Advanced Object-Oriented Design

Composite

A nice and common design pattern

S. Ducasse

Phar®

http://www.pharo.org

http://www.pharo.org

Outline

e Motivating examples
e Composite design pattern presentation
e Composite discussions

%
»” 2022 2/24

File entry examples

Pharo.image
F1
Pharo.image

Pharo.changes

F1
src
doc
images
Pharo.image
Pharo.changes

202022 3/24

File entries

An entry is a
e file
e or a folder with entries as children

%
»” 2022 4/24

Same with Trees

Atreeis a

e |eave
e or a node with trees as children

%
»” 2022 5/24

Documents

A document is composed of

e title

e table of contents

e chapters

A chaper is composed of sections
A section is composed of

e paragraphs

e figures

e [ists

e sections

2
»” 2022 6/24

A diagram

e A diagram is composed of elements
® An elementis

o acircle

o asegment

o atext

o agroup (i.e, diagram)

%
»” 2022 7/24

Now the question!

e How do we draw diagram elements?
e How do we draw a diagram?

We do not want to have to check if we are talking to an element or a diagram
composed of elements!

%
»” 2022 8/24

Composite motivation

Elements and diagrams should offer the same API!

Client

Graphic

draw

\
\ elements
\

\

[Text

| [Circle | [Segment |

G:roup

[draw

| [draw

| [draw

202022 9/24

draw —
add:
remove:

T
elements do: [:each | each draw]

Composite: Intent

e Compose objects into tree structures to represent part-whole hierarchies

e Composite lets clients treat individual objects and compositions of objects
uniformly

2
»” 2022 10/24

Composite design essence

3
z

2022 11/24

Client

Component

Ll .
operation

I children
|
|
|
|
1
Leaf Composite
operation operation
add:
remove:
children

do: [:each | each operation]

Composite design essence

What is key:

e |eaves offers the same API than the composite
e Each leave will do something different but with the same API (polymorphism)
e Composite will offer the same APl and some functionality to manage children

This brings substituability between the parts and the composite!
e Clients do not have to care

2
” 2022 12/24

Composite participants: Client

Graphic

Client draw \

\

\ elements
\
\

[Text][Circle | [Segment | Group

[draw | [draw | [draw | draw —]
add:
remove:

T
elements do: [:each | each draw]

Client manipulates objects in the composition through the Component interface
(here Graphic)

202022 13/24

Composite participants: Component

N

\
\ elements
\

\

Text

Circle

Segment

Group

draw

draw

draw

Component (here Graphic)

draw —

add:

remove:

T

elements do: [:each | each draw]

e declares the interface for objects in the composition

e may implement default behavior for common interfaces

e may declare an interface for accessing and managing its child components

” 2022 14/24

Composite participants: Leaf

. Graphic o
Client draw \\\
\
‘\ elements
\\‘
Text Circle Segment Group

draw draw draw draw e —
add:
remove:

T
elements do: [:each | each draw]

Leaf (here Circle, Segment, Text, ...)

e represents leaf objects in the composition.

e has usually no children

e defines behavior for primitive objects in the composition using a polymorphic
API

2
»” 2022 15/24

Composite participants: Composite

Graphic

Client draw -——-- \\\
\
‘\ elements
\\‘
Text Circle Segment Group

draw draw draw draw e —
add:
remove:

T
elements do: [:each | each draw]

Composite (here Group)

e defines behavior for components with children via a polymorphic API (here
draw)

e stores child components

e implements child-related operations (add/remove...)

2
»” 2022 16/24

Composite consequences

e Defines class hierarchies consisting of primitive and composite objects exposing
a common polymorphic API

¢ Clients do not have to explicitely check: Composite and leaves objects are
treated uniformly

e Adding new leaves is simple

%
” 2022 17/24

In dynamically-typed languages
Polymorphism is expressed as classes exposing compatible API not
compiled-time type check

e A composite and leaves do not have to inherit from a common ancestor

e Having a common ancestor eases understanding the composite, but it not
mandatory

children
(Sl

\ |
v

\ |
. > Composite
Client \ _______ operation —
| add:

v remove:
Leaf
operation

children

do: [:each | each operation]

2
»~” 2022 18/24

Alternate extreme implementation

e A Design Pattern is a name + intent
e |ts implementation can have multiple forms

Component
children
Client »| operation ————
add:
remove:

|
|
| children
I
|

* Now the gain treating a leave as a container with a single element is unclear

2
»” 2022 19/24

Frequently Asked Questions

Can Composite contain any type of child?

e Yes
e Now the domain may impose some constraints
e And the implementation can enforce at the composite level

Can the Composite’ s number of children limited?
e Again it can be possible to control

Can we have different Composites within the same system?

¢ Yes and each Composite can have a different constraints, behavior, ...

delagating behavior

2
»” 2022 20/24

About Composite behavior

Forward/Delegation

e Simple forward. Send the message to all the children and merge the results
without performing any other behavior

e Selective forward. Conditionally forward to some children

e Extended forward. Extra behavior

e Override. Instead of delegating

2
” 2022 21/24

Composite and other design patterns

Composite and Visitors: Visitors walk on structured recursive objects e.g.
composites
Composite and Factories: Factories can create composite elements

%
” 2022 22/24

Conclusion

e Composite is a natural way of composing structural relationships
e Composite provides uniform API to clients
e Basis for complex treatment expressed as Visitor

2
»” 2022 23/24

A course by

S. Ducasse, G. Polito, and Pablo Tesone

©10Ie)

V4

: informatiques g”mathématiques

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

