
Advanced Object-Oriented Design

Singleton
a highly misunderstood pattern

http://www.pharo.org

http://www.pharo.org

Outline

 Singleton
 Singleton discussions
 Singleton misunderstanding

From the Design Corner 2 / 17

Singleton intent

 From the book: Ensure that a class has only one instance, and provide a
global point of access to it

 Better: Ensure that a class has only one instance available at the same time

From the Design Corner 3 / 17

Problem/Solution

 Problem: We need a class with a unique instance.
 Solution: Store the first time an instance is created and return it each time a

new instance is requested.

Most of the time think twice because you probably do not need it!

From the Design Corner 4 / 17

Example

db := DBConnect uniqueInstance.
db2 := DBConnect uniqueInstance.

db2 == db2
> true

Yes we get only one instance of the database connection

From the Design Corner 5 / 17

Possible implementation

Object < #BDConnect
sharedVariables: { UniqueInstance }

BDConnect class >> uniqueInstance
UniqueInstance isNil
ifTrue: [UniqueInstance := self basicNew initialize].

^ UniqueInstance

From the Design Corner 6 / 17

Kinds of Singleton

 Persistent Singleton: only one instance exists and its identity does not change
 Transient Singleton: only one instance exists at any time, but that instance

changes
 Single Active Instance Singleton: a single instance is active at any point in

time, but other dormant instances may also exist.

From the Design Corner 7 / 17

About name

DBConnect class >> new
^ self uniqueInstance

 The intent (uniqueness) is not clear anymore!
 new is normally used to return newly created instances
 new potentially means to
 get a new object and initialize that object
 uniqueInstance don’t

From the Design Corner 8 / 17

Method name variation
uniqueInstance
 Pure singleton ensuring a single global instance
 new should better be blocked

Author class >> uniqueInstance
^ uniqueInstance ifNil: [uniqueInstance := self basicNew initialize]
Author class >> new
self error: 'Author is a singleton −− send uniqueInstance instead'

default
 Some meaningful default instance, but there is no reason to bar the user from

creating more instances

current
 Keep the same instance system-wide, but we also want to change it under some

circumstances

From the Design Corner 9 / 17

Discussion

 Even if the language supports global variables avoid to store a Singleton in a
global

 A class is already acting as a global and it can manage the Singleton (one
single entry point)

From the Design Corner 10 / 17

Shared variable vs class instance variable

In Pharo we have
 SharedVariable: shared between all the class of a hierarchy
 class instance variable:specific to a single class

Holding a singleton with
 Shared variable: One singleton for a complete hierarchy
 Class instance variable:

◦ One singleton per class
◦ Each subclass has its own singleton

From the Design Corner 11 / 17

Singleton misunderstanding

 Singleton is about time: one instance available at the same time is possible
 Singleton is not about access: don’t use a singleton because it is easier to

access one instance!

From the Design Corner 12 / 17

Singleton misunderstanding

If you can add one instance variable to your object and suddenly you do not need
a singleton then it was not a singleton but an ugly disguised global variable!
Sometimes you cannot add an instance variable.

From the Design Corner 13 / 17

How to test singletons

 Singletons are global variables so this makes them more difficult to test
 Should be careful about not breaking the current singleton

From the Design Corner 14 / 17

Example: RPackageOrganizer
 RPackageOrganizer is a singleton: should not be destroyed when tests are run
 It uses withOrganizer: aNewOrganizer do: aBlock for testing behavior

withOrganizer: aNewOrganizer do: aBlock
"Perform an action locally to aNewOrganizer. Does not impact any other organizers."

| old |
[old := self organizer.
old unregister.
self organizer: aNewOrganizer.
aNewOrganizer register.
aBlock cull: aNewOrganizer] ensure: [
self organizer: old.
old register.
aNewOrganizer unregister]

From the Design Corner 15 / 17

Conclusion

 Having only one instance at a time
 Avoid Singleton as a global
 Avoid Singleton because it acts as a global

From the Design Corner 16 / 17

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

