
Advanced Object-Oriented Design

Composite
A nice and common design pattern

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Outline

 Motivating examples
 Composite design pattern presentation
 Composite discussions

2022 2 / 24

File entry examples

Pharo.image

F1
Pharo.image
Pharo.changes

F1
src
doc
images
Pharo.image
Pharo.changes

2022 3 / 24

File entries

An entry is a
 file
 or a folder with entries as children

2022 4 / 24

Same with Trees

A tree is a
 leave
 or a node with trees as children

2022 5 / 24

Documents

A document is composed of
 title
 table of contents
 chapters

A chaper is composed of sections
A section is composed of
 paragraphs
 figures
 lists
 sections

2022 6 / 24

A diagram

 A diagram is composed of elements
 An element is

◦ a circle
◦ a segment
◦ a text
◦ a group (i.e, diagram)

2022 7 / 24

Now the question!

 How do we draw diagram elements?
 How do we draw a diagram?

We do not want to have to check if we are talking to an element or a diagram
composed of elements!

2022 8 / 24

Composite motivation

Elements and diagrams should offer the same API!

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

…
elements do: [:each | each draw]
…

draw
Text

draw
Segment

Client

2022 9 / 24

Composite: Intent

 Compose objects into tree structures to represent part-whole hierarchies
 Composite lets clients treat individual objects and compositions of objects

uniformly

2022 10 / 24

Composite design essence

operation
Component

operation
add:
remove:

Composite
operation

Leaf

children

children
 do: [:each | each operation]

Client

2022 11 / 24

Composite design essence

What is key:
 Leaves offers the same API than the composite
 Each leave will do something different but with the same API (polymorphism)
 Composite will offer the same API and some functionality to manage children

This brings substituability between the parts and the composite!
 Clients do not have to care

2022 12 / 24

Composite participants: Client

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

…
elements do: [:each | each draw]
…

draw
Text

draw
Segment

Client

Client manipulates objects in the composition through the Component interface
(here Graphic)

2022 13 / 24

Composite participants: Component

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

…
elements do: [:each | each draw]
…

draw
Text

draw
Segment

Client

Component (here Graphic)
 declares the interface for objects in the composition
 may implement default behavior for common interfaces
 may declare an interface for accessing and managing its child components

2022 14 / 24

Composite participants: Leaf

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

…
elements do: [:each | each draw]
…

draw
Text

draw
Segment

Client

Leaf (here Circle, Segment, Text, ...)
 represents leaf objects in the composition.
 has usually no children
 defines behavior for primitive objects in the composition using a polymorphic

API

2022 15 / 24

Composite participants: Composite

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

…
elements do: [:each | each draw]
…

draw
Text

draw
Segment

Client

Composite (here Group)
 defines behavior for components with children via a polymorphic API (here
draw)

 stores child components
 implements child-related operations (add/remove...)

2022 16 / 24

Composite consequences

 Defines class hierarchies consisting of primitive and composite objects exposing
a common polymorphic API

 Clients do not have to explicitely check: Composite and leaves objects are
treated uniformly

 Adding new leaves is simple

2022 17 / 24

In dynamically-typed languages
Polymorphism is expressed as classes exposing compatible API not
compiled-time type check
 A composite and leaves do not have to inherit from a common ancestor
 Having a common ancestor eases understanding the composite, but it not

mandatory

operation
add:
remove:

Composite

operation
Leaf

children

children
 do: [:each | each operation]

Client

2022 18 / 24

Alternate extreme implementation

 A Design Pattern is a name + intent
 Its implementation can have multiple forms

Client operation
add:
remove:

children
Component children

 Now the gain treating a leave as a container with a single element is unclear

2022 19 / 24

Frequently Asked Questions

Can Composite contain any type of child?
 Yes
 Now the domain may impose some constraints
 And the implementation can enforce at the composite level

Can the Composite’ s number of children limited?
 Again it can be possible to control

Can we have different Composites within the same system?
 Yes and each Composite can have a different constraints, behavior, ...,

delagating behavior

2022 20 / 24

About Composite behavior

Forward/Delegation
 Simple forward. Send the message to all the children and merge the results

without performing any other behavior
 Selective forward. Conditionally forward to some children
 Extended forward. Extra behavior
 Override. Instead of delegating

2022 21 / 24

Composite and other design patterns

Composite and Visitors: Visitors walk on structured recursive objects e.g.
composites
Composite and Factories: Factories can create composite elements

2022 22 / 24

Conclusion

 Composite is a natural way of composing structural relationships
 Composite provides uniform API to clients
 Basis for complex treatment expressed as Visitor

2022 23 / 24

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

