
Advanced Object-Oriented Design

Essence of Dispatch
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Remember: Implementing not in two methods

2022 2 / 21

Stepping back

 Let the receiver decide
 Do not ask, tell

2022 3 / 21

Ok so what?

 You will probably never implement Booleans in the future
 So is it really useful?
 What are the lessons to learn?
 What are the properties of the solution?

2022 4 / 21

Imagine having more than two classes
MicAbstractBlock
MicAbstractAnnotatedBlock
MicAnnotatedBlock
MicContinuousMarkedBlock
MicCommentBlock
MicQuoteBlock
MicTableBlock
MicIntermediateBlock
MicListBlock
MicOrderedListBlock
MicUnorderedListBlock
MicListItemBlock
MicParagraphBlock
MacParagraphBlock
MacRawParagraphBlock
MicRootBlock
MicSectionBlock

MicSingleLineBlock
MicAnchorBlock
MicHeaderBlock
MicHorizontalLineBlock
MicStartStopMarkupBlock
MicEnvironmentBlock
...
MicMetaDataBlock
MicSameStartStopMarkupBlock
MicCodeBlock
MicMathBlock
MicMathBlockExtensionForTest
MicMultilineComment

Imagine just a method that would have to
have one condition for each of such cases!

2022 5 / 21

A message send is an open conditional

 Sending a message selects the right method
 It can be seen as a condition without explicit ifs
 The choice is dynamic
 It selects the method based on the receiver

2022 6 / 21

Select the right method

operation
A

operation
B'

operation
C'

operation
attribute2

B
operation

C

operation
attribute1

Root

collectionOf do: [:e |
 e operation]

2022 7 / 21

But dynamically: new objects can be chosen

operation
A

operation
B'

operation
C'

operation
attribute2

B
operation

C

operation
attribute1

Root

collectionOf do: [:e |
 e operation]

operation
AA

collectionOf add: AA new

2022 8 / 21

Sending a message is making a choice

 Each time you send a message, the execution selects the right method
depending on the class of the receiver

 Sending a message is a choice operator

2022 9 / 21

How do we express choices?

 Ok we have a choice operation... then
 How do we express choices?

2022 10 / 21

How do we express choices?

Could we have the same solution with a single Boolean class?

not
or

Boolean not
or

Boolean

not
or

True
not
or

False

2022 11 / 21

Classes play case roles

 To activate the choice operator we must have choices: classes
 A class represents a choice (a case)

2022 12 / 21

One class vs. a hierarchy

operation1
operation2

attribute1
attribute2

Fat Class

operation
A

operation
B'

operation
C'

operation
attribute2

B
operation

C

operation
attribute1

Root

2022 13 / 21

Class hierarchy supports for dynamic dispatch

 More modular
 No need to recompile exiting methods
 No need to introduce complex conditions
 An hierarchy provides a way to specialize behavior
 You only focus on one class at a time

operation1
operation2

attribute1
attribute2

Fat Class

operation
A

operation
B'

operation
C'

operation
attribute2

B
operation

C

operation
attribute1

Root

2022 14 / 21

Message dispatch supports modularity

PackagePackage

Root

operation
A

operation
B'

operation
C'

operation
attribute

B
operation

C
operation

D

More modular: We can package different classes in different packages

2022 15 / 21

Limit impact of changes

Package

Class

operation
A

operation
B'

operation
C'

operation
attribute

B
operation

C

operation
D

operation
E

If client has a way to get instances of D (in addition to classes of first package), the
client code does not have to change

2022 16 / 21

Message sends are better than case statements

 Message sends are supporting a choice
 You could say: They act as "case statements"
 But with messages, the case statement is dynamic in the sense that it depends

on the objects to which the message is sent

2022 17 / 21

Let the receiver decide

 Sending a message lets the receiver decide
 Client does not have to decide
 Client code is more declarative: give orders
 Different receivers may be substituted dynamically

2022 18 / 21

Avoid conditionals

 Use objects and messages, when you can
 The execution engine acts as a conditional switch: Use it!
 Check the AntiIfCampaign

2022 19 / 21

Summary: Cornerstone of OOP

 Let the receiver decide
 Message sends act as potential dynamic conditionals
 Class hierarchy: support for dynamic dispatch
 Avoid conditionals

2022 20 / 21

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

