
Advanced Object-Oriented Design

About coupling and
encapsulation
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal and outline

 Think about coupling
 Present Law of Demeter
 ’Move Behavior close to Data’ from Object-Oriented Reengineering Pattern book
 Tradeoffs

WXSYY 2 / 19

Symptoms of costly coupling

 Reuse: I cannot reuse this component in another application
 Substition: I cannot easily substitute this part for another one
 Encapsulation: when a change far away happens, I get impacted
 Untestable: I cannot test this part

WXSYY 3 / 19

Core of the problem illustrated

dependent indirectDependent doSomething: true

do()
dependent

Source

+ indirectDependent
+ indirectDependent

Dependent

doSomething: arg

IndirectDependent

 Related to Feature Envy code smell

WXSYY 4 / 19

Changes are natural

 When you change, your dependents should change
 The problem is: waves of changes when dependents of dependents change

dependent indirectDependent doSomething: true

do()
dependent

Source

+ indirectDependent
+ indirectDependent

Dependent

doSomething: arg

IndirectDependent

WXSYY 5 / 19

Waves are evil

 Waves are created by leaks of references of far/indirect objects
 Waves are due to violation of encapsulation

How to limit wave creation?
 Do not leak far references!

WXSYY 6 / 19

Law of Demeter

You should only send messages to:
 an argument passed to you
 instance variables
 an object you create
 self, super your class

You should avoid
 global variables
 objects returned from message sends other than self

WXSYY 7 / 19

Only talk to your immediate friends

someMethod: aParameter
self foo.
super someMethod: aParameter.
self class foo.
self instVarOne foo.
instVarOne foo.
aParameter foo.
thing := Thing new.
thing foo

WXSYY 8 / 19

Don’t skip your intermediates

do()

Source

+ indirectDependent
+ indirectDependent

Dependent

doSomething: arg

IndirectDependent

+ indirectDependent
+ indirectDependent

Dependent2

doSomething: arg

IndirectDependent2

WXSYY 9 / 19

Solution: Respect encapsulation

do()

Source

indirectDependent
indirectDependent

Dependent

doSomething: arg

IndirectDependent

indirectDependent
indirectDependent

Dependent2

doSomething: arg

IndirectDependent2

WXSYY 10 / 19

Let us ""Move behavior close to data""

 Apply Move behavior close to data
object-oriented reengineering pattern

 Intent: Strengthen encapsulation by moving
behavior from indirect clients to the class
containing the data it operates on.
◦ if data and behavior are not close (Feature

Envy code smell)
◦ then logic is distributed/duplicated in clients!

WXSYY 11 / 19

Move behavior close to data: Transformation

+ carburator
Engine

engine.carburetor.fuelValveOpen = true

+ increaseSpeed()
engine

Car
+fuelValveOpen

Carburetor

speedUp()
carburator

Engine

engine.speedUp()

+ increaseSpeed()
engine

Car
+fuelValveOpen

Carburetor

carburetor.fuelValveOpen = true

speedUp()
carburator

Engine

engine.speedUp()

+ increaseSpeed()
engine

Car

+ openFuelValve
fuelValveOpen

Carburetor

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

WXSYY 12 / 19

Real (fixed) example

OSWindowMorphicEventHandler >> visitWindowResolutionChangeEvent: anEvent
"Resolution (dpi) changed. For now just check for a new size."
"We need to reset the render if the resolution changes."

morphicWorld worldState worldRenderer window backendWindow renderer destroy.
morphicWorld worldState worldRenderer window backendWindow renderer validate.
morphicWorld worldState doFullRepaint.
morphicWorld worldState worldRenderer window backendWindow renderer
updateAll.

morphicWorld worldState worldRenderer checkForNewScreenSize

WXSYY 13 / 19

Solution
OSWindowMorphicEventHandler >> visitWindowResolutionChangeEvent: anEvent
morphicWorld worldState updateToNewResolution: anEvent

WorldState >> updateToNewResolution: originalEvent
"We need to reset the render if the resolution changes."

self doFullRepaint.
self worldRenderer updateToNewResolution.
self worldRenderer checkForNewScreenSize

OSSDL2BackendWindow >> updateToNewResolution
"Force the regeneration of the renderer because we have a new resolution"
renderer destroy.
renderer validate.
renderer updateAll.

NullWorldRenderer >> updateToNewResolution
self

WXSYY 14 / 19

Analysis

Going from mere navigation to better logic

WorldState >> updateToNewResolution: originalEvent
"We need to reset the render if the resolution changes."

self doFullRepaint.
self worldRenderer updateToNewResolution.
self worldRenderer checkForNewScreenSize

WXSYY 15 / 19

LOD is a **heuristic**

 Pay attention! A too strict application of the LOD can lead to bloated class API
 Encapsulating collections may produce large interfaces so not applying the LoD

may help
 Understand when it is reasonable to leak

WXSYY 16 / 19

LOD can produce bloated APIs
Do we create around 50 methods per instance variable holding a collection

Object subclass: #FMMethods
instVar: 'senders'
...

FMMethods >> do: aBlock
senders do: aBlock
FMMethods >> collect: aBlock
^ senders collect: aBlock
FMMethods >> select: aBlock
^ senders select: aBlock
FMMethods >> detect: aBlock
^ senders detect: aBlock
FMMethods >> isEmpty
^ senders isEmpty
...

WXSYY 17 / 19

Conclusion

 Think about impact of changes
 Avoid chaining messages
 Law of Demeter is a heuristic
 Move behavior close to data reengineering pattern

WXSYY 18 / 19

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

