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Remember: Implementing not in two methods
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Stepping back

e | et the receiver decide
e Do not ask, tell
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Ok so what?

You will probably never implement Booleans in the future
So is it really useful?

What are the lessons to learn?

What are the properties of the solution?
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Imagine having more than two classes
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MicSingleLineBlock
MicAnchorBlock
MicHeaderBlock
MicHorizontalLineBlock
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MicEnvironmentBlock

MicMetaDataBlock
MicSameStartStopMarkupBlock
MicCodeBlock
MicMathBlock
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MicMultilineComment

Imagine just a method that would have to
have one condition for each of such cases!



A message send is an open conditional

Sending a message selects the right method

It can be seen as a condition without explicit ifs
The choice is dynamic

It selects the method based on the receiver
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Select the right method
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But dynamically: new objects can be chosen

Root

@ attribute

w —_— operation
collectionOf do: [:e| [A ] B I
R | operation | [attribute2 | operation |

e operation ] A operation

Zr

operation

[ B' | | c |
[ operation | [operation |

collectionOf add: AA new

2
»” 2022 8/21



Sending a message is making a choice

e Each time you send a message, the execution selects the right method
depending on the class of the receiver

e Sending a message is a choice operator
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How do we express choices?

e Ok we have a choice operation... then
e How do we express choices?
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How do we express choices?

Could we have the same solution with a single Boolean class?
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Classes play case roles

e To activate the choice operator we must have choices: classes
e A class represents a choice (a case)
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One class vs. a hierarchy
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Class hierarchy supports for dynamic dispatch

More modular

No need to recompile exiting methods

No need to introduce complex conditions

An hierarchy provides a way to specialize behavior
You only focus on one class at a time
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Message dispatch supports modularity
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Limit impact of changes
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Message sends are better than case statements

e Message sends are supporting a choice
e You could say: They act as "case statements"

e But with messages, the case statement is dynamic in the sense that it depends
on the objects to which the message is sent
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Let the receiver decide

Sending a message lets the receiver decide
Client does not have to decide

Client code is more declarative: give orders
Different receivers may be substituted dynamically
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Avoid conditionals

e Use objects and messages, when you can
e The execution engine acts as a conditional switch: Use it!
e Check the AntilfCampaign
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Summary: Cornerstone of OOP

Let the receiver decide

Message sends act as potential dynamic conditionals
Class hierarchy: support for dynamic dispatch

Avoid conditionals
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