
Advanced Object-Oriented Design

Polymorphic objects
support for software evolution

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goals

 Polymorphic objects are key for evolution
 What ’s up in statically typed languages?
 Why do we need interfaces?

Core 2 / 16

Coding against an API

’if it looks like a duck and quacks like a duck, it is a duck’
 In dynamicallty-typed languages, your objects do not have to be from the same

hierarchy to be able to work with others
 They have to understand the messages that are needed for a good interaction

for their role
 Related to the Adapter Design Pattern

Core 3 / 16

Simple Example

Shape (draw)
Rectangle (draw)
Square (draw)
Circle (draw)

Canvas >> display
shapes do: [:s | s draw]

Core 4 / 16

Adding Rhombus: Possibility one

If you can subclass Shape

Shape (draw)
Rectangle (draw)
Square (draw)
Circle (draw)
Rhombus (draw)

Core 5 / 16

Adding Rhombus: Possibility two

If you cannot subclass Shape for any reason

Shape (draw)
Rectangle (draw)
Square (draw)
Circle (draw)

Rhombus (draw)

Rhombus should implement the method draw to be able to play nicely with Canvas

Canvas >> display
shapes do: [:s | s draw]

Core 6 / 16

Step back

 Coding against an API
 Producing polymorphic objects (substituable objects) is KEY for evolution
 This is free in dynamically-typed languages

Core 7 / 16

What about statically-typed?

Static types can get in your way

Shape s = new Shape();

 s can only contain instances of Shapes and its subclasses
 So if we cannot define Rhombus as subclass of Shape, it will not work because

there is no type relationship between Rhombus and Shape

class Rhombus extend Object {...draw() {...} ...}
Shape s = new Rhombus()
>>>> Does not compile

Core 8 / 16

Interface concept

 Group of method signatures
◦ may contain default methods and more depending on their flavor

 Used by the type checker to check subtype relationships
 Support the evolution manipulation of instances of classes not in subtype

relation (i.e. not in the same hierachy)

Core 9 / 16

Example

interface IShape {
draw();
}

class Shape extend Object implements IShape { ... }

class Canvas {
... display (){
ArrayList<IShape> shapes = new ArrayList<IShape>() ...}

...}

Core 10 / 16

class Rhombus Implements IShape

class Rhombus extend Object implements IShape {
... draw() { ... } ...}

So we can use Rhombus in Canvas because it implements the IShape interface
expected by Canvas

Core 11 / 16

Classes - Interfaces

 A class must implement the methods mentioned in the interface
 A class can implement many interfaces
 An interface can be composed out of multiple interfaces

Core 12 / 16

Interfaces: step back

A nice mechanism for statically-checked languages
 defines what is expected
 lets the system evolve

When you use a class as a type:
 You freeze the possible instances
 You will only be able to have instances of type or subtypes

When you use an interface as a type:
 You will be able to use any instance of classes implementing the interface

Core 13 / 16

Interfaces and nominal types

 Nominal types means that only the name if the type is considered (not its
methods)

 Pay attention two interfaces with different names but the same contents are
NOT compatible

 You will not be able to substitute instances of a class using one interface by
instances of another class using another interface with the same contents

Core 14 / 16

Conclusion

Polymorphism and interfaces support evolution
 Focusing on APIs is better for evolution than typing relationship

Core 15 / 16

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

