Advanced Object-Oriented Design

Essence of Dispatch

S. Ducasse

Phar@

http://www.phar

http://www.pharo.org

Remember: Implementing not in two methods

Boolean
not
or

<<abstract>>

lfTrue fifFalse:

==

True

False
not
or: or
L
1

! |
| ifTrue:ifFalse: !
!

A false

ifTrue:ifFalse:
\

A true

\,
not
not
$
2 2022 2/21

Stepping back

e | et the receiver decide
e Do not ask, tell

%
»” 2022 3/21

Ok so what?

You will probably never implement Booleans in the future
So is it really useful?

What are the lessons to learn?

What are the properties of the solution?

2
7 2022 4/21

Imagine having more than two classes

MicAbstractBlock
MicAbstractAnnotatedBlock
MicAnnotatedBlock
MicContinuousMarkedBlock
MicCommentBlock
MicQuoteBlock
MicTableBlock
MicIntermediateBlock
MicListBlock
MicOrderedListBlock
MicUnorderedListBlock
MicListltemBlock
MicParagraphBlock
MacParagraphBlock
MacRawParagraphBlock
MicRootBlock
MicSectionBlock

$
202022 521

MicSingleLineBlock
MicAnchorBlock
MicHeaderBlock
MicHorizontalLineBlock

MicStartStopMarkupBlock
MicEnvironmentBlock

MicMetaDataBlock
MicSameStartStopMarkupBlock
MicCodeBlock
MicMathBlock
MicMathBlockExtensionForTest
MicMultilineComment

Imagine just a method that would have to
have one condition for each of such cases!

A message send is an open conditional

Sending a message selects the right method

It can be seen as a condition without explicit ifs
The choice is dynamic

It selects the method based on the receiver

%
»” 2022 6/21

Select the right method

Root
attribute

@
w > operation

collectionOf do: [:e | | / Zr \

A | B [C

e operation] [operation | [attribute2 [operation

operation

I B | | c

[operation | [operation

202022 7/21

But dynamically: new objects can be chosen

Root

@ attribute

w —_— operation
collectionOf do: [:e| [A] B I
R | operation | [attribute2 | operation |

e operation] A operation

Zr

operation

[B' | | c |
[operation | [operation |

collectionOf add: AA new

2
»” 2022 8/21

Sending a message is making a choice

e Each time you send a message, the execution selects the right method
depending on the class of the receiver

e Sending a message is a choice operator

%
»” 2022 9/21

How do we express choices?

e Ok we have a choice operation... then
e How do we express choices?

%
»” 2022 10/ 21

How do we express choices?

Could we have the same solution with a single Boolean class?

Boolean
Boolean not
or
not
ne /V V\
True False
not not
or or

7 2022 11/21

Classes play case roles

e To activate the choice operator we must have choices: classes
e A class represents a choice (a case)

%
7 2022 12/ 21

One class vs. a hierarchy

Fat Class

attribute
attribute2

operation1
operation2

202022 13/ 21

Root
attribute
operation
| A | | c
[operation | [attribute2 [operation
operation
| B' | | c
[operation | [operation

Class hierarchy supports for dynamic dispatch

More modular

No need to recompile exiting methods

No need to introduce complex conditions

An hierarchy provides a way to specialize behavior
You only focus on one class at a time

[_Root |

operation

Fat Class
attribute1
attribute2

‘operationT ‘ A Iy 5 | | c ‘
i ttribute2 i
operation? [operation | [athribute: | [operation |

operation
JAN

[B] [
operation

%
7 2022 14/ 21

Message dispatch supports modularity

T L Tt
| i
: Root < Tt
h
i A i
i I
: !
A e] [—po_]
! | operation | [attribute operation] u operation
1 1
! operation ::
' A i
1 N
| i
: A I
I
1

[
operation operation ::
1

%
»” 2022 15/ 21

Limit impact of changes

1

1

1

;

' A

i

1

1

H A] [C]

! [operation | [attribute operation |]
i Operation operation
' A

I

1

i :] i

i B | C! I

I

1

[
operation operation ::
1

2
»” 2022 16/ 21

Message sends are better than case statements

e Message sends are supporting a choice
e You could say: They act as "case statements"

e But with messages, the case statement is dynamic in the sense that it depends
on the objects to which the message is sent

%
7 2022 17/ 21

Let the receiver decide

Sending a message lets the receiver decide
Client does not have to decide

Client code is more declarative: give orders
Different receivers may be substituted dynamically

%
»~” 2022 18/ 21

Avoid conditionals

e Use objects and messages, when you can
e The execution engine acts as a conditional switch: Use it!
e Check the AntilfCampaign

%
»” 2022 19/ 21

Summary: Cornerstone of OOP

Let the receiver decide

Message sends act as potential dynamic conditionals
Class hierarchy: support for dynamic dispatch

Avoid conditionals

%
»” 2022 20/21

A course by

S. Ducasse, G. Polito, and Pablo Tesone

©10Ie)

V4

: informatiques g”mathématiques

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

