
Advanced Object-Oriented Design

Subclassing vs.
Subtyping
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goals

 Discuss relation between the API of a class and its subclasses?
 Discuss relation between the API of a class and its clients?
 Compare subtyping & subclassing?
 Impact on design
 Subtyping is good even in dynamically-typed languages

2022 2 / 26

Example 1

class Poem extends LinkedList
{
...
}

What do you think about it?
 Yes we can write this code
 What do you think of? Does it make sense?

A poem API
 is addWord(word), isAlexandrin(), isHaiku(), ...
 should not contain addBeforeLink(aLinkOrObject, otherLink) (that is part of
LinkedList)

2022 3 / 26

Another example

class Stack extends LinkedList
{
...
}

What do you think about it?
 Yes we can write this code.
 What do you think of? Does it make sense?

A Stack API
 is pop(),push(el), top(), isEmpty()
 should not contain LinkedList methods.

2022 4 / 26

Subclassing

The two previous examples are examples of subclassing, e.g., a subclass does
not have an API in relation with its superclass.
It reuses the superclass code.

2022 5 / 26

Subtyping/subclassing and type systems

Did you notice previous code snippets were in java tiny syntax... because:
 You can use subtyping and subclassing in dynamically-typed languages
 You can use subtyping and subclassing in statically-typed languages

The compiler’s type checker does not check such a point
 It just checks that we can put squares into squares

2022 6 / 26

Let us study a simple example

Basic Stack:
>>> s push: 12.
>>> s push: 24.
>>> s top
>>> s pop
24
>>> s isEmpty
false

2022 7 / 26

Stack as subclass of OrderedCollection

OrderedCollection << Stack

Stack >> pop
^ self removeFirst

Stack >> push: anObject
self addFirst: anObject

Stack >> top
^ self first

We get size, includes:, do:, collect: for free.

2022 8 / 26

Wait!

 What do we do with the rest of the OrderedCollection API?
 Our stack also understands: add:beforeIndex:, addAllFirstUnlessAlreadyPresent:,
join:...

 a Stack is not an OrderedCollection!
 In a client program we cannot replace an OrderedCollection by a Stack

2022 9 / 26

Wait!

Some messages that make sense on the class OrderedCollection do not make
sense on the class Stack
OrderedCollection new add: newObject beforeIndex: index

OrderedCollection new add: newObject ; removeFirst

2022 10 / 26

We could cancel some operations

Stack >> removeFirst
self error

2022 11 / 26

And get a convoluted pop?

Remember:

Stack >> pop
^ self removeFirst

Jumping over cancelled operation :(

Stack >> pop
^ super removeFirst

 Ugly
 Complexify the solution
 Complexify the evolution

2022 12 / 26

Stepping back

 There is not a simple relationship between Stack and OrderedCollection APIs.
 Stack interface is not an extension nor a subset of OrderedCollection interface.

2022 13 / 26

Imagine CountingStack

CountingStack >> pop
operations := operations + 1.
^ super pop

CountingStack >> push: anElement
operations := operations + 1.
^ super push: anElement

2022 14 / 26

Compare the two uses

insert:after:
removeLast
removeFirst
addFirst

Ordered
Collection

push
pop
top

Stack

... OrderedCollection new
insert: ... after:
OrderedCollection new
addFirst removeLast

push
pop
top

Stack

push
pop

Counting
Stack

... Stack new
push: ... ; push:
Stack new
top

2022 15 / 26

Compare the two replacements

insert:after:
removeLast
removeFirst
addFirst

Ordered
Collection

push
pop
top

Stack

push
pop
top

Stack

push
pop

Counting
Stack

... Stack new
insert: ... after:
Stack new
addFirst removeLast

... CountingStack new
push: ... ; push:
CountingStack new
top

2022 16 / 26

Back to Stack

Better use composition! A stack holds a collection of elements

Object << Stack
slots: {#elements}

Stack >> push: anElement
elements addFirst: anElement

Stack >> pop
^ element ifNotEmpty: [element removeFirst]

2022 17 / 26

Subclassing inheritance

 Inheritance for code reuse
 Subclass reuses code from superclass, but as a different specification
 It cannot be used everywhere its superclass is used. Usually overrides of code

Cons:
 Lowers understanding
 Hampers future evolution
 Forces strange code

2022 18 / 26

Subtyping inheritance

 Reuse of specifications: interface inheritance
 A subclass refines superclass specifications
 A program that works with Numbers should ’work’ with Fractions
 A program that works with Collections should ’work’ with Arrays

2022 19 / 26

Subclasses must not cancel methods

Stack >> removeFirst
self error

This is a sign for bad design decision
 Cheap
 But you will pay later

2022 20 / 26

RestrictedStack

Imagine that we have a stack where we can only push elements smaller than the
top elements

push: anElement
self top < anElement
ifTrue: [^ self]
super push: anElement

What is the good superclass?
 Stack Probably.
 It would be better if the client program behavior but not mandatory or possible.
 A subclass does not have to make sure that client program works (this is

behavioral subtyping)

2022 21 / 26

About Liskov Substitution Principle (LSP)

’if for each object o1 of type S there is another object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.’ Barbara Liskov, "Data Abstraction and
Hierarchy," SIGPLAN Notices, 23,5 (May 1988)
 LSP is about behavioral typing (about the same behavior)
 Most of the time when you define subclass to change behavior
 By definition a subclass often exhibits a slightly different behavior than its

superclass
 Therefore LSP looks useless in such context.

2022 22 / 26

Inheritance and polymorphism

 Polymorphism works best with conforming/substituable interfaces
 Subtyping inheritance creates families of classes with similar interfaces

◦ An abstract class describes an interface fulfilled by its subclasses
 Subtyping inheritance helps software reuse by creating polymorphic objects
 Now classes in different hierarchies implementing the same interface can also

be substituable

2022 23 / 26

’extend’ one term for two concepts

 We only have one extend or subclass: construct in programming language
 Still you can express a subtype or subclass relationship between a class and

its subclass.
 Subclassing/subtyping is not related to static typing

2022 24 / 26

Conclusion

 Subtyping is about program specification reuse
 Subtyping is about to create family of classes sharing common API
 Avoid subclassing: it is a bad idea

2022 25 / 26

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

