
SfNltalk I
Editors

John Pughand PaulWhw
CarfetonUnhwsAy&JheObjettPeopfe

NGS Publications Advisory Board
Tom Atwood,ObjertDesign
FranfoisBancilhon,O,Techno/ogim
GradyBooch,iJofimrcd
GeorgeBosworth,Oigira/k
Jesw Michael Chonole$,ACCofkfartiriMoriettrz
Adele Goldberg,ParrP/ureSystems
JordanKriendler,/6M (ondtirrg Group
Tom love, A40rgon$fon/ey
Bertrand Meyer,/fE
Meilir Page-Jones,Wu@rdSystem$
cliffReeYe5,/6A4
BjarneStmrsstrup,AJ&TBe/lkzbs
DaveThomas,Objectkrhrrobgyhskrrrrztiond

me Smalltalk Report
:dttorlal Board

Jim Anderson,Oigitalk
Adele Goldberg PtzrrP/aceSystems
Reed Phillips
Mike Taylor,DigAtdk
DaveThomas,ObjectTechnologylrrtermztiorrrzl

hlumnists
JayAlmarode
Kent Beek,FirstUau Safiwore
Juanita Ewing,Oigitalk
Greg Hendley,KnowfedgeS@rn~ (brp.
Tim Howard,FHr%otom~Arc.
Alan Knight,J?reObjectAwp/e
William Kohl,RathWe//Arterrrotiontz/
Mark lmenz, Hdterrzshftwore, hr.
EricSmith, Knowkdge$stem$c%rp
RebeccaWir&B~k,Digitalk

;IGS Publkations Group, ln~
RichardPFriedman,Founder,President,and CEO
Hal Avery,GroupPublbher

:ditorlal/Production
KristinaJoukhadar,Editmiil Oirector
EtiraVarian, ProductionManager
Andrea [ammarata,Art Director
ElizabethA.Upp,Asmriate Managing Erkor
Margaret Conti,AdvertisingProductionCoordinator

:irculatlon
BiwceShnver,Jr.,tircrdation Director
John R.Wengler,tbculation Manager
Kim Maureen Pennq,tirculation Analyst

4dvetislng/Marketing
Gary Portie,AdverdsingManager,EastCoast/[anada/Eumpe
Jeff5mti,Adverlising Manager,(entrd U.S.
MichaelW.Pedc,AdverifsbrgRepresentative
Kristineviksnins,EshibifSalesRepresentative

112.242.7447 (v),212.242.7574 (f)
Diane Fuller& rkociates,5ales Representative,West Coast

4D8.255.29P1 (v),408.255.2992 (f)
SarahHamilton, Direttorof Promotionsand Research
Wendy DinbolmwitLPmmsdirmsManager for Magazines
CarenPsrlner,%iorPmmotions GraphicDesigner

administration
Margherita R.Monck,GeneralManager
OavidCtmtterpaul,5enior AccountingManager
JammAmenuvor,BusinessManager
Mkhele Watkins,Assistantto the President

MSIGS
PUBLICATIONS

hrblishers of JounNAL OF OSJEH-ORIENTED
tWXLAMMING, OSUSCTMAGAZINE,C++ REPORT,THE
MALLTALSREPOFSLTHE X JOURNAL,REPOHTON
)macTAr&wsm & DESIGN,OBJECTSIN EURrJPE, snd
lmmr SPESTMZM (GESMANYI

May 1995

May 1995 Vol 4 No 7

Features

An O-O approachto accessingexternal resources 4
YoelNewman&Michael Parvin
Extending the Smalltalk development environment with external resources is made possible by
VisualWorks and C Connect. The framework provided in this article allows for an object-oriented
integration of function libraries into Smalltalk.

Segregatingapplication and domain: Part 1 12
Tim Howard
The complete segregation of domain information from the application information becomes
essential whenanapplicationofanymeritisintended.

Columns
Getting Real 15
Managing concurrency conflicts in multi-user Smalltalk
Jay Almarode
When multiple users can both view and modify shared objects, concurrency
control is vital.

Smalltalk Idioms 18
Super + 1
Kent Beck
A pattern-influenced approach to the use of “super” in Smalltalk.

Project Practicalities 22
Model integrity through custom instantiation
Mark Lorenz
Creatingintelligentobjectmodelsofyourbusinessthat serveyoursoftware
needsiswhatobjecttechnologyisallabout.

The best of comp.lang.smalltalk 24
Math, Part 1
Alan Knight
Floating point arithmetic can result in some surprising answers—but it’s not a
bug,it’safeature.

Departments
Editors’Comer 2
ProductReview HP Distributed Smalltalk reviewed by Jim Haungs 27

Recruitment 32
cOllf(!l’ellCe (hlWWk!W Smalltalk Solutions ’95 reviewed by David Carr 34

The 5malltalk Report (155N# 1056-7976) is published 9 times a year, monthly except in Mar-APr,July-Aug, and Nov-Oec. Pubfished by
51G5 Publications Inc. 71 West 23rd St,, 3rd Floor, New York NY 10010,@ Copyright 1V95 by 51GSPublications AU rights reserved.
Flepmduction of thi5 material by electronic transmission, I(emx or any other method will be treated as a willful violation of the U5
Copyright law and is Flatly prohibited, Material maybe reproduced with express permission from the publisher.5econd ClassPostage
Pending at NY,NY and additional Maifing ofices Canada Post International Publications Mail Product SalesAgreement No, 290366.

Indkidual Subscription rates 1 year (9 issueshdomestic $89 Mwtico and Canada $114, Foreign $129; Institutional/Library rates
domestic $199, Canada & Mexico $224, Foreign $239, To submit articles, please send electronic files on disk to the Editon at BBS
Meadowlands Drive #509,0 ttawa,0ntario K2C3N2,Canada, or via Internet to strepart@objectpeople. on.ca.Preferred formats for figures
are Mac or 00S EP5,TlF,orGIF formats. Always send a paper copy ofyaur manuscript, including camera-ready copies of your figures [laser
output isfine).

P05TMA5TER: 5end domestic address changes and subscription orders to The 5malltalk Report, P.O.Box 5050, Brentwood,TN 37024-
5050. For sewice on current domestic subscriptions call 1,S00.361,1279 or fax 61 5.3704845.Emaikwbwriptions@sigs. com.For foreign
subscription orders and inquiries phone +44(0]185E.435302, PRINSEDIN THE UNITED 5TATE5,

1

John Pugh PaulWhite
w en, we’re pleased to report to you that the
inaugural Smalltalk Solutions conference
went offwithout a hitch (with the exception
of the hotel itseli?).The conference was very

well attended, with an interesting mix of experienced
hard-line Smalhalkers and novices wanting to find out
more about the technology. The feedback we received
was that the hard-liners found the get-together to be a
very informative week, offering the chance to explore
new uses for Smalltalk and discover how others are mak-
ing use of the technology. Many of the novices with
whom we spoke were “very intrigued” with the exuber-
ance of the people attending. They seemed to sense that
the culture surrounding Smalltalk is different from other
software en~ineerin.e communi-
ties. And as this community con- While SnzaUt
tinues to grow at such a rapid pace,
it’s interesting to see that it hasn’t to be ZASefldfO
lost this collegial aspect. From our a design, it
~oint of view.we found the confer-.
ence to be an excellent opportuni- is iust

a

ty to meet old friends and speak to
many of you, So for the two dozen or so of you who sug-
gested that you’d like to contribute to THEREPOFiT,let’s
hear from you <grin>! Be sure to mark next year’s date
(and new hotel) on your calendar-it’s March 4-7 at the
Marriott Marquis in New York,

One of the interesting topics being discussed by many
at the conference was what documentation is necessary
for desigrdng Smalltalk systems to be constructed, as well
as what documentation must be generated to explain the
system once it is delivered. We encounter this question
regularly in our dealings with clients, and it proves to be a
difficult one to answer. Many projects we know of are gen-
erally not following any of the Booth, Rumbaugh, or
Shlaer/Mellor methodologies, or at least not to their full
extent. In fact, it’snot clear to us that the techniques used
by these approaches are necessarily a great fit to Smalltalk
development. One interesting thing about Smalltalk is its
suitability as a language for expressing and evolving a
design as well as an implementation. It’snot that the nota-
tion put forward by the methodologies listed above isn’t
useful, it’s just that it is often more than necessary
Mastering the notations associated with these approach-
es is a very expensive activity, and what you are left with is
still a “paper” design. Many people find that applying a
mix of Responsibility-Driven Design along with Use Case
analysis is sufficient to deliver with their projects.

What we have seen being done by many groups is to
2

work out a design, but not necessarily document it using
a formal notation. Instead, they work out their design as
a rough sketch, which they simply take away and con-
struct in Smalltalk. This often leads to highly successful
projects; particularly from the point of view of putting
systems together quickly and effectively.The downside to
this approach is that without documentation describing
the design and architecture, we’re still building legacy
systems that will suffer in the long run. The problem is
that, while Smalltalk proves to be useful for exploring a
design, it ultimately is just code; it is often difficult for
people who were not directly involved in the creation of
a system to extract the design of an existing implementa-
tion. The true test for any design architecture comes

when a new group takes over the

alk proves rnaint-nceOfaSystem,andthe
original team working on it is no

r i?XplOrblg longer available!

ultimately There are different approaches
to address this moblem. Number

code one in our minds is to put in place I
an architecture that is as simple

and elegant as possible, while isolating—as much as pos-
sible-the things that aren’t simple from the mainstream
developers. The idea is to make it as snaightforward as
possible for the “average” maintenance developer to do
his/her job. This sounds like an oversimplification of the
problem, but in virtually all systems this separation of
complex aspects of the architecture is achievable with just
a little extra effort. Second, make sure their are lots of
examples of how the system is intended to be used. We
write example methods, which are class methods for each
class created. These methods illustrate the different ways
to interface with our classes. It’sunfortunate that the ven-
dors don’t do this as well, for they must have these examp-
les for their own internal use. Third, it is important dur-
ing design for the group to set standards for building their
system, and that these be adhered to strictly.This includes
issues such as choosing names for messages that clearly
indicate their intenu being careful to choose either singu-
Lwor plurrd names for parts and messages; making sure
similar messages are consistent with their return types;
and making sure that arguments to messages are not be
constrained by the class of object being passed, but
instead rely strictly on the behavior of the argument.
These are all little things that take an extra few minutes to
check when you’rewriting the class that will save weeks of
effort in the future.

Enjoy the issue.
The Smalltalk Reporl

Introducing Argos
The onlyend-to-endobjectdevelopmentand deploymentsolution

An integratedobjectmodelingtoolpmvkiesmcd.el-driven
dwbpmentforemrpriwwideUppkati I

Allobjectmodelsaremanaguiina shared repository,

supprting teamdevelopmentandtnumdility
I

Pmduellm

.,::sBOundA Palnl~
240.
210--9-
150” ‘
lsO .;” . r“::
120

. .
■ m.

90 ——
50
m -- - .9- .-
0 ---------- --- -

12345078a 101

L Powerfuldraganddrop“e-s” makeapphtiun
developmentintuitiw

Comprehensiwsetofwidgeu,includingbusirwss

graphics,muhsda, andothersnudwapplkath —
devhpt-mmtfusyandpowerful

VERSANT ArgosT” is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Po\~erfhl because Argos supports
fill traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSAN’TODIIMS. Argos
deals with critical issues such as locking and concurrency

VERSANT
~ The Database For Objects TM

— ..-L._...
!.

__. _.-_. .,____ . ,,., ..- . .,!

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks@.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

1380 WillowRoad s Menlo Park, CA 94025 ● (415) 329-7500

01994 ~ Vmmt (>b@ Tcchnolcgy V!MSANT, \W.SAW AIW md The I)mbw F.r Ohjcm wc tradmnmhorVcmnt ohjccr‘T.v!mol.g!(hrporatim,. All mhcrcompanynmm mudIbg,,sm rcgincrcd mdcmrks $>1the indi, id..] mmp.mics,

An O-O approach to accessing
external resources

YoeI Newman & Michael Parvin
INTHECOURSEOFOURDEVELOPMENT,we have extended
the VisualWorks development environment by allow-
ing access to external resources such as communica-

tion protocols, database access, and multimedia services.
This article will discuss the approach we have taken in
incorporating these features into VisualWorks 2,0. We will
also give a brief overview of VisualWorks’ often over-
looked DLL and C Connect (DLLCC)product (referred to
as C Programmers Object Kit (CPOIQ in VisualWorks 1.0).

DLL AND C CONNE~ A SIMPLE EXAMPLE

when your Smalltalk application has to communicate with
an external component, you will need to use a function
library. The function librarywill also provide an application
programming interface (API). The API typically contains
declarations that specify the function prototypes irnple-
mented by the library. In the 0S/2 environment, the func-
tion library will most probably be released as a dynamic
link library (DLL) because DLLs reduce program size and
can be shared by more than one program. We will start with
a short example showing how to use DLLCC to make an
API call from within Smalltalk. Although DLLCChas many
other capabilities, we will only demonstrate bringing a DLL
into a Smalltalk application. Remember that this example
is intended merely as a quick overview. For more complete
and extensive coverage, please refer to the DLL(2Cmanual.

DLLCC introduces a new abstract class called
ExtemaUntetiace. Accessing C functions requires subclass-
ing this ExtemaUntefice class. DLLCC also extends the
Smalltalk syntax to allow C language declarations within
Smalltalk methods. This extended syntax is only available
to subclasses of ExtemaUnterface. A sample declaration
could look like this:

RETCODE
cC: typedef integer RETCODE>

or like this:
SQLAUocEnvhandle

<C:integer SQLAUocEnv(unsignedlong * handle)>.

To create an Externallnterface subclass, you will need access
to both the DLL files and the header 61es (usually .h files).
With these files, you can create an Fxternallnterface subclass
either by manually entering the methods that correspond
to the C declarations, or by having DLLCC pruse the C
header files and automatically generate a method for each
C declaration. There is also a Builder tool that allows you to
4

examine header illes and selectively generate the External-
Intefice subclass,

In our example, we will call the DosBeepfunction from
within the 0S2 library. We will be using 0S/2’s doscaUl,dlL
The API is defined in the file bsedos.h. The first step is to
define the ExternalInterface subclass in the System Browser.

ExtemaUntetiace subclass: #DosCall-s
instanceVariableNames: “
classVariableNames:“
poolDicbonaries: “
catego~ ‘STR’

This results in the following new template:

ExternalInterface subclass: #DosCaUs
includeFiles: “
includeDirectories: “
libraryFiles: “
libraryDirectories: “
generateMethods: “
beVirtuaL false
optimizationLevel: #debug
instanceVariableNames: “
cl-assVatibleNames: “
poolDictionaries: ‘DosCaUsDicbonary’
category ‘SIR’.

Then fill in the fields as follows:

ExtemaUnterface subclass: #DosCaUs
includeFiles: “
includeDirectories: “
LibrqFiles: ‘doscalll.dll’
libraryDirectories; ‘e:\os2\dU’
generateMethods: “
beVirtuak false
optimizationbveh #debug
instanceVariableNames: “
classVariableNames:”
poolDictionaries: ‘DosCallsDitionary ’
category ‘STR’.

The libraryDirectonesand l.ibrayFilesrefer to the DLL.sto be
loaded. Make sure to fill in the correct drive where the 0S/2
system is installed. The includeDirectories and includeFiles
refer to the header llles to be parsed. If there are includeFiles
specified and there is a “*“ in the generateMethods field,
then the header files will be parsed. Since we are only call-
The Smalltalk Report

PICTURE THIS .. .

THIS COULD BE YOUR OBJECT ORIENTED

THIS COL~LD BE YOUR OBJECT ORIENTED
WITH TRS

PROJECT

PROJECT

ANY QUESTIONS???

+ Consulting ● Training / Immersion Programs
+ Mentoring + Reusable Components
● Application Frameworks + Project Reviews
+ Methodologies

“Where

● Coding

Smalltalk Talks Big”

TECHNICAL
RESOURCE
SOLUTIONS

3900 W. Alameda Ave., Suite 1700, Burbank, CA 91505,818-972-1744, 800-801-lTRS (877), Fax 818-972-1685
WW http: //www.primenet. com/-trsinet email: trsinet @pnmenet.com BBS: 818-972-1642- 14400,8,N, 1

H@l

Code
Quality

Lcw

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

!3eusable Reusable software requires readily available, high
Components

quality documentation.

QQ

And the easiest way for Smalltalk developers to get
Non-reusable quality documentation is with Synopsis. Install it
“G.omponente and see immediate results!

Features of Synopsis
. Documents Classes Automatically

Lcw

Documentation
w

. Builds Class or Subsystem Encyclopedias

Quality . Moves Documentation to Word Processors

. Packages Encyclopedias as Help Files. .

Products

Synopsis for IBM Smalltalk $295 Team $395_

8912 OxbridgeCourt,Suite 300, RaleighNC 27613 Synopsis for Smalltalk/V and Team/v $295
Phone 919-647-2221 Fax 919-847-0650 Synopsis for ENVY/Developer for Smalltalk/V $395
ing one function, we don’t want to parse the entire header
file. We will manually add the following method on the
instance side:

DosBeep:freq with: duration
cC: unsigned long DosBeep(unsigned long freq,

unsigned long duration)>
‘self extemalAccessFailed

Under most circumstances we would be done here.
However, in the case of the doscalll.dll there is one final
step. This is because doscalll .dll does not export all its
functions by name, so they must be referred to by ordinal
rather than name. Therefore, we must resolve the ordinal
before we can call it from our application. There are two
ways we have found to do this. The first way requires that
you determine the ordinal of the function you need using
exemap, exehdr, or some local guru, In our case, DosBeepis
ordinal number 286. With the function ordinal, you can
execute: (DosCaUsDifionaryat:#DosBeep) ordinak286. This
will cause DLLCC to resolve the function by ordinal and
not try to resolve it by name. (This handy bit of informa-
tion is in the manual under MS-Windows 3.1 platform-
specitlc information, but we have found that it works just
as well in 0S/2).

The second way is a bit more complicated and maybe
more familiar to C programmers. You will create your own
version of the DLL that forwards the request to the actual
0S2 DLL,There are four steps.
1, Create a “dummy” function that looks like this in foo.c:
6

intfooo

{)

2. Create a DLL definition fde mycall.def

LIBRARYMYCALL
PRTMODE
EXPORTS

DosBeep

3. Compile to object code only as follows (using IBM
CSet Compiler)

icc /c foo.c

4. Link to the 0S2 library to create mycall.dlk

link386 foo.obj, mycall.dll,, \ibmcpp\lib\dde4sbs.lib,
mycal.def /NOI

and use mycall.dll in the class template for the
Iibraqrl%leparameter instead of doscalll.dll.

To use the function, execute:

DosCallsnew DosBeep:1000with:1000.

DLLCC is a powerful product and will have no problem
parsing ANSI-Cheader files. Be warned that there maybe
work necessary to get your files to parse correctly. There
are, for instance, many cases where the header fdes must
be tinkered with to parse correctly. Also, the parser
ignores some compiler directives like #pragma and #line.
The Smalltalk Report

SUM.MER/FALL1995

INTRODUCTION TO
VISUALAGE

JUNE 12-16
JULY10-14
AUGUST7–11
SEPTEMBER11-15
OCTOBER9-13
NOVEMBER6-10
DECEMBER4-8

BUILDINGAPPLJCAmONS
WITH VISUALAGEAND
IBM SMALLTALK

JUNE 19-23
JULY17-21
AUGUST14-18
SEPTEMBER18-22
OCTOBER16-20
NOVEMBER13-17
DECEMBER11-15

PROGRAMMING IN
VISUAL SMALLTALK
JUNE 5-8
AUGUST21-24
SEPTEMBER25-28
OCTOBER23-26

Open Course Schedule
PROGRAMMING IN

VKUALWORKS
JUNE26-29
AUGUST28-31
OC~BER 2-5
NOVEMBER20–23

00 CONCEPTS,
ANALYSIS & DESIGN
JUNE 5-7
Jum 31-AUGUST2
SEPTEMBER,6-8
(hOBER 10-12

NOVEMBER1–3

PROGRAMMING IN
IBM SMALLTALK
JUNE S-8
AUGUST21-24
SEPTEMBER25-28
OCTOBER23-26

VISUALAGE FOR
SMALLTALK
PROGRAMMERS
JUNE 26-29
AUGUST28-31
~BER 2-5
NVEMBER 20-23

The couzses are presented in Ottawa, Ontario,
Raleigh, NC, and Southampton, England

THESE COURSESAREALSOOFFEREDAT YOUR SITE. CALL FOR DETAJLS.

The ObjectPeopleInc.
509-885 Meadowlands Dr. 109 Upper Shirley Avenue
Ottawa, Ontario, K2C 3N2 Southampton, England S0155NL
Phone (613) 225-8812 FAX (613) 225-5943 Phone 441703775566 FAX 441703775525

E-mail: info@objectpeople.on.ea

Introducing VisualObjectsTM
Professional Interface Development for VisualWorks

VisualObjects~ is an extension to the VisualWorks
environment that will allow you to build polished GUIS

without a new tool to learn. VisualObjects additional
features include: drag and drop, MDI interfaces,

containers, platform standard list boxes, spin boxes,
combo boxes, file system widgets, and more.

VisualObjectsTMfor Professional Interface Development
$1,000 for PC’s, $1,500 for UNIX.

Call to Order (312)-409-4281
objects @madtech.com

http://www.madtech.com/objsoft/
DO WE WANT TO USE AN ExternalInterface SUBCLASS?

Once you have generated an ExternalInterface subclass,
you have a class with several methods. Each method has
the ability to call one of the functions contained in your
DLL, But how should you call these functions? The easiest
approach might seem to be just calling a function direct-
ly , through its corresponding method, whenever you
needed to use one. There would, however, be several dis-
advantages to this approach.

To scatter function calls everywhere would make the
application difficult to understand, It would leave no clear
indication of what a function is being used for and how it
is being used. Also, it wrongly assumes that everyone
working on the application (now and forever after) knows
how to use the function library. We want away to encap-
sulate the API’sbehavior in a way that makes it clear how
to use it and how it is being used.

There will also be many times when you will need to find
all your function calls. The vendor might release anew ver-
sion of the library, causing you to change youI code, or you
might decide to go with a different vendor. You might also
need to do some system maintenance or extend the sys-
tem. k all these instances, you want to touch as few areas
of your system as possible. This will be hard if you have
your function calls in many parts of the system. We need a
way to minimize the impact of system changes.

Calling the function calls directly also breaks portabili-
ty For example, if we have had-coded calls that open the
0S/2 file dialog window then we can no longer run our
8

application unchanged on any other platform. It would be
nice to use the same call to bring up an 0S/2 file dialog
under 0S/2 and a Windows file dialog under Windows.

Finally raw function calls within Smalltalk code will
result in ugly and non-intuitive code that tends to look
more like C than Smrdltalk and will seem unnatural to the
Smalltalk programmer. Imagine a code snippet that
looked something like ths:

interfaceClass := SomeExtemalClassnew.
retCode:= interfaceClass calbparameterl with:parameter2.
retCode == interfaceClass GOOD_RETURN_CODE

ifTrue:[self doSomeCode]
ifFalse:[DosCaUsnew dosBeep:parameter with:100]

What we want is a way for Smalltalk programmers to use
the functions in the same way they have learned to use
the rest of the system. This is especirdly true if the people
using the functions are not the same people who are
bringing them into Smalltalk.

All these problems leave us with a design dilemma.
What is the best way to use a function library in a
Smrdltalk system?

ELEMENTS OF A HOST PLATFORM ACCESS FRAMEWORK

VisualWorks

Creating a host platform access framework is an excellent
way to solve our dilemma. This can be can be done using
a multiple layer approach (see Fig. 1).

The API access layer is the lowest layer in the framework
and provides access to the API’s functionality. The API
access layer is a subclass of ExtemaUntefice. This subclass
contains the procedures, structures, typedefs, and mani-
fest constants for the API as well as the behavior necessary
to call the functions in a DLL from the Smalltalk environ-
ment. This layer contains only the essential code required
to make the function call.

The API wrapper layer provides a higher-level interface
for the API functionality. Conceptually it is the next layer in
the host platform access framework, The layer is composed
of an abstract class and its concrete subclass implemen-
tors. The API wrapper layer wraps API function calls and

r API
I I

Figure I. Object model relationships.
The Smalltalk Report

shields the SmaUtalk application programmer from the
implementation details of the AM itself, The separation of
the interface from the implementation allows the develop-
ment of the API wrapper layer to proceed iteratively

The abstract class defies a generic interface for the
behavior exhibited by the “family” of APIs to be support-
ed in the Smalltalk environment. This “family” can range
from a single API, to a group of vendor-specific database
APIs, to a group of APIs that perform the same behavior
for specific platforms. The abstract class’s design should
be robust enough to support additional implementations
for other platforms or from other vendors.

Concrete subclasses implement the specifics for each
host platform or vendor-specific offering. The portability
of API functionality is possible because the subclass
implements the operations to support the abstract inter-
face. The advantage of using an abstract class to define
the interface and concrete classes to support the imple-
mentation is that users of the
framework only commit to the

the framwork by remov
collectible pointers final

Memory allocation te

[“Beginunwind block
ptrl := CIntege~e u
pti2 := CIntegerTypeu

...

...

...
“Endunwind block”]

[phl notNil ifl’rue
ptr2 notllil ifl’rue: [

The use of valueNowUrO
an example of a memory
ly allocating and deallo
heap, The handler code

interface defined by the abstract What is the best way to use a
class, not to a particular imple-

jiunction library in amentation defined by a concrete
class. Smalltalk system?

The concrete subclass for an
abstract AYI wrapper class will
have to handle the following items in its implementation.

● Memory allocation and deallocation.
● Structure allocation, deallocation and member

accessing.
● Exception handling.
● Maintaining and enforcing the state of the API.

MEMORY ALLOCATION AND DEALLOCATION
The concrete implementors will handle the allocation and
deallocation of memory on the external heap. ~ically
API calls will require parameter passing, In Smalltrdk, this
means that the API parameters need to reside in memory
explicitly allocated on the external heap, i.e., memory that
is not managed by the Smalltalk memory manager.
Initially the internal implementation of a concrete sub-
class could use gcMalloc and gcCopyToHeapto allocate
memory on the external heap. The “gc” refers to the
garbage collectible nature of the memory pointers on the
external heap. When a garbage collectible pointer is no
longer referenced, its finalization mechanism frees the
memory on the external heap. This finalization mecha-
nism takes care of any implementation memory leaks
associated with allocating and deallocating memory Later
in the development process, more advanced memory allo-
cation techniques could be used such as allocating and
deallocating the memory explicitly for more performance.
Even though gcMaUoc and gcCopfloHeap facilitate the
development of the API wrapper layer by providing auto-
matic allocation and deallocation of memory, they do so at
a high performance cost. Explicitly allocating and deallo-
cating memory will increase the overall performance of

Another performance
in the internal implemen
location of large memo
incurring a performance
with no discernible gai
stored in a concrete subc
in place of memory poin

A key point to mentio
mentation details of me
remain hidden and sepa
for performance and s
development process w
should not be the prima
oping the implementation

STRUCTURE ALLOCATIO
MEMBER ACCESSING

Structures are one type
function call. From the
that a structure will nee
heap. The concrete subc
the structure, filling in
retrieving the data from
call returns.

In Smalltalk, we do n
programmer to allocate
and deallocate the sb-uc
For instance, funfl, an A
ter a structure containing
application programmer
specific knowledge to all
May 1995
ing the overhead of the garbage
ization mechanism.
chnique.

nsignedLong malloc,
nsignedChar malloc.

valueNowOrOnUnwindDo:
: [ptrl freePointer].
ptr2 freePointer]],

nUnwindDo:to handle the API call is
allocation technique for explicit-

cating memory on the external
will be evaluated whether or not

an exception occurs. An inter-
esting aspect of the code is that
the message freePointer is being
sent to the CPointer rather than
free. The freePointer method is
faster than free ifit is known the
pointer is not garbage collec-
table.

item to take into consideration
tation is the allocation and deal-
ry regions. The environment is

penalty with every function call
n, Instead, the CPointer could be
lass instance variable and reused
ters with a local scope.
n here is that the actual imple-

mory allocation and deallocation
rate from the interface. ‘llveaking
tyle can take place later in the
ithout breaking the interface, and
ry concern when initially devel-
.

N, DEALLOCATION, AND

of parameter passed in an API
previous discussion, this implies
d to be allocated on the external
lass is responsible for allocating

the necessary members, and
the members after the function

ot want to require the application
a structure, fill in the members,

ture when it is no longer needed.
PI function, requires as a parame-

three members. To use furd an
would require irnplementation-

ocate the correct structure and fill
9

IACCESSINGEXTERNALRESOURCES

in the correct members to satisfy the requirements of the
function call. In contiast, a more object-oriented interface
would provide a keyword message taking as arguments any
additional information not already known to the imple-
mentation. The concrete implementation would convert
this information into the format required to make the func-
tion call. The keyword message is specified by the abstract
class and is only implemented by the concrete subclass. A
different concrete subclass may not convert the informa-
tion into a structure but rather may pass each parameter to
a function call. The differing implementation details would
have no impact on the user of the API wrapper layer
because the interface for the concrete subclass implemen-
tors is always the same. In addition to separating the API
functionality from its implementation, the abstract class
defines an interface that provides more insight into the
behavior performed by the concrete implementors.

EXCEPTION HANDLING

The concrete implementors not only
have to handle exceptions when they
occur, but must also provide a hierar-
chy of exception handling signals to
resolve any API call failures. These
signals will provide a portable way of
handling exceptions. For example,
an exception handling hierarchy for
a communications interface would
contain at the highest level a
communicationsErrorSignal, and then
lower in the hierarchy a

exception handling
information returne
framework should n
tion in their impleme
mation should only
ing development. M
cific error code info
will break portabili
across different vend

Maintaining and en

The API wrapper lay
representation of the
if the API functionality
instance, in a hypoth
flow of communicatio
Receive, check Rece
Receive, if it doesn’t

The portability ofAPI

functionality is possible

since the subclass

implements the operations

to support the abstract

interface.

connecdonl%rorsignal and a StateErrorSignal.Each subclass
implementor will generate these exceptions for a given set
of error criteria. Aswith the design of the abstract interface,
the exception handling hierarchy needs to be designed as a
set of generic exceptions that support the common func-
tionality contained within the family of APIs, Even if this
“family” is made up of a single API library, specific refer-
ences to platform, vendor, and product should be avoided,
e.g., an exception called databaseEnorSignalwould be a bet-
ter design choice than an exception entitled db2ErrorSignaL
As an example, the VisualWorks External Database
Interface, which will be discussed later, includes the follow-
ing exception hierarchy

externalDatabaseSignal
connetionExceptionSignal

authenticationFailureSignal
connetionNotOpenSig nal
unabLeToConnectToSQUerverSignal

unableToConnectToSQLenvironmentSignal

The exception handling hierarchy provides the primary
source of error detection information to the client, It
should be the only source of exception information avrdl-
able to the client of the API wrapper layer. The failure
information returned by the API should only be used in
the internal implementation of the API wrapper layer, The

perform state transi
exception when an a
support the current

The state of the A
subclass instance va
the current state. Th
style statements to ch
tion call, Another app
that not ordy mainta
initialized with a loo
that can be sent for
will still be responsibl
the proliferation of c

FRAMEWORK CONSI

With the framework
lems mentioned abo
can be called fro
Programmers can u
interface, They do no
we are masking the
arrangement, users
mentation and not t
face from the imple
quently change platf

We have also loca
10
hierarchy can be enhanced with
d by the API; however, users of the
ot rely on API-specific error informa-
ntation. The specific API error infor-
be used as a troubleshooting tool dur-
ore importantly, reliance on API-spe-
rmation in a client implementation
ty across multiple platforms and
or implementations.

forcing the state of the API

er has a responsibility to maintain a
state of the APLThk is only necessary

is dependent on its current state. For
etical communications protocol, the
n verbs needs to be Allocate, Send,

ive for more data flag, if it exists then
then OK to Send,.,. , Reset. This hypo-

thetical protocol is highly dependent
on the state of the session because
issuing a Send verb before an
Allocate verb would cause a commu-
nications exception. On the other
hand, an API that only contains func-
tions that display various file dialogs
would have little need for the con-
cept of state, However, for those APIs
that rely on state to dictate the action
taken during a function call, the API
wrapper layer needs to maintain an
accurate representation of its state,

tions when necessary and raise an
ttempt to call a function that does not
state is executed.
PI can be maintained using a concrete
riable storing a symbol representing
e concrete subclass would use case-
eck the state before executing a func-
roach would be to create a State class

ins state but can be instantiated and
kup table that specifies the messages
a specific state. The API wrapper layer
e for making the state transitions, but
ase-style statements can be avoided.

DERATIONS

approach, we have solved the prob-
ve. We have a common interface that
m anywhere in the application,
se the framework knowing only the
t need to know the API itself because

implementation details. With this
are committing only to the imple-

o the platform. Separating the inter-
mentation will allow us to subse-

orms without breaking the code.
lized all access to external resources.
The Smalltalk Report

We are only calling the functions directly in the API wrap-
per layer, which masks the actual implementation. ‘Ilk
makes maintenance and upgrades easier because we can
change the implementation without affecting the users of
the interface. Mso, because we will be allocating space on
the external heap, we can keep track of these allocations
to avoid problems such as memory leaks.

There are some things to keep in mind when creating an
external access frameworlc Users will be tied to the imple-
mentor’s view of what the interface should be. The frame-
work needs to defie an interface for all implementations,
but it can be hard to create an abstract interface that can
account for all the differences across implementations. It is
possible that the framework implementors only know one
platform. Also, there will be situations where some features
are only available on certain platforms and a decision
needs to be made whether to exclude these extensions in
the framework and keep the interface uniform or to extend
the implementation class and give it a larger interface.
Finally the framework needs to encompass future prod-
ucts as they become available. It is important to commit
some time and effort to creating a truly robust framework.

THE EXTERNAL DATABASE INTERFACE EXAMPLE

An excellent example demonstrating the above approach
is found within the VisualWorks system itself. VisualWorks
needed the ability to communicate with several database
management systems. However, each DBMS is different
and each DBMS requires the use of a separate API.We will
look at how database connectivity is implemented in
VisualWorks to see how it fits our model.

At the highest layer we have an abstract implementation
to which we should program. This layer is included in every
VisualWorks system and is contained in the External
Database Interface (EXDIlclasses. These classes are found
in the category “Database-Interface” and include such
classes as ExtemaU)atabaseSession and ExtemalDatabase-
Connecdon.These are abstract classes representing a frame-
work for external relational database access. AUbehavior
necessary to interact with a database (such as connecting,
discomecting, executing an SQL statement, or initiating a
transaction) is defined in these classes and documented in
Chapter 13 of the user’s guide, These classes provide the
framework for all database access but do not provide
access to any database in particular. There is also a com-
plete error handling hierarchy defined. The framework
relies on concrete subclasses to provide the implementa-
tion details spe~c to each database platform. The con-
crete classes are provided for both Oracle and Sybase and
are packaged as separate Database Connect products. If
you have these products installed, then the classes can be
found in the “Database- Sybase” or “Database-Oracle” cat-
egories. If we examine these classes, we will find that each
maintains the interface of its superclasses but implements
the specifics for its specific DBMS, For example, the
SybaseSession class provides the behavior necessary to
maintain a Sybase session, When we initialize a
May 1995
SybaseSession, or ask to prepare an SQL statement, the
SybaseSessionlmows how to allocate the correct structures,
make the correct calls, and interpret the results. These
classes represent the API wrapper layer.

Finally we have the Extemallntefice classes called by
the wrapper layer, These classes are found in the category
“Database-External-Libraries.” These classes represent the
actual function libraries and provide the means to make
the function calls. These methods are called only by the
API wrapper layer, Many of the benefits discussed earlier
can be seen in this example. There is a common interface
to all database systems. The programmer does not need to
know the DBMS implementation details to access a data-
base. Furthermore, the database access interface remains
the same for all databases, so once the user is familiar with
the interface there is nothing to relearn. Exception han-
dling is taken care of by the EXDI classes, with standard
errors defined that can be trapped and handled by appli-
cations, The database behavior is properly encapsulated,
System changes are localized. Database differences are
accounted for while nothing is hardcoded. The SmaUtalk
programmer can be comfortable with the implementa-
tion. We also realized an even greater benefit when we
needed to access DB2 data. We did not have to write the
DB2 access code from scratch because it fit nicely into the
provided framework. We were able to achieve DB2 access
by creating an ExtemaUnterface class and then writing the
API wrapper Layerclasses (DB2Conneclion,DB2Session,and
DB2Transacdon)to take care of DB2-specific implementa-
tion details. The rest of the implementation we got for free.
To top it all off, we did not even need to document the sys-
tem, All the documentation was already written and pub-
lished (a programmer’s dream!).

SUMMARY

We have shown the approach we take when bringing
external resources into the Smalltalk environment, This
approach will be useful when you need to bring in any
external functionality, especially if you plan on doing so
for more than one platform. We have already used it for
database access, APPC communication, and to make calls
out to the 0S/2 environment. There are a few other areas
where we see potential for this idea. One could imple-
ment a multimedia framework, similar to the EXDIframe-
work, This framework would mask the underlying multi-
media implementation and allow subclasses to imple-
ment multimedia under both 0S/2 and Windows. Other
areas of interest might include file dialogs, host menus
and widgets, and IBM System Object model (SOM). In our
next article we will present a full implementation follow-
ing the approach we have outlined.

Yoel Newman is a Senior Systems Consultant with American
Management Systems (AMS). He can be contacted by email at
yoel@aol.com.Michael Parvin is Senior SystemsConsultant with
Metropolitan Life Insurance. He can be contacted by email at
mparvin@tigger.jvnc.net.
11

Segregating application
and domain: Part 1

Tim Howard
T
ISARTICLEISTHEFIRSTINASERIESof three dedicated

to the topic of application and domain segregation
in VisualWorks application development. This first

article presents the case of why it is essential that an
application have a strict segregation between its applica-
tion information and its domain information. The second
article will discuss the implementation of don-win objects,
the keepers of the domain information. The third article
will cover the application classes that provide the user
interface for the domain objects.

We begin with a review of MVC fundamentals, includ-
ing deftitions for application and domain information,
followed by a brief history of application development in
Smalltalk. Considering this background, it is argued that
any VisualWorks application of merit—primarily those
with a persistent storeshould be designed and imple-
mented with a strict segregation between the application
information and the domain information.

MVC FUNDAMENTALS
Before launching into the discussion at hand, it is prereq-
uisite that we back up and cover some MVC fundamen-
tals. The MVCperspective is a way of breaking an applica-
tion, or even just a piece of an application’s interface, into
three parts: the model, the view, and the controller. Jn this
context, the term application is used to mean one or more
windows working in a coordinated and related effort to
provide a service to a user community. Aword processor is
an example of an application-its printer driver is not.

ww -
‘s-----s--------

Figure 1. Application model object diagram.
12
-”----’-----

A model is an object that manages information. It cal-
culates, sorts, stores, retieves, simulates, emulates, con-
verts, and does just about anything else you can think of
doing to information, As the MVC architecture has
matured, it has become apparent that the model’s infor-
mation can be divided into two categories-domain infor-
mation and application information. A model’s domain
information includes information concerned with the
problem space. For example, if we have an airline reserva-
tion application, the flight schedules, prices, seating
arrangements, and credit card numbers would all be
domain information. Each identifiable piece or subset of
the model’s domain information is called an aspect #m
aspect can be as simple as a single string or number, or as
complex as a subsystem of other interrelated objects. A
model’s application information is any information that is
used by the application but is not part of the problem
space. In the airline reservation example, error messages,
icons, and menus would be part of the application infor-
mation. A model by itself has no visual representation, nor
does it interact with the user or receive any user input.

The view provides a visual interpretation of the infor-
mation contained in the model, which suggests, quite cor-
rectly, that there can be more than one view per model. As
the information in the model changes, the view should
automatically redraw itself to reflect those changes. Aview
depends on the information contained within its model to
fullfill its duties, The controller works in conjunction with
view and accepts user input—usually keyboard and
mouse input, The controller can process this input itself or
pass it on to the model or view for processing.

There are certain objects, called dependents, that are
interested in the information contained within the model
and especially interested in changes to that information. A
model maintains a collection of its dependents and when-
ever the model changes any aspect of its internal state, it
broadcasts a notification of that change to all these depen-
dents. It is then up to each dependent to decide for itself if
it is interested in the particular change or not. Any object
can be a dependent, but the most common dependents are
views, windows, and other models (and since the introduc-
tion of VisualWorks, Dependenqfbnsformer objects, which
do not fit into any of the aforementioned categories).

Any object can be a model because the basic model
behavior is implemented in Object.The Model class, how-
ever, improves upon this implementation and therefore
most models are an instance of some subclass of Model,
The SmalltalkReport

Some examples of model classes are ApplicationModel,
UIPainter, ValueHolder,FluggableAdaptor, and Browser.

HISTORY OF SMALLTALK APPLICATION ARCHITECTURES

Before VisualWorks, Smalltalk applications employed an
architecture often referred to as the classical MVC archi-
tecture, In this architecture, a single monolithic model (or
very few models) assumed most of the model type
responsibilities and managed several aspects of informa-
tion, Such a model had several dependents-a window,
other models, and usually a view for each of the aspects,
Also, the model’s class typically assumed the responsibil-
ity of creating the window interface for the model. The
System Browser, implemented by the Browser class, is a
good example of an application developed with this type
of architecture. The main problem with the classical MVC
architecture is that a single model manages both applica-
tion and domain information, and tries to manage the
user interface at both the window and component level,

VisualWorks has enhanced the MVC architecture in
several ways. Chief among these is
standard model behaviors (i.e. those
described in the classes Object and
Model) rue insufficient for running
applications. To manage an entire
application, or at least an entire win-
dow, a specific type of model is
required called an application
model. The abstract implementa-

the realization that

● Facilitates persiste
● Provides domain

the domain inform
● Keeps application
● Keeps dependents
● Facilitates and

processes.
The application infor
machine and has no
image, For all but th
the domain informa
Smalltalk virtual ima
available resources, s
tent store for domain
image does not offer
concurrency control,
backs, recovery, and
domain information
tent store, presumably
it can be managed by
be available to severa

A modelk domain

information includes that

information concerned with

the problem space.

tion for such a model is d~scnbed in the ApplicationModel
class. An application model manages the application
information and leaves the domain information to its
aspect models. h aspect model manages a single aspect
of information and is usually associated with a single
interface component. Much of the application informa-
tion is referred to as interface resources and includes such
things as menus, icons, labels, and interface specifica-
tions. An application model also delegates interface con-
struction to an object called the builder. While applica-
tion model architecture is a great improvement over clas-
sical MVC architecture, the domain information con-
tained within the various aspect models is loosely distrib-
uted throughout the application, making it difficult to
manage. Thus, the domain information is not fully inde-
pendent of the application model. Figure 1 is an object
model of a generic application model.

THE NEED FOR DOMAIN SEGREGATION
The complete segregation of domain information from
the application information becomes essential when an
application of any merit is intended. This is especially
true in a client server architecture where the application
resides on a client machine but the data, or domain infor-
mation, resides on a server or is even distributed among
several machines. The reasons for such a strict segrega-
tion of application and domain information are listed
below and subsequently discussed in detail.

subcanvases or satel
model, by design, is n
tion of independent
piece of domain info
we have an application
tion for a corporation
with all sorts of dom
ees—names, social
supervisors, addresse
want to store the inf
have to traverse all th
subcanvases, collect
for that employee, a
event that we want
employee from the da
to access several piec
for its particular aspe
single handle, or refe
We would like to bun
ion into a single cohe
an Employeeobject th
tion for a single em
would We to hand th
base for storing, or
viewing and editing.

One might argue t
all the pertinent domt
it persist in the datab
May 1995
nt storage.
cohesion and logical arrangement of
ation.
information out of persistent store,
out of persistent store.

abstracts the analysis and design

mation typically resides on the client
need to persist outside the virtual

e most trivial applications, however,
tion must persist in a database, A
ge, regardless of the client machine’s
oon becomes inadequate as a persis-

information. Furthermore, a virtual
traditional database facilities such as
security, locking, transactions, roll-

multiuser access. Therefore, the
should reside in some kind of persis-

located on a server machine, where
a database management system and

l client machines.
The problem with making domain

information persist under the cur-
rent application architecture is that it
is scattered throughout the applica-
tion model. It is contained in various
ValueHolders, SelectionInlMs, and
even within additional, embedded
application models in the case of

lite windows. In fact, an application
othing more than a loose confedera-
models, each operating on its own
rmation. As an illustration, suppose

for maintaining employee informa-
. Such an application could be filled
ain information about the employ-
security numbers (SSNS), salaries,
s, dates of birth, etc. Each time we
ormation for a single employee, we
e input fields, lists, text editors, and
all the relevant domain information

nd ship it all to the database. In the
to fetch the information for a given
tabase for viewing or editing, we have
es of information and target each one
ct model. It would be nice if we had a
rence point, for all this information.
dle all the relevant domain informat-
sive object—perhaps something like
at contains all the domain informa-
ployee of the company. Ideally we
is single domain object to the data-

hand it to an application model for

hat the application model references
i information, so why not just have
ase. While this is true enough, and
13

C)bjectifjdng
Real-Time
by John R. Ellis

?
obj&ti :eg

Sy&ms

(ISBN: 0-9627477-0-5)

~ includingdiskeite

Toordera copyof
Objectifyhsg

Real-TreeSystems
call (212)242-7447

CustomerServiceDept

Systems
Objectifying Real-Time Systems
containsover500information-
packedpageson capturingthe
requirementsof object-based
real-time systems.Ellis offers
leading-edgeinformation in-
cluding more than 100 helpful
figures and examples to expertly
guide readers through the steps
of applying object-oriented tech-
niques to their daily projects.
The accompanying diskette con-
tains the source programs used
throughnut the book, enabling
the reader to experiment and
verify executions without having
to key in code.

Anyoneinterestedin developing
object-basedreal-timesystems
shouldreadthisbook

■hwK1’Availableat selectedbook storm, Distributed by PrentimHall.
quite appealing at first, upon closer scrutiny we can see
that this idea has two serious flaws. First, application
information usually does not need to persist in a database.
We do not need a copy of the same menu to accompany
each Employee object stored in the database. Second, the
domain information is very loosely affiliated within the
application model. There are too many intermediaries
from one piece of domrdn information to the next.

It is conceivable that certain types of application infor-
mation might be so large that it is inconvenient, or impos-
sible, to burden each client machine with a copy. A mature
help environment is a good example. Such cases require a
change in perspective. The help facility becomes an appli-
cation in and of itself and its domain information is the
text and bitmaps comprising the help information. This
example is a good ihstration of the fact that there is often
a gray area between what constitutes domain information
and what constitutes application information. It is essen-
tial, however, that the design process clearly resolve what
is part of the application and what is part of the domain.
For example, error codes might be part of the application
in one project and part of the domain in another. In either
case, however, this must be resolved before implementa-
tion. The acid test is “What information must persist?”

Another problem in trying to store the application
model in the database is that the application model haa
dependents, and also references other model~ach with
its own dependents. We do not want to store anything in
the database that has dependents! This is a cardinal rule of
persistent objects, the reasons for which are as follows:
14
● Dependents exist primarily for purposes of the user
interface and therefore constitute application infor-
mation.

● Dependents do not describe domain information. A
model does not care how many dependents it has, who
its dependents are, or what they are. This relationship
has no translation into the domain and therefore does
not constitute domain information.

● Dependents exist solely to provide a means of notifica-
tion during interface operation, they would have no
meaning to a persistent object,

● Dependents have away of compounding the relation-
ships among objects such that a single application
model can end up referencing a sizable portion of the
virtual image,

● Dependents inevitably reference objects that are known
to the virtual machine, Another cardinal rule for persis-
tent storage is to never make an object persistent if it is
referenced by the virtual machine. Such references are
specific to the client machine, have no meaning in a per-
sistent media, and cannot be accurately reconstituted
when the persistent object is fetched from the database.

For the reasons listed above, it is best to leave models and
any other objects with dependents out of the database.

Describing the application strictly in terms of the
domain information facilitates the analysis and design
processes and removes any unnecessary details of inter-
face development. In fact, a good design should exclude
application-specific information as much as possible,
and concentrate strictly on the domain. Such a design is
largely independent of the actual application develop-
ment and can even be independent of the language of
implementation.

SUMMARY

Before we embark on all the work required for adequately
segregating the domain information from the application
(the following articles in this series), it is important that
you understand exactly why we want to do this. The main
reasons for segregating the domain information from the
application are summarized below,

● Domain information usually resides in a database
while application information should stay in the client
machine’s virtual image,

● Domain information should be bundled into conve-
nient container objects relevant to the problem space.

● Domain information should be clear of any dependent
objects and should be completely clear of any ties to
the virtual machine.

● Domain information represents the problem space,
and design issues should relate as much as possible to
the domain information and exclude as much as pos-
sible the application information.

Tim Howard isthe Presidentand Cofounder of FH Protocol,Inc.He
isinterested in application development usingO-O technologiesin
general,and usingthe language of Smalltalkin particular.He can be
reachedat thowardtirxotocol.com or by phone at 214.931.5319.. .
The Smalltalk Report

ManagingconcurrencyconflictskIYAlmmde

inmulti-userSmalltalk
H
ERE ARE A number of advantages when multiple
users access shared objects in a single object space:
Users share behavior as well as object state, devel-

opers do not have to write mapping code between
Smalltalk and a persistent store, and delivering and updat-
ing applications is simply a matter of making the changes
public. However, when multiple users can view and mod-
ify shared objects, there is a potential for conflict,

Concurrency conflicts occur when one user reads an
object that another user has modified, or when two users
modify the same object. For example, if one user reads
an account balance that has been modified and commit-
ted by another user, it is imperative that the transaction
experience a conflict. This is because any decision made
and subsequent code executed is based upon a value
that is no longer valid. When the transaction attempts to
commit, the attempt is unsuccessful due to the concur-
rency conflict,

When building applications in single-user Smalltalk
systems, developers do not have to consider the possibility
of concurrency conflicts on their Smalltalk objects because
they can treat all of object memory as their own private
domah Instead, they must map the application’s concur-
rency requirements onto the concurrency control mecha-
nisms provided by some persistent store. in multi-user
Smalltalk, the underlying execution engine and transac-
tion manager provide the concurrency control mecha-
nisms. This column will describe the mechanisms for con-
currency control in multi-user SmaJltalk and describe
some techniques for resolving concurrency conflicts.

There are two approaches to concurrency control, One
approach is to acquire locks on objects. This approach,
called “pessimistic,” allows a user to prohibit other users
from reading or writing a particular object. Acquiring a
lock on an object guarantees that at commit time, certain
kinds of conflict will not occur on that object. Locking has
its drawbacks, though, When an object is locked, its avail-
ability is reduced for other users. Acquiring a lock typical-
ly requires the arbitration of a centralized lock manager,
which may involve additional network communication in
a client/semer architecture. And using the pessimistic
approach requires that application developers under-
stand which objects will be read or written. For single

Jay Almarode can be reached at almarodek?slc.com.
May 1995
objects, this might not be too difficult to do. But for net-
works of objects, it might not be obvious which object will
eventually be written when an operation is invoked on the
root node in the network.

A second approach to concurrency control, called
“optimistic,” does not use locking, but instead determines
concurrency conflicts when a transaction attempts to
commit. With this approach, an application reads and
writes objects without explicitly worrying about other
users. At commit time, the system determines if any of the
objects read or written by this transaction were also read
or written by other committed transactions. If so, then a
conflict occurs and the attempt to commit fails, This
might sound drastic, but in many cases, applications are
only reading the majority of objects anyway, so the chance
of conflict may not be too high. If an application knows
that it will be writing objects also accessed by other appli-
cations, it can always acquire locks on the object. The two
approaches are not mutually exclusive. If a conflict should
occur at the time of commit, the user can find out which
objects experienced the conflict and perhaps take steps to
resolve the conflict. In SmalltalkDB, the data definition
and manipulation language for GemStone, a user can find
out which objects experienced conflict by sending the
message System tiansactionConflicts. This message returns
a dictionary whose keys are symbols indicating the kind of
conflict, and whose values are arrays of objects that expe-
rienced the conflict. Using this information, an applica-
tion can take steps to save information that might be lost
when the transaction is aborted (for example, by writing
information into a newly created objector by writing data
to a file).

In discussing concurrency conflicts on objects, I’ve dis-
cussed conflicts in terms of reading and writing an object
at the physical level. Most persistent object-based systems
detect conflicts by recognizing when concurrent transac-
tions have read or written the same objects, irrespective of
the logical operations that caused those reads or writes,
There has been much work in concurrency control for
abstract data types that is applicable to object-based sys-
tems.1-3 The main thrust of this work is that even though
there may be conflict on the physical level, the logical
specification of an object and its operations may allow the
physical conflicts to be resolved. For example, two con-
current transactions may add some objects to an instance
15

!GETTINGREAL
#’Read-Write’ My transaction read an object
that another transaction wrote

#TYrite-Read’ My transaction wrote an object
that another transaction read

#Write-Write’ My transaction wrote an object
that another transaction wrote

#Read-ExclusiveLock’ My transaction read an object on
which another transaction-
acquired an exclusive lock

#’Write-ReadLock’ My transaction wrote an object
on which another transaction
acquired an exclusive lock

#Write-WriteLock’ My transaction wrote an object
on which another transaction
acquired a write lock

#’Rc-Write-Write’ My transaction wrote an RC
obiect that another transaction
Wrbte, and the conflict could not
be logically resolved.

Table1.describesthe variouskindsof conflictsthatcanoccur.

of Bag. The second transaction that attempts to commit
will experience conflict since the first transaction wrote
the same bag (this is a writ~write conflict), However,
there is no logical reason why two concurrent transactions
cannot add objects to the same bag. If the underlying sys-
tem can resolve these physical conflicts so that the end
result is that the bag contains both transaction’s additions,
then the second transaction should be allowed to commit
successfully. Some systems solve this problem by using

RcQueue

RcBag

XcHashDictionary

RcCounter

multiple adders to the queue will not
conflict
a single remover from the queue will
not conflict with adders
multiple removers from the queue
will conflict
multiple adders to the bag will not
conflict
a single remover will not cordlict with
adders
multiple removers of disjoint objects
will not contlict
multiple removers of the same object
will conflict if they attempt to remove
more than the number of occur-
rences in the bag
multiple updaters of entries with dis-
joint keys will not conflict
multiple updaters of an entry with
the same key will conflict
multiple removers of entries with dis-
joint keys will not conflict
multiple removers of an entry with
the same key will conflict
readers of an entry will not conflict
with updaters of the same entry
multiple incrementers or decre-
menters will not contlict
readers of the cor.mter value will not
conflict with modifiers of the vrdue

Table 2. Various RC classes and their semantics.
16
Listing 1. Example using optimistic concurrency control.

The Bag and The Object are globalvariablesfor tie
purpose of this example”

I addToBagI
addToBag:=true.

[addToBag] whileTrue: [

“ add the object to the bag “

‘lheBag add: TheObject.

“ attempt to commit the hansafion”

System comnritTransaction

“if commit was successful, exit the [oop “

ifllue: [addToBag := false]

“if unsuccessful, abort the transaction arrd try again”

ifFalsa [System abort’transaction]].

Listing 2. Example using locks.

I tryAgain I

tryAgairr:= Mse.

[

“ Attempt to acquire a write lock on the bag “

System

writeLock TheBag

“if lock was denied, keep trying “

ifDenied [tryAgain:= hue]

“if lock is dirty, abort the hansaction to update your view”

ifChanged [System abort’rransafion].

tryAgain

] urrtilIalse.

“ at this point, we’ve acquired the lock on the bag “

TheBag add TheObject.

System commit.AndReleaseLocks

)cking protocols, but this reduces concurrency by making
the bag unavailable for concurrent modifications.

In using objects in a multi-user setting, a developer
must not only think about the functional semantics of an
object (what an operation does to an object), but also its
concurrency semantics (what concurrent operations are
allowed on the object). In SmaUtalkDB, the kernel class
library has been extended to include classes particularly
tailored to multi-user access. These ‘reduced-conflict’
classes (called RC classes, for short) have functional
semantics the same as their single-user counterparts, but
have been specifically implemented to provide more con-
currency. The cost of this additional concurrency is
greater memory usage per object, and potentially slightly
longer time to commit, Table 2 lists the reduced-conflict
classes and their concurrency semantics.

In SmaUtaIkDB, programmers have a number of ways
they can manage concurrency conflicts. They can lock
objects to ensure a successfd commit they can abort their
transaction when a conflict occurs and retry operations;
they carI utilize RC classes when appropriate in their appli-
The SmalltalkReport

Oddl
and

enough, a company with possiblythe 1
mostdeployable Smalltalk/00 workfo~

virtuallyunknown - Until Now.

.argest
‘ce is

● On-SitE Srnalltalk/00 Rmgmnmint &Mentaring ● GUI Front-EndDe@@ikl mLegacySystems
● (ln-siti Cusmrnid Small@ Training ● -Mti-&-
● CDDBMS Develaprnem0bject5tare, Genmone &Versant ● Smallmll@@ct Ma@ng to - Oracle& DB2

❑
% .

. ~.” Call (919) 859-73849
or e-mall: info~objectint.com.

Object/nA@ence Corporation ● 6300-138 Creedmaar Rd., Ste. 196 ● Ralelgh, NC 27612. (919]848-0045 Fax
cations. The following code examples illusmate these three
approaches for adding an object to a shared bag. The examp-
le in Listing 1 illustrates the optimistic approach. After
adding the object to the shared bag, we attempt to commit
the transaction. If another transaction has modified the
bag, we may get a concurrency conflict, and the attempt to
commit will fail. In this case, we abort the transaction,
causing the view of the bag to be updated. We can then add
the object to the bag and attempt to commit again.

The example in Listing 2 shows one way to acquire a
lock on an object, It attempts to acquhe a write lock since
we know we will be modifying the bag by adding an object
to it. It is possible that the lock maybe denied because
another Imnsaction has already acquired a lock on the bag
or because we do not have write authorization for the bag
(object authorizations will be the subject of a future col-
umn). For this example, we assume we have authorization
to modi& the bag otherwise we would add code that
checks our authorizations and takes some other course of
action. If the lock is denied, we set a boolean flag so that
we conthme trying to acquire the lock (presumably until
another transaction releases its lock). It is possible that the

“‘l%eBagis now an instance of class RcBag”

TheBag add TheObject.

“by the concurrency semantics of RcBag, ttds Wmam5ion can

successfully commit”

System conmdt’tkmsacdon

Listing 3. Example using RC Bag.
May 1995
lock may be acquired but a modification to the bag has
been committed by another transaction since this trans-
action began. This is called a “dirty” lock, In this case, we
abort the transaction to update our view of the bag, then
proceed with our addition to the bag since we continue to
hold the lock after the abort operation,

The final example in Listing 3 illustrates the ease of use
of RC classes in SmalltrtlkDB. .5htce an adder to the RcBag
will not conflict with other adders, removers, or readers of
the bag, the transaction will not conflict. The implemen-
tation of RcBaguses various strategies to avoid physical
conflict on the bag. When a physical conflict does occur,
the underlying system attempts to resolve those conflicts
if they are determined not to be logical conflicts,

Hopefully thk column has given you some insight into
managing concurrency in multi-user Smalltalk applica-
tions. When multiple users share objects, the application
programmer must be aware of the potential for conflict.
There we a number of techniques for avoiding concur-
rency conflicts and when they do occur, the application
can take steps to resolve those conflicts.

References
1. Weihl,W.Locrdatomicityproperties:Modular concurrency con-

trol For abstract data types, ACM TRANSACTIONSON

PROGRAMMING LANGUAGESAND SYSTEMS,11(2), 1989.

2 Herlihy M. Apologizing versus asking permission Optimistic
concurrency control for abstract data types, ACM TRANSACTIONS

ON DATABASESYSTSMS,15(1), 1990.
3. Schwarz, “P,and A. Spector, Synchronizing shared abstract

types, ACM TRANSACTIONSON COMPUTERSYSTEMS,2(3), 1984.
17

Super + 1
K
0NCEAGAIN,NOGARBAGEcoLLEcmRs. I’ve been busy
paying the bills, so I haven’t had a change to look
in detail at the garbage collectors in the various

Smalltallcs. I’ll get to it, but those college educations have
to come first.

Smalltalk Solutions was a blast! Four hundred people
packed into the hotel, giving the whole get-together quite
abuzz. Of course, that could be because of the hordes of
European and Asian tourists. I don’t think I got onto an
elevator and heard less than three languages the whole
four days. Mark this one on your calendar for next year.

I had a great time talking on Wednesday of the confer-
ence. My performance-tuning talk was full, with lots of
great give-and-take about performance issues. I gave a
talk about patterns in the afternoon, and somehow we
crammed even more people in. One thing I was uniform-
ly surprised by during my talks was how open everyone
was. It’shard to stand up in a room of 250 people and say,
“I screwed up thus-and-so; how can I avoid it in the
future?” The other thing I appreciated was how much
dialog resulted. It wasn’t me bringing down the stone
tablets, it was more experienced and less experienced
people sharing problems and solutions.

The best part of the whole thing was that when I got
tired of talking and crowds, I went up to my hotel room
and really cranked on code. It’s been awhile since I’ve
single-mindedly worked on something just for me. Now I
remember why I love programming,

Well, the really best best thing about it was the cheese-
cake across the street. I must have consumed 10 Kcals
having great talks with new friends and old,

And now, some content.

SUPER

A couple of years ago, I published a column about how to
use “super” in Smalltalk. It turns out there are only a few
legitimate uses, and several common mistakes. I’ve
always liked that column, but I always thought it a shame
that I wrote it before I was any good at writing patterns.
I’m here to change all that. Because my pattern skills have

Kent Beck has been discovering Smalltalk idioms Forten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder OFFirst Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (CompuServe).
18
improved, and because the readership of THE SMAUTAL
REPORThas increased so dramatically in the last two years,
I’ll take another whack at talking about super, this time in
terms of patterns. At the end, I’ll throw in one more pat-
tern that came up and smacked me in the face recently,

Before I jump in, let me first say that I think inheritance
is vastly overrated. It is the least useful feature of the big
three (encapsulation, polymorphism, and inheritance). If
I had to do without one, inheritance is the one I drop.

However, inheritance is there, and when it is working
well it is a joy to use. It results in code that is so highly
compressed it is almost like reading poetry. I introduce
these three methods and, voilh, I have an object that
responds to 30 messages in a new and interesting way.
This is the strength and weakness of inheritance. If you
don’t speak the language of the superclass, there is no
way you will understand the subclass.

Three simple rules will keep you out of most of the
trouble inheritance can cause:
1.

2.

3.

Keep it in the family, This is Rick DeNatale’s Law of
Inheritance. If you are going to subclass, make sure
that the superclass is either rock stable or the
providers of the superclass are committed to bringing
you forward as changes occur. It works best if you own
both classes.
Follow the rules. Factored Superclass tells you to make
superclasses only when forced to do so by duplicated
concrete implementation, not merely speculation
about the nature of the universe. The “super” patterns
that follow help reduce coupling. Composed Method,
when used in the superclass, ensures that subclasses
needn’t duplicate code.
Never refactor a hierarchy twice in a row. Early in my
career I wasted more time twisting inheritance hierar-
chies this way and that, trying to share one or two
more lines of code. If you do refactor an inheritance
hierarchy, live with it for a while the new way. Be pre-
pared to dump the refactoring if it doesn’t go well.

PAITERN: SUPER

How can you invoke superclass behavior?

An object executes in a rich context of state and behavior,
created by composing together the contexts of its class and
all its class’ superclasses. Most of the time, code in the class
can be written as if the entire universe of methods it has
avadable is flat. That is, take the union of all the methods up
The Smalltalk Reporl

the superclass chain and that’s what you have to work with.
Working this way has many advantages. It minimiies

any given method’s reliance on inheritance structure. If a
method invokes another method on self, as long as that
method is implemented somewhere in the chain, the
invoking method is happy. This gives you great freedom to
refactor code without having to make massive changes to
methods that assume the location of some method.

There are important exceptions to this model. In par-
ticular, inheritance makes it possible to override a
method in a superclass. What if the subclass method
wants some aspect of the superclass method? Good style
boils down to one rule: say things once and only once. If
the subclass method were to contain a copy of the code
from the superclass method, the result would no longer
be easy to maintain. We would have to remember to
update both (or potentially) many copies at once. How
can we resolve the tension between the need to override,
the need to retain the illusion of a flat space of methods,
and the need to factor code completely?

Invoke code in a superclass explicitly by sending a
message to “super” instead of “self.”The method corre-
sponding to the message will be found in the super-
class of the class implementing the sending method.

Always check code using “super” carefully. Change
“super” to “self’ if doing so does not change how the code
executes. One of the most annoying bugs I’ve every tried
to track down involved a use of super that didn’t do any-
thing at the time I wrote it, and that invoked a different
selector than the one for the currently executing method.
I later overrode that method in the subclass and spent
half a day trying to figure out why it wasn’t being invoked.
My brain had overlooked the fact that the receiver was
“super” instead of “self,”and I proceeded on that assump-
tion for several frustrating hours.

Extending super adds behavior to the superclass.
Modifying super changes the superclass’ behavior,

PAlTERN: EXTENDING SUPER

You need to extend superclass behavior.

How do you add to a superclass’ implementation of a

method?

Any use of superreduces the flexibility of the resulting code.
You now have a method that assumes not just that there is
an implementation of a particuk method somewhere, but
that the implementation has to exist somewhere in the
superclass chain above the class that contains the method.
This assumption is seldom a big problem, but you should
be aware of the trade-off you are making.

If you are avoiding duplication of code by using super,
the trade-off is quite reasonable. For instance, if a super-
class has a method that initializes some instance vari-
ables, and your class wants to initialize the variables it
has introduced, super is the right solution. Rather than
have code lie:
May 1995

ISMALLTALKIDIOMS
Class:Super
Superclass: Object
Variables: a
Super class>>new

‘self basicNewirdtilize
SupeF+initilize

a:= seLfdefaukA
Class:Sub
Superclass: Super
Variables: b
Sub class>>new

‘self basicNew
initilize;
initialize

Sub>>inibalizeB
b := self defaultB

where the subclass has to invoke both initializations
explicitly, using super you can implement:

Sub>>initihze
super initialize.
b:= self defaukB

and not have Sub override “new” at all. The result is a
more direct expression of the intent of the code—make
sure Supers are initialized when they are created, and
extend the meaning of initialization in Sub.

When you want to extend the meaning of a superclass
method, override the method and invoke “super” as
either the first or last statement of the method.

PAITERN: MODIFYING SUPER

You need to modify a superclass’ behavior.

How do you change the part of the behavior of a super-

class’ method without modifying it?

This problem introduces a tighter coupling between sub-
class and superclass than Extending Super. Not only are
we assuming that a superclass implements the method
we are modifying, we are assuming that the superclass is
doing something we need to change.

Often, situations like this can best be addressed by
refactoring methods with Composed Method so you can
use pme overriding. For example, the following initializa-
tion code could be modified by using super.

Class:IntegerAdder
Superclass: Object
Variables: sum, count
IntegerAdder>%nitialize

sum:= O.
count:= O

Class:FloatAdder
Superclass: IntegerAdder
Variables:
FloatAddem%niMize
20
super initialize.
sum := 0.0

A better solution is to recognize that IntegerAdder>>ini-
tialize is actually doing four things: representing and
assigning the default values for each of two variables.
Refactoring with Composed Method yields:

IntegerAdde~>initilize
sum := self defaulthm.
count:= self defaukCount

IntegerAdder>>defaultSum
‘o

IntegerAdder>>defaultCount
‘o

FloatAdde~>defaultSum
‘0.0

However, sometimes you have to work with superclasses
that are not completely factored. You are faced with the
choice of either copying code, or using super and accepting
the costs of tighter subclass/superclass coupling. Most of
the time the additional coupling will not prove to be a
problem. Communicate your desired changes with the
owner of the superclass. In the meantime

When you want to modify the meaning of a superclass
method, override the method and invoke “super” as
either the first or last statement of the method,

COMMENTS

Here is where an interesting point about patterns comes in.
Notice that these two patterns only tell you to invoke “super”
with the same selector as the currently executing method.
The original article discussed a couple of cases where it was
marginally useful to invoke superwith something other than
the currently executing message selector. In trying to ~s-
late them to patterns, I wasn’t convinced that they were
actually good style, and they were terribly rare. Rather than
write poor patterns that wouldn’t be used often, I chose to
leave them out (go browse all users of super in any stock
image if you want to fid how super is misused).

PLUS ONE

Here is a pattern morsel I’ll throw in, mostly because I was
so embarrassed recently when I missed it, and it took my
clients to point out how much easier life would be once I
reintroduced it.

Let me set the stage. I am writing a framework for this
client that invokes one of many subclasses that they are
writing. The protocol has been pretty unstable for a
while, with names changing and parameter lists chang-
ing as we matured the framework. This resulted in the
need for more communication than is productive, and
slowed their development.

Now me, I’m willing to go through lots of pain to get to
the right solution. If I have to go change 25 selectors
because I found a better word for something, I’ll do it. My
The Smalltalk Report

Database Solution for SmaWzWV
A class library for ODBC Datxibase Access

■ ODBC2.0supportfor 50+ databases
~m#-~ ■ 00 to RDBMS mapping

ODBTdk ■ Native datatypesupport
■ Online help, source included, no runtime fees

Available for Win16, Win32s, Win-NT, 0S/2 and VST

‘!.. sbtIpk 6uI eh?gunf...”- Australian Gilt Securities

Client Server Solution for SmaUtaWV
A class library for Windows Sockets Development

■ UDPandTCP Sockets

HIRM

■ Synchronous and asynchronous supporl
■ Sample code for remote dkk browser app

Sockmk’k
■ Online help, source included, no runtime fees

Available for Win16, Win32s, Win-NT
assumption is always that the improved communication
and resulting reduction in lifecycle cost is always worth
the effort. In this case, my “seHsacrifice” got the best of me.
If I’d used Parameters Object about two months ago, the
whole project would have sped up by about a week,
Sigh.. .If only my computer would quit reminding me how
little I really know.

PATTERN: PARAMETERS OBJECT

How can you best write methods with many parameters?
Reducing the coupling between objects is good.

Eliminating direct references from one object to another
lets you use the two objects more independently. You can
replace most direct references bypassing extra parameters.

Going too far down this road leads you to code that
doesn’t communicate well, There are times when the com-
munication between two objects is so pervasive, such an
important part of your conception of the program as a
whole, that you can’t imagine not having a reference one to
another. A Rectangle needs its Points, Further, even where
you might be able to replace a direct reference with a para-
meter, passing extra parameters leads to difficult format-
ting and naming decisions and obscures the intent of the
methods behind the host of keywords required,

If you have decided that you don’t want a dhect refer-
ence, but you still need several parameters, what do you
do? The problem becomes worse if there are many imple-
mentations of the selector. During development, as you
discover the need for more or fewer parameters in certain
cases, you have to go around adding and deleting keywords
from selectors in many classes.

In a collaborative environment, this redesign is unlikely
to ever take place. One sb-ategy is to pass every possible
parameter everywhere on the off chance that it might be
useful some day. This results in many messages being more
complex than they need to be, obscuring the true intent of
the code for later refinement or communication to others.
The other strategy is to use global variables to short-circuit
disciplined communication, thereby reducing the possibil-
ity that the code will ever be valuable on its own.

We need a way to decouple instability in the parameter
list from instability in the protocol, As protocols change,
they should change because of changes in intent, As the
list of parameters change, the protocols shouldn’t change
just to accommodate the need of some particular imple-
mentation for extra information.

If you have three or more parameters that are passed
three or more levels, or that are passed to five or more
implementations of the same selector, create an object
with one variable per parameter. Create an instance of the
object in the highest-level sender and pass it around,

You may be able to use Composed Method to move
computations into the l%ameters Object, Do so without
regard to whether it “makes sense.” Ifyou send two or more
messages to the Parameters Object in a single method and
then compute with the results, move the computation.

For example, suppose we didn’t have Rectangles.
May 1995
Everywhere we compute with Rectangles we have to pass
four parameters:

...boundsTop. topInteger lefk letinteger bottom:
bottomInteger right: rightinteger...

...area.= bottom - top * (right - left) ...
Introducing Rectanqle as a Parameters Object, we now
have:
...bounds. aRectangle

..area:= aRectangle bottom - aRectangle top *
(aRectangle right - aRectangle left) ...

Far better to move the computation close to the data

Rectangle>>area
‘bottom - top * (right - Left)

...bounds. aRectangle...
,.area:= aRectangLearea

The resulting code is much more flexible, because we can
change the implementation of area computation to suit the
needs of the client without having to touch the client’s code.

Another common implication of this pattern is that
the method may be relying on sending messages directly
to the pamrneters before you introduce the Parameters
Object. Use Simple Delegation in the Parameters Object
to hide its existence from the method.

Between these two techniques, you will often find that
the Parameters Object takes on an important role in the
whole computation. These are the kinds of objects that
thoughtful analysis will never reveal, As valuable as they
are, you will only find them if you listen to what your pro-
gram tells you.
21

customins~anfiation -
cFIXATING INTELLIGENT OBJECT MODELS of your busi-
ness that serve your software needs is what object
technology is all about. We would like these models

to be as robust as possible. One technique to ensure the
integrity of your object model is by instantiating your
objects with their essential relationships already estab-
lished, You do this by defining custom instantiation class
method%a technique I call instantiation integrity.

A MODEL...

Let’s say we decide Figure 1 represents a portion of our
business’ objects and their important relationships. A
SalesTransaction has one Person associated with it and
contains one or more LineItems. A LineItem is associated
with one kind of Product.

In particular, let’s assume that our business rules
require tha~

● a SalesTransaction cannot exist without a related cus-
tomer (a Person), because a customer of the Store
must purchase something to have a SalesTransaction.
We’ll ignore complications such as other businesses
buying from our Store for now.

SalesLineItems cannot exist without a related Product,
because their reason for being is to document the quantity
and price of a certain Product being sold within a particular
Saleslhnsaciion. We will not discuss the many implications
and complexities of something seemingly as simple as fig-
uring out a price, such as price groups and sales events,

Listing 1 shows some possible client code that creates
LineItems and adds them to a SalesTransafion.

What happens if one of our clients forgets to set new-
LineItem’s product? Ouz model would be in an invalid
state, according to our business rules. All clients are also
required to write more code to create a SalesLineItem.Let’s
see how we can ensure these relationships exist upon cre-
ation of our object instances.

. ..WITH INTEGRITY

As you know, the new class method exists to instantiate

Mark Lorenz is Founder and President of Hatteras Software Inc.,a
company specializing in O-O project management, design quali-
ty metrics, rapid modeling, mentoring, and joint development to
help other companies use object technology effectively. He wel-
comes questions and comments via email at mark@hatteras.com
or voice mailat919.31 9.3816.
22
Listing 1. Sample client code without instantiation integrity

. . .

newLineItem:= LineItem new.
newLineItem produck self selectedProduct.
mySalesTransadion addLineItern newLineItem.
...

objects in our image. We can use this method to get an
“empty” instance—one that has all state initialized to nil.
What we want to create are instances that have valid
state immediately set for all clients of a class, We do this
by defining custom class instantiation methods.

Listing 2 shows an example method to create Sales-
Tmnsaclions that have their related customer set immedi-
ately upon instantiation.

Client code might look like:

newOrder:= SalesTransaction fo~ myCustomer,

Notice that the instance of SalesTransaciion is in a valid
business state immediately in this case by having a relat-
ed customer. It is likely that we wiU have fewer problems
in developing and maintaining a system built using this
design strategy. Clients also have less work to do,

S~milarly Listing 3 shows an example of how we can

F===l
lineItems
customer l--

totalprice
addLineItem I

T
& I

SalesLineItem 1

F=’+

Person

name
address

+

Product

number

deplete

Figure I. Object model relationships.
The Smalltalk Reporl

4re you maximizing your Smalltalk class reuse? Now you can with...

Mlm from ARS
● adds multiple Inheritance to VisualWorksm Smalltalk

● provides seamless integration that requires no new syntax

● installs into existing images with a simple file-in

● is written completely in Smalltalk

application of these methodologies and ~mits class reuse.
Ml is a valuable tool which enables developers to apply
advanced design techniques that mex/m&s nwse.

Leading methodologies (OMT CRC, Booth, 00SE)
advocate multiple Inheritance to facilitate reuse. SmalltalKs
/ack of multiple inheritance suPRofi impedes the direct

Introductory Price: $195
To order Ml or for more information on ARS’S family of products and
services, please call 1-800-2SCM772or a-mail lnfo@aracorp.com.

wllad Raaaorrhrg Syatams Corpomflon (ARS) /s am kmovat/va davafopar of high
ualHySmsiltalk davafopnmnf tools, applkailon fmrnaworka, Intell/garri soIIwsns
ptama, and rahmad servfces that provfdsadvanced soluflonsto compiaxprublams.

Smalttelk Products ● Consulting ● EducsUon ● Mentorlng

Phone/Fax (91 9) 781-7997 ● E-mall:info@arscorp.mm
Listing 2. Custom instantiation class method for the customer relationship.

SalesTransaction class
for aperson

“return an instance of myself with my customer
set to aPerson”

“self new
customec aPerson;
yourself

create SalesLineItems with a class method that establish-
es the relationship to a Product.

The name of the instantiation method depends on the
relationship(s) being established. For example, an Amount
instance of a Currencymight be initialized by

amount:= Amount value: alloat of aCurrency.

Be careful to include yourself at the end of your cascad-
ed initialization messages. This will ensure that you
return an instance of the proper type of object, instead
of the last object returned from your initialization meth-
ods. In Listing 3, if yourself had been left off, a Product
instance would be returned instead of a SalesLineItem
instance,

SUMMARY

We have discussed a useful technique for helping to
May 1995
Listing 3. Custom instantiation class method for Product relationship.

OrderLineItem class
for aproduct

“return an instance of myself with my product set
to aproduct”

‘self new
produti aProduct;
yourself

ensure the integrity of our object models, The technique
uses custom instantiation class methods to create our
objects with their essential relationships immediately
established. While this technique does not prevent bad
object model states, such as are caused by passing bad
parameters, it goes a long way toward placing the busi-
ness knowledge where it belongs—with the key model
classes. This helps each and every client use the model
services more safely and effectively.

Terminology
● Class method: a method defied for and used by a

class instead of an instance,
● Instantiation the allocation of memory for the

unique and private state of an instance of a class.
● Object model: classes and their relationships as

defined by the business requirements.
23

Alan Knight
T
HEREAREA NUMBEROF MATHEMATICALIssuEs that
come up very frequently on comp.lang.smalltalk.
Most of these issues are language-independent, but

because so many people are asking these questions in a
Smalltalk context, I think it’s important to address them.
I’m not a mathematician, so I’m going to try and stay
with the simple stuff, and with things that are Smalltalk-
specific whenever possible.

I’ve made this a two-part column. The first explains
some of the problems and the second attempts some
solutions.

THERE’S A SERIOUS ARITHMETIC BUG...

It seems that every few months there’s a post like the fol-
lowing, from Xavier Alvarez (alvarez_x@jpmorgan.tom):

In VisualWorks, if you enter the following in a work-
space

100.9 -100.0
and evaluate it, you will get a fabulous result

0.900002
If you have a solution please tell us! We are building a
critical application and need to subtract correctly. I
think this is a very serious flaw in PP Smalltalk. Is
there a patch for this?

Although Smalltalk doesn’t agree with basic arithmetic in
this case, it isn’t a flaw in ParcPlace’s products, it isn’t a
problem with Smalltalk in general, and it’s not a bug. It’s
a feature. This is the way floating point calculations work
on digital computers. The misunderstanding arises
because floating point numbers use a limited number of
bits to implement the infinite-precision abstractions we
learned in school. Most of the time they look the same,
but sometimes the limitations show through.

Representing numbers

Integers work, We can exactly represent any integer in the
computer and we can manipulate them without introduc-
ing any errors. Some of them may take a bit of space and be
a little slow to manipulate, but there are no absolute restric-
tions. Unlike many languages, Smalltalk doesn’t impose a
maximum size on integers. We can write expressions like

60 factorial/ ((60 -x) factorial* x factorial))

Alan Knight battles the forces of numerical instability with The
Object People,509-885 Meadowlands Dr.,Ottawa,Canada,K2C3N2.
He can be reachedat 613.225.8812 or by email as knight@acm.org.
24
and get the right answer even though the intermediate
results don’t fit in 32 bits, or even 32 bytes.

Fractions work because we can represent them with an
integer for the numerator and another for the denominator.

With integers and fractions, we have most of the num-
bers we need, There are still lots of numbers (infinitely
lots) that we can’t represent, but these are numbers liken,
e, and the square root of 2. These generally don’t arise if
we stick to simple arithmetic, so we’ll ignore them for
now. We have bigger problems.

Although Smalltalk allows arbitrarily large integers, it
has to run on digital computers, which are optimized for
dealing with small numbers. Operations on very large
numbers are much slower.

How small? About 4 billion on most machines, and
nowadays many can comfortably handle 18 sextillion.
That may not seem small, but it’svery easy to exceed that
limit, particularly if you’re using fractions. It doesn’t take
many operations before the numerators and denomina-
tors get very large, and the operations are particularly
slow because the fractions need to be reduced.

How slow? I did a couple of very crude benchmarks in
Digitall& V/Wln32, and for a simple addition test I found
LargeIntegers to be about 100 times slower than Small-
Integers and Fractions with LargeInteger components to be
about 25,000 times slower than SmallIntegers.These aren’t
very reliable benchmarks, and I wouldn’t put any faith in
the details of the results, but they do indicate that the slow-
down is very signticant,

Floating point
There’s an alternative, which is to use floating point num-
bers, These use a fixed number of bits, but have an addi-
tional exponent which gives the scale of the number.
These mirror the scientific notation for numbers, e.g.
1,356 * 1012.With floating we can represent both 1.5 and
1.5 sextillion with perfect accuracy We can also manipu-
late these numbers very quickly, particularly if we have a
floating point co-processor.

The drawback is that we’ve given up absolute accura-
cy.We have a fixed number of digits, and although we can
represent 1.5 sextillion perfectly, we can’t handle 1.5 sex-
tillion and 1. There’s an even worse limitation on accura-
cy to do with repeating decimals. These are fractions that
can’t be represented in any finite number of digits. The
most common example is one-third, whose decimal rep-
resentation is 0.333333 ... with an infinite number of 3’s.
If we actually write the decimal form or represent it in a
The Smalltalk Repoti

WQhit ~~:-g
-

THE NATIONAL CONFERENCE & EXPOSITION
New York’City

SettingNewStrategies—ReachingNewCoals
Object Expo returns to Ncw York
in 1995. It brings togwhcr the
most respected experts and leading
companies in the object technology
industry. Whether yrsu’rc just
exploring possibilities, rsr arc a
seawmcd professional, don’t miss
this once a year conference. It’s
the best place to learn the latest
techniques, develop new strategies,
and stay up-to-date on break
throughs in object technrslogy.

Edmational tmeks indutkt
● c++
● Fundamenwls
● Management
● Databasca
QAnalysis and Design
● Smautallc

MaagememtSlrataglesqmpo5hmI
This separate 1/2 day event is
geared for upper-level sofiware
managers exploring the benefits
of OT adoption and
implementation.

SPMWlEdmaUonalEvent$Imlude
A Keynote Speeches
A Walk-In Clisdm
A Product E&ation SeMons
A User Group Meetings
A Birds-of-a-Feather Sessions
A Panel Discussions

Be a part of the most hlgh-pow-
ercd OT event on the East Coast!
Don’t miss this conference and
exhibition dcclicatcd to scrdng new
sn-ategies with object technology.

● NEW- client/server
Development

Sponsoredby

Presentedby
‘- -v

msJEGs ;*Z y=
“EmmmT

.-
1
1
1
1

:
1

:
1
1

:
1
1

:
1
1
1
1
1
1
I
1
1

:
1

i
1
1

% pl~~ sendmemom[n~rmatlononobj~ E~o

~ Attem4ingTechnical D Mgmt,Swategi.s •l Exhibiting ~ ReceivingFree
Conference Symposium ExhibitsPass

Name

Company

Address

City Snte zip

Day Phmc

SMTK 6/95
Mall or Faxwapon tm OblectEHpo

FaK 212/242-~7E Malk 71 West23rd Street, NewYom NY 10010
computer we will have to truncate it to a finite number of
digits, introducing inaccuracy.

One-third is a repeating decimal in base 10, but com-
puters operate in base 2, which has some other problem
numbers. In particular, one-tenth cannot be represented
with a finite number of binrmy digits. This is a problem if
we want to do really accurate base 10 arithmetic because
0.1 or 100.9 can only be stored as

tion should yield
ple react very bad
if the cosine of
instead of 0.70710
of 90 degrees com

For this reason,
ware work very h

approximations, Using double-precision toFor a lot of calculations these
inaccuracies are quite acceptable. represent money just
We’re often dealing with input data
that is uncertain, and a small loss of means the errors won’t
precision in exchange for an enor- show up until the
mous speed-up can be a good
trade-off, This is particularly true in amounts of money are
scientific and engineering compu-
tations, where floating-point num- very large.
hers are widely used. It’s probably
not true in applications dealing with
money, where accuracy is extremely important. A good last few digits aren
rule of thumb is: All systems do this

Don’t use floats to represent money.
like 0.1 print prope
ly represented in th
sion floats, most S

Hidden errors when there are 14

Although most people accept the idea of using approxi- quite a lot of rou
mations, they don’t like to be reminded of it. If a calcula- numerically stable
May 1995
an exact or easily checkable result, peo-
ly to small errors. They may not notice
45 degrees comes out as 0.7072103

678, but they’re not happy if the cosine
es out 0.99986452 instead of 1.

people designing mathematical soft-
ard to make the errors invisible. One

way to do this is to adjust the approx-
imations so that the exact answers
come up in places that ueoule are
likely t; notice. Pocket ~alc-tiators
use approximations for functions
like sine and cosine, but they are
carefully tuned to give the exact
answers at places where they’re well-
known, even at the cost of slightly
greater inaccuracy in other places.

The other thing systems do to look
more accurate than they are is to
round numbers so that errors in the

’t visible when the number is displayed,
to some extent, which is why numbers

rly even though they cannot be exact-
e computer. In fact, with double preci-
malltalks print a maximum of 8 digits
or more available, potentially masking
nd-off error, If your calculations are
, the errors may never show up in the
25

ITHE BESTOF COMP.LANG.SMALLTALK
printed representation at all. Unfortunately they’re still
there, and can show up in more subtle ways,

Equality tests

One place that problems arise is comparing floats for
equality. Expressions that you’d expect to be equal proba-
bly aren’t,For example:

0.1 + 0.1= 0.2 ==>hue
0.1 + 0.1+ 0.1 = 0.3 ==>fahe

The reason is that floating point equality tests that both
numbers are exactly equal. If even a single bit is different
the comparison will return false.
In the case above, adding 2 floats
together doesn’t introduce
enough error, but adding 3 floats
together does, Another good
rule of thumb is:

Don’t compare floats for
equality.

What you usually want to know
is if two floats are close enough
together that they can be consid-
ered equal. We can fmd this out
by testing a range. For example,
we might define afloat operation:

closeEnoughTo: alloat
‘(self - zdloat) abs <0.00001

1never noticed this in...

Even though these princi
may be more or less noti
istics of the platform and
teristic is the size of float
single-precision (32 bits)
with Macintosh also sup
bits). C, the language m
menting Smalltalk, uses
hearted support for singl
this example, most Sma
sion, the highest availab

Smalltalk doesn’t agree

with basic arithmetic in this

case, but it% not a bug,

it!s a feature..

This works well as long as the precision of the numbers is
much larger than the range we’re testing against. It does-
n’t solve all the problems, however. This is not an equali-
ty operation in the traditional mathematical sense, and
standard assumptions may not hold. For one thing

(a closeEnoughTo:b) and: [b closeEnoughTo: c]

does not imply

(a closeEnoughTo: c)

Subtraction

Equality testing exposes minor numerical errors in calcu-
lations. Far worse than this is subhaction, which can
make calculations very numerically unstable. In particu-
lar, subtraction of nearly equal quantities is bad, In
numerical analysis, a lot of effort is devoted to re-arrang-
ing equations to avoid these kind of subtractions.

The problem is that these subtractions throw away
lots of significant digits, magnifying the existing errors.
The error in 1.000032 is inconsequential, but if we sub-
tract 1.0 we have nothing left but error. This is what hap-
pened in the originrd post, where subtracting 100.0 from
100.9 multiplied the existing approximation error by 100,
making it visible in the final result,

tation got the right answ
was indeed a bug in V
impossible. What actually
mentations used large en
resentation of the answer

100.9 -100.0 ==> 0.9,
100.9 -100.0 = 0.9 ==>

More precise floating poi
help the accuracy of calcu
dangerous complacency,
testing may be needed
Using double-precision
the errors won’t show up
very large. Susan Stepney

... I’dlike to pickup o
nal post. I was taugh
analysis that “double p
ple who don’t do their

If your application
numerical algorithms
*matteF that you’ve g

What to do about it

It’s all very well to talk ab

point arithmetic, but wh
How do we represent $
money? Fortunately, ther
around these problems,
next issue.
26
ples apply to all languages, they
ceable depending on character-

the environment. One charac-
s. Floats come in two main sizes,

and double-precision (64 bits),
porting extended precision (80
ost commonly used for imple-
mainly doubles, with some half-
e-precision. Perhaps inspired by
lltalks only support one preci-
le on the machine, As far as I

know, ParcPlace is the only
Smalltalk implementation to
support both single and double-
precision floats, with single-pre-
cision the default.

If there’s a bug here, it’s a pub-
lie-relations bug on the part of
ParcPlace. By making single-pre-
cision the default, they’ve made
these errors much more evident
than in other dialects. In fact,
representatives of two different
Smalltalk vendors posted arti-
cles saying that their implemen-
er, the implication being that it
isualWorks. This is, of course

happened is that these imple-
ough floats that the printed rep-

looked right. That is

but
fake

nt representations can certainly
lations, but they can also lead to

because more sophisticated
to catch numerical problems.

to represent money just means
until the amounts of money are
(susan@logcam.co. uk) writes:

n the word “critical”in the origi-
t by an old hand at numerical
recision is a crutch used by peo-
numerical analysis properly”

is *critical*, make sure your
are so *robust* that it doesn’t

ot 6 figure accuracy.

out the problems with floating
at we really need are solutions,
12.53 if we can’t use floats for
e are a variety of ways to work
and I’ll talk about them in the
The Smalltalk Report

HPDistributedSmalltalk:
CORBA-compliantdistributedobjects

Jim Haungs
HEWLETT-PACKARD’SDIsTmB~ED SMALLTALX (DSTI is
a set of extensions to ParcPlace’s VisualWorks that
enable cooperative processing among objects dis-

tributed over a network. Release 4.0 makes DST compati-
ble withVisualWorks Release 2.0. It is fully compliant with
the Common Object Request Broker Architecture
(CORBA)Release 1.1 adopted by the Object Management
Group (OMG), and it supports release 1.0 of OMG’S
Common Object Services (COS).

DST is composed of several distinct functions orga-
nized into three somewhat indistinct layers: the remote
procedure call (RPC) transport layer; the CORBAcompli-
ance layer, consisting of the Interface Definition
Language (IDL), Object Request Broker (ORB), and
Cornrnon Object Services (COS); and, finally the HP
Desktop layer. I’ll discuss each of these in turn.

RPC LAYER

The most basic layer provides remote procedure calls
(RPCS)between Smalltalk images. Any Visual Works plat-
form that supports sockets and a TCP/IP stack can be
used with DST, However, the current release requires its
host to have a fixed 1P address, which makes it difficult to
use on machines with SLIP or PPP connections; this limi-
tation may be remedied in a future version.

The images may be on the same machine, or they may
be distributed over multiple machines in a network. A
remote procedure call, or in Smalltalk parlance remote
message passing, is somewhat more complicated than a
normal method invocation because the parameter values
must be passed between address spaces. It is not suffi-
cient to push the values on the stack, assuming that both
sides of the call can access the same memory. Instead, the
parameters must be marshaled for transmission, i.e., the
objects are traversed and their contents converted into a
stream of bytes suitable for trans-
mission over a network, On the
other side of the call, the parame-
ter values must be unmarshalled
and the objects they represent
must be reconstituted. (This is
analogous to the processing that
takes place for BOSS files: the The ORB Control Panel.
May 1995
objects are transitively unraveled, converted to a byte-
strearn, and written to the file; when the contents are
retrieved, the opposite occurs.) On the receiving side of
the call, the RPC layer must reconstitute the arguments,
then effect a local dispatch to the target method, passing
it the reconstituted parameter values. When the method
has completed, the return value must then be mamhalled
and sent to the calling machine, where the return value is
unmarshalled, reconstituted, and returned to the caller of
the remote method.

THE OBJE~ REQUEST BROKER LAYER

The next layer of DST is the CORBAimplementation. The
CORBAspecification is quite intricate because it address-
es a number of complex issues without restricting the
style and form of a compliant implementation. Release
4.0 of DST is fully compliant with Release 1.1 of the
CORBA specification, and Release 1.0 of the Common
Object Services. I’ll briefly discuss each of these standards
and describe their implementation in DST.

At its most basic level, the ORB architecture is designed
for interoperability between languages. To this end, OMG
specifies an IDL that describes abstract interfaces for sets
of procedure calls. The syntax of IDL is patterned after the
declaration syntax of C++, with some additional informa-
tion provided for distribution, exceptions, and inheri-
tance from other interfaces. At first glance, one might
question the value of statically typed interfaces for
Smalltalk, but the purpose of the IDL is to describe inter-
faces in a language-independent way. There is no more
need for IDL between two Smalltalk clients than there is
between two C clients-they each speak their native lan-
guage, and barely understand the other. However, sharing
an IDL interface enables a CORBA-compliant C program
to communicate with a CORBA-compliant Smalltalk pro-
27

I HP DISTRIBUTEDSMALLTALK

I

Theinterfaceto theFactoryFinderservice.

gram. In actual use, DST requires you to describe an IDL
procedure interface for every method call that can be exe-
cuted remotelfi in practice, this represents a high degree
of programming overhead, and is overkill for Smalltalk-
to-Smalltalk communication. But as more CORBAimple-
mentations are developed, it will become increasingly
important to support interkmguage communication. As
the tools improve and the need increases, this overhead
will decrease with time.

CORBAInterfaces are contained in modules; a CORBA
module can contain any number of interfaces. Within an
interface, you can define any number of procedure calls.
An interface corresponds roughly to a protocol in
Smalltalk; it represents a group of related procedure calls
that can or should be grouped logically as a unit, Interfaces
can be shared among classes, provided the selector names
are the same and the parameter types match.

DST has a very nice implementation of the CORBA
repository idea, where interfaces can be browsed and
edited with the normal Smalltalk source code browser.
Even though the IDL syntax is different from Smalltalk,
normal editing and compiling is supported by
VisualWorks’ flexible compilation framework. The
DSTreposito~ class contains one module per method;
accepting the source code in a browser invokes the IDL
compiler instead of the Smalltalk compiler, Errors are
highlighted one at a time, just as in Smalltalk, and uhi-
mately, when the compilation is successful, the IDL mod-
ule is compiled into Smalltalk.

There are a few things about building cross-platform
interfaces that are not so simple. DST relies heavily on the
notion of a universally unique id (UUID) that is an encod-
ing of the host 1P address and the current date and time.
Every interface has a UUID, and inter-machine commu-
nication depends on these IDs matching. If you want to
invoke a remote procedure in an interface, you must have
28
syntactically correct and semanticrdly
matching interfaces on both machines,
and their IDs must match,
Unfortunately the implementation of
UUIDS leaves much to be desired, Their
format is a 34-character string of hexa-
decimal numbers, To create a new one
while editing an interface module, you
must type the text “ORBObjectnewId,”
highlight the text, select Print It, and
then paste the resulting text into your
interface definition, One of the most

common errors is getting the UUID
wrong. I would like to see this process
automated and made invisible to the
programmed it is far too error-prone.
The design of a class and the design of its
interfaces go hand in hand. Once the
class is designed and the methods are
coded, you can execute the text

“yourClassNameasIDLDefinifion,”which will create a skeletal
interface module with an IDL procedure definition for
each method on the class. Once the methods are coded,
you must create a couple of methods for youI class that
identify it to the ORB. The CORBANarnemethod returns a
Symbolthat identifies the module/interface pair that inter-
faces with the class. The abstractClassId method returns a
UUID that uniquely identifies the class. Abstract class IDs
are used to create remote instances of a class. AUinterface
UUIDS and class UUIDS must be different from each
other, and the corresponding interface IDs and class IDs
must match on all tie machines that will be communicat-
ing,

The next layer up from the basic RPC mechanism is the
Object Request Broker. The ORB is an active entity that
manages the RPC flow into and out of an image. It runs as
a background process in every image that communicates
with other images. It is the ORB that first receives a com-
munication from another image, looks up the interface
ID, and routes the message to the appropriate object.

In addition to routing messages, the ORB also provides
the CORBA Naming Services (NS). Naming is a directory
service used to locate remote objects. Names are complex
entities composed of a sequence of components and a
fixed name. The sequence can be arbitrarily long, and can
represent naming schemes from the application domain,
machine names, directory paths, database traversal paths,
or any arbitrary means of locating an object. Application
developers can easily design their own naming services to
locate items of interest on remote machines.

An important distinction in the CORBA spec is
between basic services and implementation enhance-
ments. One of the DST enhancements is a clean separa-
tion between the semantics of an application and its pre-
sentation. This split is similar to the MVC paradigm in
Smalltalk, in that it provides for multiple presentations on
?he Smalltalk Repoti

..”........ . . . ,..,.’.”.::., ,.

~’:w#”’’*:’i&~wi*’’6tir6’01rnti*~hke”d”yuti’Rkgeti~...“

Directory of
Obiect Technology

➤ up-to-dateand complete

➤ Detailed yet easy-to-read

➤ International in scope

❑

H

El

❑A

❑

Products — 1309 alphabetized listings by
product category. Each entry is carefully
described including language and platform.

Services —731 alphabetized entries by
category. Includes organization name and
service offerings.

Training & Mentoring — 200 alphabetized
contact entries by primary focus and
specialization.

Books — nearly 500 titles published during
the past decade.

company I.ktings — contact, description,
pricing, and platforms of 330 OT-related
companies worldwide,

The Directory of Obiect Technology is the
one complete resource guide available. Priced Lztl”zat
$69, this much-needed sourcebook presents detailed
information on every O-O related company, product,
and service currently on the market. It contains every-
thing you need to contrast and compare products —
helping you make well-informed purchasing decisions.

--------- . -------- . -------- --------- --------- --------- --------- --------- --------- --------- ..---..~- ------

Q Yes! Pleaserush me the Directory of Object Technology’95
(LSBN: 1-S84842-08-9) at the following rate

_ Individual RrItc Jusr $69 each

Corporate Library Rate .$169 each

Method of Payment

UICheck enclosed (Payable to SIGS Books)

“d Bill me/My company

~ Charge my ‘L1W. L1Mastercard LI Amex

card# Exp. dare

Signature:

Postage and handhn% U.S. orders add $5 for shipping/handling Canada and
Mexico add $10; Outside Norrh America add $2o.

Note: New Erh State rtvidcntr murt add app[itabIe srzkv tax. Phase albw 2–3 weeks
@ &&w-y.

..
r ,,.

~‘“” “:~-:msgi:,..,., ,,..-.-..~>:-..,.,,,,.,.+.,-.,,.;..,.
If you are not completely satisfiedwith this product, you may
return it within 14 days and receivea complete refund.

Tl[k

Address

City/Srare/Zip

Country/Postal Code

Phone Fax

Returnthiscouponby
FAX:609:488.6108
~!~ SIG5BooksI!O.Box99425,Collingswood,NJ08108-9970

ororderby PHONE609,408.9602

mSIGS
BOOKS 195FPDI&4

I HP DISTRIBUTEDSMALLTALK
a common model. HP has taken the MVC paradigm a bit
further by allowing presentations and semantics to exist
on separate machines. Because the coordination this
entails is considerably beyond the MVC change mecha-
nism, HP introduces two new class frameworks for dis-
tributed applications: the DSTapplicationObjectclass sup-
ports the application domain model, and the DSTpresenter
class supports the presentation layer. By convention,
domain models inherit from DSTapplicationObject, and
thek class names end with the letters SO (for semantic
object); similarly, presentations inherit from DSTpresenter,
and their names end with the letters PO (for presentation
object). The HP Shape example uses two classes: ShapeSO
and ShapePO.It is possible to implement remote updates
using the standard Smalltalk MVCmessages, but it is con-
siderably less eillcient than the DST framework, because
MVCmessages take two roundtrips, one for the #changed
message and one for the #update messages. The DST
framework accomplishes this more efficiently but at a
cost of having to learn yet another MVC-like framework.

OBJECf SERVICES LAYER

The next layer up from the ORB is the Common Object
Services layer. The standards for these services are not as
rigorously defined as the IDL interface. HP calls these ser-
vices the Object Lifecycle services; they provide a frame-
work for relating objects via links. Links are used to create
compound objects, i.e., graphs or networks of related
objects that can be manipulated as a unit. Compound
objects can be copied and moved between machines, and
they can be destroyed as a unit. There are four types of
links, in order of descending strength containment links,
used to represent concepts like fdes contained in a direc-
tory reference links, which guarantee the existence of
linked objects; designation links, which don’t guarantee
the existence of linked objects; and zueaklinks, in which an
object points to a target object but the target is unaware of
the link. The strength of the link is inversely related to
fault-tolerance and flexibility. Containment links are the
strongest, and they force all the objects in a containment
relationship to be collocated, i.e., on the same machine;
containment links are strictly hierarchical. The other link
forms can represent inter-machine references whose exis-
tence is not guaranteed, and which rely on the stability of
the underlying network. AUobjects in a containment rela-
tionship can be expected to be accessible if any of them
are. The same cannot be said of the other types of rela-
tionships. Depending on the nature of the application, the
IMk hierarchy provides for nearly any combination of
strength and flexibility the application requires,

The OMG recently approved a new service specitlca-
tion called Relationship Services, which completely sub-
sume the functionality currently provided by links, but in
a much more general way, Unfortunately, it is more of an
entity-relationship model than an object mode~ but nev-
30
ertheless, it is much better than the current Link Services
specification.

Another CORBAservice is the Event Service. Events rep-
resent a simpler information flow than procedure calls,
but can be configured in more complex ways. Events are
triggered by an event supplier, and are received by an
event consumer. Orthogonally, consumers and suppliers
can either push or pull events. A push event is unsolicited,
similar to an interrupt a pdl event must be explicitly
requested by the consumer, which is similar to polling.
Unlike remote procedure calls, which simply fail if a con-
nection is broken, events are stored when they cannot be
delivered, and are forwarded when the connection is
reestablished. Moreover, if a single supplier is connected
with multiple consumers, only a single event needs to be
supplied, and all consumers will eventually receive the
event. With a little additional coding, perhaps 30 lines of
Smalltalk, an application that already uses the Smalltalk
MVC update mechanism can be made to transmit events
on a change notification and interpret the sent events as
update notifications. Several examples of this are supplied
with DST, and can be used to effect the initial distribution
of a existing application. Ultimately, the application
should be converted to the SO/PO split, which takes better
advantage of the RPC transport to minimize network traf-
fic generated by change notications.

DESKTOP LAYER

The topmost layer in the DST system is the HP Desktop.
This is a completely distributed graphical application
that, although incomplete, serves as an example of the
power of a well-distributed application, and provides a
The SmalltalkReport

;

SIGS Publications is proud to announce SIG5 Interactive,
:i
d

the on-line resource for object technology.
?
j3

Look for these current and upcoming features on the SIGS Interactive Home Page:

● Upcoming Conferences ● Sneak Previewsof ● Virtual Exhibitions
1

● New Books Upcoming Articles ● SpecialOffers I
● The O-O ResourceIndex

?
“Object Buyer’sGuide “FreeSoftware

/

continued on page 33
reasonable user-interface framework in which to develop
such applications, The contents of the Desktop are not
part of the CORBA spec, nor are they necessary for the
implementation of distributed applications.

The desktop metaphor is a spin-off from the HP
NewWave project. NewWave was considerably ahead of
its time, both in its pervasive use of objects and its
advanced notions of application distribution and reliance
on loosely coupled components, The DST desktop uses a
building metaphor to refer to other machines on the net-
work and an office metaphor to represent the desktop of
a single user, Using reference links, it allows you to place
a link to another user’s office on your desktop, and, from
there, access any of the information in the other user’s
simulated ofllce, The openness of the office metaphor
can be more precisely controlled through the use of Iogin
IDs and access control lists (ACLS).For instance, you can
allow read-only access to your desktop, and write access
to documents on which you are collaborating with your
colleagues.

There are several clever applications on the desktop
that are genuinely useful tools in their own right. The
Forum tool places a shared window on several desktops
for participation in a shared discussion. Any object on the
desktop can be dropped onto the forum, where it is then
graphically rendered on each machine. Each participant
is assigned a different color paint, and marks made with
anyone’s mouse are seen simultaneously on each
May 1995
machine. Coupled with an audio or video hookup, the
Forum provides a ready-made groupware facility.
Because the source code for everything is shipped with
the system, you could take off in many different direc-
tions to enhance such a tool,

SUMMARY
Due to the complexity of the CORBA spec, the large vol-

ume of the DST classes, and the generally more dficult

nature of distributed concurrent programming, the

learning curve for DST can be quite steep. HP offers a
one-week DST course that assumes a minimal under-
standing of Smalltalk and object concepts, but, after tak-
ing it, I don’t see how anyone who has not done signifi-
cant programming in Smalltalk would get much out of
the class. Understanding objects is hard enough; under-
standing proxy objects and remote message passing
seems to require more than mere exposure to Smalltalk
concepts.

DST represents to me one side of an important triad of
software development technology Smalltalk, an object
database, and distributed computing. Large object-
onented client/server applications are difficult to build
without a productive programming language with decent
screen-design tools, a persistence system that is closely
coupled to the programming language, and a means for
efficient communication over a network. The lack of any
31

P the

‘ REVOLUTION
Formorethan21 yearsHBO & Company (HBOC) hasbeenpio-
neeringthedevelopment,deliveryandsupportoffullyintegrated
soRwaresolutionsfor all aspecteof the healthcareindustry.
GrowingInexceesof 25% a year,ourcurrantrevenues are over
$327 mllllon and reflect our commitment to reach–and
exceed-ourmostambtioustechnologicalgoafs.

MAJOR DEVELOPMENT CENTERS

Atlarria, GA ● Amharat, MA ● Mhrnaapofls, MN
Eugene, OR ● Salt LrrfraCity, UT ● Orlando, FL

We have challenging opportunities for innovative software pro-
fessionals to analyze, design, dwelop and implement our highly
progressive healthcare information systems. Requlras experience
in one of the following

SmallTalk ● C++ ● Vlwtal Basic
S(IL Windows ● C/UNIX * Sybastt

A
Yourexpertisewillberewardedwithanexceptional

●
compensationandbenefitspackage,Forconsid-

eration,forwardyour resumeto: Corporale
4 A Racrulllrrg LHP/SFt/G495, HBO & Comfrmy,

AT* 901 Perlmetar Center North, Atlanta, GA
~~ 30346. FAX: (404) 999-6069. E-Mall:
HBO&GIMpany aharon.hay@hboc.com EOEM/F/DP/,

r CAREER

[
OPPORTUNITIES!

r ‘“”““
acated atthe foot of the Ro,~Mou.taina

~ outaide of Denvar, Colorado, Antalya ia a growing
and progreaaive software davalopment and consulting
company where creatlva and raaponaible Indivlduala

~ thrive. We are continually aearchlng for quallfiad objact
orientad deviopera, daaignera and archlteota.

Wa would like to talk to you if you have exparlenca in the
following areaa:

● Smalltalk ● c++ ● 00~0D

Most poaitiona require travel.I

~, or immediate consideration, plaaaa sand your resume
n confidence to:

h Antalys, Inc.
L 1B97 Cole Boulevard, Suits 100

m Fax (303) 274-3030

. Wa are an equal

L oppottuni~ employar. .

SMALCTU DEVE~PERS

TC4 Inc. the Iader in providingDecisionSupport
iystema and semicea to the healthcsre industry ia
Acing several SnmlMk developers tn join our
TOwingtwn of pmfeaaionslsm We are an extreme
v dynamic software development mnprmy mm-
nitted to M-wale OBJECTXX?IENTEDdevelop
ment Gad Yourdoniathe methodologyofchoi~
rithboth DigitalkSrnalltatkandC++aathe
mplementation00PL%. Ifyouhavea proven
tiatoryindesigningandimplementingobjects,
re’dlike to talktoyou!

ktHCm,ourvalues include integrity, profeaaionsl-
sm, respect for others, and an enjoyable work
nvironmen~ If your vzduea match and you are
eeking a challenging opportunity to work with a
xuler, send your resume and salary history in
ontidenm tcc W. Buchanan, HCm Inc., 3655
‘orrance Blvd., Torrance, CA 90503. FAX (310)
l&3781. EOE

Smalltdk RothWell Smalltalk RothWell

—

SNUULTALK
PROFESSIONALS
‘I’hisis your opportunity to join

the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

BOX 270566 Houston TX 77277
(713) 660-f3080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com

Smalltalk RothWell Smalltalk RothWell

~jectWareCorporationis a Chicago-based
)ftwareconsultingcompanywith nationwide
:esence in the telecommunicationsindustry.
ualified individuals will have hands-on
malltalkexperienceandfamiliaritywithOMT.
~periencewith UNIX and ODBMSare pre-
rred.

Fewill challengeyou to enhanceyour skills,
bile providingyou an opportunityto grow.
)jectWareoffers salariescommensuratewith
m experience.Forfurtherconsiderationplease
[bmityourresumewithsalaryrequirementsto:

Sam Cinquegrani
objectWare Corporation
1618 N. Orchard Street
~lcago, Illinois 60618
&mail: fida@interaccess. com

objectWmeCorporation

SUCCESS
—.

O!Izzi’
Smalltalh Developers @qQ ,
At QSYS we have successfully –
provided Object Oriented consulting
services to our customers for over u
seven years. This has created opportunities
for Smalltalk Specialists to participate in
Ieadhg edge, mission critical assignments with4
our Fortune 1000 clients.

If you have demonstrated experience implementing
large 00 systems using IBM Smalltalk or Visual
Age,m ParcPlace VisualWorks? Digitalk Smalltalk/V?
we would like to hear from you!

For further information, contact
Elspeth Koor at 1-800-999-9776.

1 Yonge Street, Suite lSCM+ Toronto, Canada
M5E 1W7 Fax (416) 369-0515

I

90 Park Avenue, Suite 1600, New York+ NY I
10016 Telephone (212) 984Z1715

Ernaik 72072.2575@compuserve.com
J

continued fiorn page 31 of technologies.
of these three technologies makes any client/server appli-
cation unnecessarily dficult to build. VkmlWorka pro- CONCLUSIONS
tides the rapid development language and reasonable, As applications be
portable screen design, but no persistence and no commu- demands for inte
nication facilities; an object database
management system (ODBMS) such
aa GemStone provides object storage the only way to handle
tightly coupled to the language itself,
but has no simple and efficient means the increasing workload
of notifying client applications of

is to distribute it overchanges in the database state; DST—
effects rapid, dependable communi- multiple computers.
cation among clients, but no persis-
tence. Using these three key tecbnolo-
gies, a Smalltalk client can store information for another as the CORBA sp
cfient in the database, and, using DST, notify the relevant DST will enable th
client of the update. Because the transmission of large platform and lang
objects over the network is not very efficient, the database
manages the voluminous information while the network
serves merely to notify clients. Using store and forward Jim Haungs is the

eventa, the application can continue to function even in Smalltalkconsulting
development. He ha

the presence of network fauhs. I CaIUIOt ha@_Ie rnanY Institute, and is an H

applications that could not be built using this combination and can be reached
May 1995
come more and more complex, and the
r-application communication become

more pronounced, “dkitributed com-
puting is clearly the next big thing. As
machines become cheaper and more
interconnected, and as we reach the
physical limits of computing technol-
ogy, the only way to handle the
increasing workload is to distribute it
over multiple computers. DST is an
elegant solution to many of the prob-
lems of distributed computation and,

ec becomes more widely implemented,
e distribution of a wide variety of cross-
uage-independent applications.

founder of TeamTools, Inc. He specializes in

, training, project management and software
s a BSCSfrom RIT,an MSE degree from Wang
P-certified DSTconsultant.Jim livesin Boston,

at jhaungs@teamtools.com.
33

SmalltalkSolutions’95
wasa comingofage David Carr
David W. Curry came to Smalltalk Solutions ’95
knowing he wanted to recommend Smalltalk to his
bosses at Entergy Services Inc. Although the offl-

cial decision remained to be made, a trip to 00PSLA had
convinced him of Smalltalk’s value, Curry was one of
many who saw Smalltalk Solutions ’95 as an opportunity
to find out more. Held Feb. 21–24 in New York City, the
conference was the first large gathering devoted solely to
Smalltalk. In particular, Curry was seeking to close in on
the choice of a vendor, He returned to New Orleans hav-
ing made all the right contacts, “To me, every minute of
this conference was valuable,” Curry said.

Entergy, which owns a string of Southern electric util-
ities, stands to be a major new customer for Smalltalk.
Curry made sure to show the vendors his company’s
position on the INFORMATION WEEK 500 (number 218) and
the program from the company’s annual Information
Technology Conference, which he said is larger than the
entire Smalltalk Solutions show,

Curry’s experience typifies a trend that Smalltalk
Solutions ’95 made obvious-the coming of age of the
“One True” object-oriented language after almost 25
years. Suddenly, it seems that every major corporation
has at least a pilot program for Smalltalk development.
Ray Wells, the director of IBM’s Object Technology
Practice, testified that many corporations are going far
beyond that. “We are finding more, and more, and more
that major corporations are using Smalltalk and betting
the business on it. That takes a lot of guts,” Wells said.

They are doing it because Smalltalk programmers can
produce fast results instead of the usual string of excus-
es. “When the businesses come in and say, ‘can you?’ we
say, ‘certainly!’ When they say ‘how long?’ we say, ‘when
do you need it?’We are the implementors of change, not
the impediments to change,” he said.

Still, it takes guts because major problems remain
unsolved—prime among them a drastic shortage of
trained and experienced Smalltalkers.

It’s supposed to be nearly impossible to write proce-
dural code in SmaUtalk, but the untrained and inexperi-
enced somehow find away, Wells said. “We find that 60%

David Carr is Manager of Editorial Servicesat Digital Communi-
cationsServices,which providesa variety of technical communica-
tionsservices,includingdocumentation of Smalltalkframeworks.He
can be reachedat davedcs@pcnet,com.
34
of the Smalltalk we look at is really COBOPhard to
believe, isn’t it?”

Yet the mere existence of a large conference devoted
to Smalltalk-with attendance running double what the
organizers expected—was a promising sign to many.

“To me, this is a historic moment,” said William Woo,
who is in charge of the Distributed Smalltalk project at
Hewlett-Packard. “This is really a healthy start-up.” Woo
didn’t give a presentation because, until the last
moment, he didn’t expect to be able to attend. He came
because he wanted to meet other movers and shakers.
“Most of the key players I’m aware of have some repre-
sentation here,” he said.

Trevor Hopkins said he knew Smalltalk Solutions was-
n’t the first industrial Smalltalk conference. He organized
one himself when he was on the faculty of the University
of Manchester, although it only drew 70 or 80 people. “I
think it’s fair to say this is a significant development. It’s
got a little more international flavor, and it’s certainly on
a much larger scale. It’s clear SIGS and the vendors
pulled out quite a few stops,” he said.

As a new member of IBM OTF Hopkins said he used
the conference as “a good opportunity to impress on
some of these damn Americans that there is a fair
amount of Smalltalk expertise on the other side of the
Atlantic.”

Object Technology International (OTI) President
David Thomas said the conference turnout didn’t sur-
prise him at all, because he has seen how fast hk client
list is growing. “Smalltalk is the best-kept secret,
Everybody is using it, AUyou have to do is look at the job
market. You just can’t hire people who know it, and that’s
been true for the last three years.”

Thomas, who got equal billing with Wells and Object
Design International (ODI) President Thomas Atwood as
a keynote speaker, argued that Smalltalk is capable of
solving every challenge faced by large-scale object devel-
opment. He has demonstrated it running on a main-
frame, plans to have a PDAversion by the end of the year,
and envisions that by the end of the 1990s it could be the
basis for a pure O-O distributed operating system that
would dispense with all the communication protocol
hassles of contemporary systems. “Folks, we made it to
Main Street. We have an obligation now to make it useful
to others,” he said,

Atwood said objects are moving onto the same growth
The Smalltalk Report

enthusiasts who
attended SmaUtalk Solutiona ’95 in New YorkCky
in February. Attracting an international audience
of SmaIkalk programmers, developers, technical
managers, and consultants, this event marked the
first large-scale,vendor-independent conference
and exhibition devoted exclusivelyto SmsWalk.

Registered delegates attended classestaught by
such Smalltalk leaders and innovators as Kent
Beck, Wbeu Wtis-Bro& Kenny Rubin, John
Pugh, WM LaLonde, and Sam Adams. Offering
over 30 technical classes,panel discussions, and
hands-on workshops, Smalltalk Solutions deliv-
ered training for all levels of Smalltalk users. Case
studies were also incorporated directly into the
program, bringing classroom theory to life.

In the Exhibit Hall, Smalltalk vendors provided a
view of the future of the lsnguage. Smrdltalkusers
making serious purchasing decisions could
demonstrate and compare different Smrdltalk
products first-hand, and have questions answered
personally by knowledgeable representatives.
Usefuf product information and trainiig was
gained through in-depth Product Education
Sessions from Knowledge Systems,IBM, Digitafk,
Easel,Mark Whter, The Object People, and QKS,
as well as a TechnologyBriefing on NEXTSTEP
from NeXT Inc.

Attendees took advantage of other special events
throughout the week, including the NY Smalkalk
Users Group meeting and other peer group dis-
cussions, informal walk-in clinics with the speak-
ers, and keynote presentations by Dave Thomas,
Thomas Atwood, and Ray Wells on present and
future uses of Smalltalk

The premiere of SmaUtalk Solutions ’95 was an
exciting and educational event for anyone involved
in the fast-groting Smalltalk cnmmunity Be sure
to mark your calendar for next year’sevent

SmalkalkSolutions’96
March4-7,1996
NYMarriott Marquis,NewYork,NY
To be sureyou receivethe most up-to-dateconference
information,pleasecontactthe CcmfmrnceStrgistrarat

SIGSCONFERENCES
71West 23rd Street
New York, NY 10010

Phone-212,242.7515
Fax- 212.242.7578
email- infofi?sigsxom

m check the SIGSHome Page for the latest offeringsfrom
SIGSCmferenus, SIGSPubtiutions, and SIGSBoolrK

WWW - http://www.sigs.com

I CONFERENCEOVERVIEW

curve that relational database technology followed, with
analysts “projecting some pretty good numbers by the
end of the decade-enough to attract a lot of venture
capital into this market.”

Object databases like his company’s Object Store are
also moving into primetime. That will simplify the lives of
Smalltalk developers by eliminating the need to map
objects to relational database tables. That conversion
makes relational databases two to three orders of magni-
tude slower at operations involving objects, Atwood said.
With object databases, he said, “Objects in Smalltalk are
objects in the database-there is no translation, Access
to objects in the database is nearly as fast as access to
objects in Smalltalk memory.”

Better yet, the methods for querying objects in the
database are the same as the methods for querying
objects in memory. Atwood contrasted that to the rela-
tional approach by showing a screen of cryptic SQL next
to one sentence-like line of Smalltalk, “This, my mother
could read. That difference is worth tens of millions of
dollam to large organizations,” he said,

One of the conference’s case studies echoed the grow-
ing acceptance of object databases, albeit in praise of one
of ODI’Scompetitors. Texas Instruments (TI) Fellow John
McGehee said his team felt it had no choice but to chose
an object database when it selected Servio’s Gemstone,
McGehee acknowledged that object databases me widely
considered to be unproved on a large scale. “We were
leery, too, and we’re going way out on a limb. But we have
not seen one area where Gemstone as a product or a
company has not come through,” he said.

As part of a l-ger mechanical process reengineering
effort, TI built a set of SmalltaJk frameworks designed to
move chips through its semiconductor factories more effi-
ciently. The language allowed McGehee’s team to finish its
pilot project ahead of schedule and under budget. One of
the frameworks proved so flexible TI is now selling it to
other semiconductor manufacturers as ConholWORKS.
Commercidzation of other frameworks is also planned,
McGehee said. “We like to think we’re moving in the direc-
tion of making every application in the building a frame-
work,” he said.

For all the good news, any number of unsolved prob-
lems cropped up repeatedly in the course of the confer-
ence. For instance, the garbage collection mechanism for
removing unused objects from memory-thereby ehrni-
nating the memory management problems that tend to be
so burdensome in C+tis one of the most frequently cited
advantages of Smalltallc Yet its basic assumption that most
objects expire shortly after they are created means objects
that make it into long-term memory don’t get the same
kind of close scrutiny. This can be disastrous when objects
survive just long enough to evade the garbage collector.

Atwood said every variety of Smalltalk fails this test “in
the face of consistent, high-volume database use.” The
same issue dominated Kent Beck’s lecture on “Building
High-Performance Smalltalk Applications,” with Beck
36
offering advice on how to tune the garbage collector to
control the number of objects that make it into “tenured
memory.

The more controversial aspect of Beck’s talk centered
on his argument against the supremacy of object dia-
graming techniques. Beck said he always suspects that
“people who write stacks and stacks of diagrams are
afraid to program.” Those who fail to make use of rapid
prototyping are forsaking one of Smalltalks greatest
strengths, he said. Using that power is like drawing on a
line of credit, which is longer in Smalltalk than in other
languages. “I call this the ‘Smalltalk gives you more rope’
phenomenon,” he said. Just as a business incurs interest
costs when it draws on a line of credit, rapid develop-
ment is not without costs, Beck said. The trick is to
remain alert for the point where the cost becomes too
high, he said.

“A lot of performance tuning really comes down to
confidence,” Beck said. “First, get the program running,
figure out what the structure ought to be, Once you get
the structure right, you can fix the performance prob-
lems. Every object becomes a point where you can tweak
your screwdriver and improve performance.”

Several audience members challenged Beck’s
approach of designing on the fly as part of development,
which they said wouldn’t work in systems requiring dis-
tribution or concurrency, Beck said he didn’t want to
minimize that problem. “But my response to that is not
to sit down and draw bubbles and arrows but to develop
a system.”

byone who fads to get their hands on such a major
problem in the first week ought to be fired, Beck said. “I
do have a CASEtool, and I call it Smalltalk. It works bet-
ter than any specification language I know.”

Ted McKnight, president of the New York Smalltalk
Users Group, said the conference was very effective at
“introducing a lot of people to a subject that they’d been
considering but didn’t know how to get into.” Many of the
attendees he met were still preparing to take the plunge,
he said. “Most of them are probably departing with more
questions than they started with.”

“People have a lot of questions about Smalltalk,”
agreed Terry Montlick, a consultant from Bethlehem, CT.
“They suspect there must be a better way of doing things,
and they’re right, I was f~st exposed to Smalltalk a dozen
years ago, and I have to admit I didn’t get it then.” Only
after trying C++ did he appreciate Smalltalk as a no-com-
promise O-O environment, he said,

Meanwhile, Curry felt he was going home with a fair
number of answers, although he expects several of the
vendors to pay a follow-up visit to New Orleans before he
makes a recommendation.

Wti Entergy bet its business on Smalltalk? “I don’t
want to say that because that’s not the official goal,”
Curry said. But he is gearing up for the proof-of-con-
cept—and a chance at bigger and better things for
Smalltalk.
The Smalltalk Report

	By Article Title
	An O-O approach to accessing external resources
	Conference Overview: Smalltalk Solutions '95
	HP distributed Smalltalk: Corba-complaint distributed objects
	Managing concurrency conflicts in multi-user Smalltalk
	Math, Part 1
	Model integrity through custom installation
	Product Review: HP Distributed Smalltalk
	Segragating application and domain: Part 1
	Super + 1

	By Author Name
	Almarode, Jay
	Beck, Kent
	Carr, David
	Haungs, Jim
	Howard, Tim
	Knight, Alan
	Lorenz, Mark
	Newman, Yoel
	Parvin, Michael

	By Topic
	comp.lang.smalltalk
	Getting Real
	Product Review
	Project Practicalities
	Smalltalk idioms

