
Advanced Object-Oriented Design

Reverse engineering
A key skill of pros developers

S. Ducasse and G. Polito

http://www.pharo.org

http://www.pharo.org

20 vs 80

 You get 4 times more probability to work on an old, strange, undocumented,
architecturally drifted system than write a new one

 How to survive to
◦ obsolete/irrelevant documentation,
◦ obscure architecture, and
◦ lack of experts?

 How to get insider information?

2022 2 / 31

Reverse engineering

IEEE definition "the process of analyzing a subject system to identify the system’s
components and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction"

2022 3 / 31

Different perspectives

 As a user
◦ API?

 As an implementor
◦ what are the invariants/design choice/tradeoffs?

 As an extender
◦ Where to introduce a dispatch hook?

2022 4 / 31

Different perspectives

 Static vs. dynamic
◦ Static can be fuzzy (the devil is in the details)
◦ Dynamic can simply overwhelm you with details

 Coarse vs. fine-grained
◦ architectural element vs. object interactions

2022 5 / 31

Do not dive in the details

 At first do not care about details
◦ Do not try to understand everything (you can get lost)

 Look for
◦ component interactions
◦ big players
◦ large responsibilities

2022 6 / 31

Coarse grained

 Architecture?
◦ who interacts with what

 Static code
◦ dependencies

2022 7 / 31

About package dependencies

 If you have access to application "maps"
 Check package dependencies

2022 8 / 31

e.g....
baseline: spec
<baseline>
spec
for: #common
do: [
spec
package: 'Fenster';
package: 'Fenster−Tests'with: [spec requires: #(Fenster)].
"Core"
spec
package: #Bloc with: [
spec requires: #(#Fenster)];
package: #'BlocHost−Mock'with: [
spec requires: #(#Bloc)];
package: #'Bloc−Tests'with: [
spec requires: #(#Bloc 'BlocHost−Mock').].

2022 9 / 31

About package dependencies

 Importing a package does not mean that it is used :)
 Architecture is generally more interesting

◦ publish subscribers
◦ layers
◦ registration

2022 10 / 31

Important classes

 Root of hierarchies
 Most referenced classes
 Root of small hierarchies
 Tested classes

2022 11 / 31

3 navigation (static) pillars

 References to classes
 Senders of messages
 Implementors of messages

2022 12 / 31

Class references

Pay attention you can have factories
 a class not referenced much (basically only by the factory)
 whose instances are created by the factory

2022 13 / 31

Senders

 Who is calling this method?
 Pay attention, quantity may not matter

◦ you can have several callers
◦ or a single but at the root of a class hierarchy

2022 14 / 31

Implementors

 Who is providing this method?
 Are the implementors in the same hierarchy?
 Spread on multiple hierarchies?

◦ Are they part of ’interfaces’?

2022 15 / 31

Important messages

 Redefined messages?
◦ Hook for extenders?

 Called a lot?

2022 16 / 31

Hierarchy roots

 Check the roots of hierarchies
 Check references

2022 17 / 31

Check tests

 Good for understanding use and scenario
◦ black box testing is about use and external behavioral
◦ Pay attention tests can test internals (white box)

 Getting fast an idea about the tested classes
 Watch out sometimes people are lazy and test simple classes, not complex ones

2022 18 / 31

Look for senders of instance creation

 Class side methods
 Instance creation can provide the collaborators of classes

2022 19 / 31

Design Assessment

 Conditionals
 Long methods (high cyclomatic is always a smell)
 Duplicated code
 Testing messages

2022 20 / 31

Testing messages

 isMove, isPush...
 They often point to the absence of polymorphism and weak design
 Check their senders

2022 21 / 31

Let us check the class API

Classes define:
 isEmptyBlock
 isWall
 hasPlayer
 hasTarget
 hasBox

Let us check the way this API is used

2022 22 / 31

Too many ifs....
GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall
ifTrue: [self drawWall: aCanvas]
ifFalse: [aBlock isEmptyBlock
ifTrue: [aBlock hasPlayer
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndPlayer: aCanvas]
ifFalse: [self drawPlayer: aCanvas]]

ifFalse: [aBlock hasBox
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndBox: aCanvas]
ifFalse: [self drawBox: aCanvas]]

ifFalse: [
aBlock hasTarget
ifTrue: [self drawTarget: aCanvas]
ifFalse: [self drawEmptyBlock: aCanvas]]]

2022 23 / 31

Selected Reverse engineering patterns

More fine-grained understanding
 Speculate about Design
 Refactor to understand
 Step through execution

2022 24 / 31

Let us ""Speculate about Design""

 Apply Speculate about Design
object-oriented reengineering pattern

 Intent: Progressively refine a design against
source code by checking hypotheses about the
design against the source code.

 Use your development expertise to conceive a
hypothetical class diagram representing the
design.

2022 25 / 31

""Speculate about Design""

 Think about the kind of objects that should be in the application
 Look at the classes to see if/how they match your lists
 Refine to understand why you do not find the ones you guess
 Refine to understand the extra classes

2022 26 / 31

""Refactor to Understand""

 You have tests! Green Tests! Then ...
 Iteratively rename and refactor the code to introduce meaningful names and to

make sure the structure of the code reflects what the system is actually doing.
Run regression tests after each change if they are available, else compile often
to check whether your changes make sense.

2022 27 / 31

Put a breakpoint and step

 If you have tests, or ways to execute,
 Place a breakpoint and check in the debugger

◦ but pay attention you can drown in details

2022 28 / 31

Books

 Object-Oriented Reengineering Patterns by Demeyer et al. (free)
https://scg.unibe.ch/download/oorp/OORP.pdf

 Refactoring for Software Design Smells by Suryanarayana et al.
 Refactorings: Improving the Design of Existing Code by Fowler et al.

2022 29 / 31

https://scg.unibe.ch/download/oorp/OORP.pdf

Conclusion

 Reverse engineering is a cool skill
 Practice as much as you can
 Expert developers know how to walk in the jungle

2022 30 / 31

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

