
Advanced Object-Oriented Design

About type and method
lookup

http://www.pharo.org

http://www.pharo.org


Outline

 Lookup (remember)
 Static type vs Dynamic type
 Type checker
 Method lookup

From the Design Corner 2 / 20



Message Sending

Sending a message is a
two-step process:
1. look up the method

matching the message
2. execute this method on the

receiver

From the Design Corner 3 / 20



Method lookup

The lookup starts in the class
of the receiver then:
 if the method is defined in

the class, it is returned
 otherwise the search

continues in the superclass

From the Design Corner 4 / 20



It was the essence

Questions:
 How types influence (polute) this beautiful model?
 Static types, dynamic types, overloading

From the Design Corner 5 / 20



The type of a variable

Let us a simple program model:
 a variable is a box with a label: its type.
 a variable contains a reference to

objects.

A variable type indicates the kind of
object the variable can refer to
A a: we can put reference to objects of
the class A (and subclasses)

2250

2250

‘Cool’

1000

2000

a := b 
1000 2000

a

b

A

From the Design Corner 6 / 20



Type checker

During compilation
 A type checker is a tool that tries to make sure that correct objects are put in

variables
 Using type information the type checker avoids that an unknown message is

sent to an object

From the Design Corner 7 / 20



Static vs. Dynamic Types

A a = new B();

 The static type of variable a is A i.e., the declared label of the box.
◦ The static type never changes.

 The dynamic type of a is B i.e., the class of the object currently bound to a.
◦ The dynamic type may change throughout the program.

a = new A();

Now the dynamic type is also A!

From the Design Corner 8 / 20



Static and dynamic types can be different

Consider:

A a = new B();

 The static type of variable a is A.
 The dynamic type of a is B

From the Design Corner 9 / 20



Static types

Pay attention method signatures also define static types

foo (A a){

}

foo(new B());

static type of a is A, dynamic type of a is B

From the Design Corner 10 / 20



How do static and dynamic types interact?

class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a);
a.m(b);
b.m(a);
b.m(b);

From the Design Corner 11 / 20



How do static and dynamic types interact?
class A {
void m(A a) { println("A.m(A)"); }}
class B extends A {
void m(B b) { println("B.m(B)"); }}

B b = new B(); A a = b;

What are the results of the invocations?

a.m(a); A.m(A)
a.m(b); A.m(A)
b.m(a); A.m(A)
b.m(b); B.m(B)

 Static types determine which message is sent.
 Dynamic types determine which method is called.

From the Design Corner 12 / 20



Compilation vs. execution

At compilation:
 First, the static type of the receiver determines which class we consider
 Second, does the class define the method?
 Third, does the static type of the arguments fit the static type of the parameter?
 Fourth, find the best fit

At execution:
 the lookup starts in the class of the receiver

From the Design Corner 13 / 20



a.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we look in A
 Step 2: there is a method m
 Step 3: static type of a matches A a we will look for m(A a)

The dynamic type of a is B.
 The lookup starts in class B but looks for m(A a)
 > A.m(A)

From the Design Corner 14 / 20



b.m(a)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: the static type of b is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b))
 Step 3: the static type of a is A we will look for m(A a)

The dynamic type of b is B.
 The lookup starts in class B and looks for m(A a)
 > A.m(A)

From the Design Corner 15 / 20



b.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: b static type is B, so we look in B and its superclass A
 Step 2: There is a method m (in fact two m(A a) and m(B b))
 Step 3: the static type of b is B we will look for m(B b)
 The lookup starts in class B and looks for m(B b)
 > B.m(B)

From the Design Corner 16 / 20



a.m(b)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b;

 Step 1: receiver static type is A: we only look in A
 Step 2: there is a method m
 Step 3: the static type of b is B but since A is a supertype of B this is ok we will

look for m(A a)

The dynamic type of a is B
 The lookup starts in class B and looks form(A a)
 > A.m(A)

From the Design Corner 17 / 20



a.m(c)

class A {void m(A a) { println("A.m(A)"); }}
class B extends A {void m(B b) { println("B.m(B)"); }}
B b = new B(); A a = b; C c = new C;

 Step 1: We look only in A
 Step 2: there is a method m
 Step 3: C the static type of c does not match A there is no subtype relations

Does not compile!

From the Design Corner 18 / 20



Conclusion

 Examples used so far were simple
 By careful with static types, it can get tricky
 Check lecture on overloading
 Check lectures on interfaces

From the Design Corner 19 / 20



A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

