2.

 Only one builder for all the messages
 More compact

2022 19 / 25

No parameter implementation

MicrodownTextualBuilder >> bold: aBlock
self raw: BoldMarkup.
aBlock value.
self raw: BoldMarkup.

 The builder executes the block aBlock value
 Implications: there is only one builder (the message receiver/method argument)

2022 20 / 25

With block parameter design

aBuilder header: [:builder | builder text: 'Factory method'] withLevel: 2.

 Each API can have its owns the builder
 We can have an hierarchy of builders each one representing finer context
 More verbose

2022 21 / 25

With block parameter implementation

rawHeader: aBloc withLevel: anInteger
self raw: (HeaderMarkup repeat: anInteger).
self raw: String space.
aBloc value: SpecialMicrodownBuilder new

Each subclass can specialize rawHeader: aBloc withLevel: anInteger
 or an equivalent hook to suse a specific builder passed as argument of the value:

2022 22 / 25

Analysis

Pros:
 With an explicit argument builder, we can also subclass the builder and modify

partially the builder behavior
◦ We could have specialisation builder that produces table of contents

 It feels like visitor hooks

Cons:
 You have to define an extra parameter to all the wrapping APIs

2022 23 / 25

Conclusion

 Design is about tradeoffs
 Extensibility can be designed

2022 24 / 25

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

