
ZszEiEl
ldtifs

John Pugh and Prml White

Cw!arOnUnNE* bTh~ 04@r paopl~

;IGSPuMiims AdvisoryBoard
Tum Atwood, Objsct Oesign

Frenpis Bsncilhon, 02 Tnchnulogiss

Grady Bench, FJetionsl

Gerrrgs Boswonk Gigirslk

Jesm Michael Chcmolss, ACX nf MsrJin Msrisrts
Adsls Boldberu Psrcpfecn Syctems
Tom Love

Bsrmmtd Msyer, ISE

Msilir Pegsdmres, Wsylsnd .S@sms

WI Resin, IBM

Bjsms Stmrrstmp, ATbT Bsll hbs

Dsve Thomss, Objsci Tschmdtqy krtemmimrsl

“HEShwmur~EPtSff titial Board

Jim Andsrsmr, Oigitslk

Adds Goldbsrg, PsrcPlscs Systsms

FM Phillips

Mike Tsylm, Oigiilk

Osvs Tlmmes, Object Tehwlugy Intsmedmrsl

;olumnists
Jey AJmsrude

Ksnt Bsck, First Cle5 Softwsrs

Jusnita Ewing, Oioitslk

Gmg Hsndley, Knowlsdgs Systems Carp,

Tim Hmvsrd, RodfWell Interneiionel

Alsn KnigM, The Objscr Psople

WMiem Kuhl, Ftolhk%ll Inwrrwtinnsl

Mwk lmsnL Heitsres %dtwrrra, Inc.

Eric Smith, Knowledge Systems Corp.

Rehems Wfc-Broct Oigitslk

JIGSPUBUCAllONSGROUP,INC.
Flicherd P.Friedmsn, Presidwrf and CEO

Hsl Avery, Group Publisher

Editorial/Production
Krkline Jnukhsdsr, Editmisl Oirectm

Elise Varinn, Production Menegm

Brisn Sieber, Arf Oirsctnr

Seth J. Booksy, Production ErMnr

Mergsmf hnti, Adverdsing F’MdUcJkUfCoordinator
Dmr OlswskL Editnrial Pmducdon Assictwrt

%ulstion
Bmce Shrivw, Jr,, Cbcultion Oirsctm

Jnhn FL Wengler, Cinxlation Meneger

Kim Maureen Penmy,CirculstiunAnalyst

\dvstising/Marknting
Gery Pmde, Adwtising Menagw, East CoesVCnnada/hrope

Jefl Smith, Advsrdsing Menegsr, Central U.S.
Michenl W. Peck.Advertising Represnntstkw

Krkrina Viksnins, hhkii .%les FJnprssnntsfive

212.242.M47 (V), 212.242.1W4 (f)

Oimw Fuller b As.wtieins, Sales RepresentsJive, V&t Caasl
40B.255.2991 Iv), 408,255,2992 (f)

Semh HamiNurr, Oimctm uf Promotions and FJesnerch

WerfdV Oinbokowitz. Pmmoduns Mnnagw for Magazine-s

Cersn hlner, Smfim Pmmatimrs Graphic Onsignm

Ministration
Mmgherite R Mmfr, General Manegw

Dsvid ChetimpwJ, .%nim Accounting Manager

James Amenuvor, Business Manager

m~hele WSlkifW, Acsictnnl to the prssidmrt

mSIGS
PUBLICATIONS

Publishers ofJOuRNAL OF OIIJECT-ORIENTELI

PWXAMMINC, OIIIECT MAGAZINE, C++ REPORT,
THE SMALLTALKREQCIRT,THE XJIXJnNAL, RiWYRT

DN OEJECTANALYSIS & DESIGN, OBJECTSIN

EUROPE,and OeJrxT SFEKTRUM(GERMANY)

March-April 1995 Vol 4 NO 6

Features

Building a Gopher from sockets and widgets 4
Patrick Mueller
With all the interest in the Internet lately, its only natural for folks to want to write applications in

Smalltalk to access the vast wealth of information out there, Patrick provides some introductory
information on how to use the TCP/l P sockets to access a Gopher senrer from IBM Smalltalk.
He also describes how the IBM Smalkalk user interface is programmed through widgets,

VisualWorks dialog development 11
7YmHoward
Developing custom dialogs can often be quite frustrating even for the well seasoned

MsualWorks developer. Ideally, it should be as easy and straightforward as that of mode-

Iess window development.

Cleaning up after yourself 14
Alec ShaW & Dave Fanner
Whenever you reference external resources, such as files, sockets, or UNIX processes, the
garbage collector will not take care of closing or terminating these things.

Suggestions for a successful user interface 18
Amy S. Cause
The major decisions involved in creating a user interface for a network management sys-
tem are described. The system monitors a switched digital video network and is the
access to video services, It was rewritten using Smalltalk (it had all been primarily in C).

Storing objects into files in VlsualAge 21
WayneBeaten
Currently, VisualAge lacks the rich set of parts that will make it an overwhelming success.
With some third party involvement, and some ingenuity, we can solve this problem,

Columns

The best of comp.leng.smalltalk 24
Alan Knight
One of the goals of the object+ xiented approach is not to have to

worry about the internal representations of objects. One aspect of this

is that clients should not have to care about initializing the objects they

use, and that newly created objects can be expected to be in a usable

state. There are a number of ways of accomplishing this.

SmalltalkIdioms What?What happened 27
Kent Beck to garbage collection?

Kent temporarily goes on to other topics this month,

Departments
Editors’Corner 2
Flecruitment 30

The Smdltdk Flqcrl (lSSN# 105&7eTG) is pubfisfmde timm n your,mmlhly mcnpr in Mar-Apr. Ju~Aug, nndNw-Om. Pubhshd by SIGS Pubficnliom Inc. 71 WI
23rd St, 3rd I%ms.Mew W NV 100IO. @ Comighl lee5 by SfGS Pubfitims. M rights reserved.Rnpmducli.n of tis mnfwial bV decbnnic b’nnmriwion, kmn or
any athw methodW he d m B willtil tidntion mldm US COP~LM lBW nndis Flmlqpmhibmd. Materinl MY b, rqmduwd M w+wesspwmissionfrom lhc pubfidm
S%nmdr%= FmslaunF’mdingal W. WY md addihnrmlMnifirrflcdGcm.CanadnPmt fnremtiond PubficsrionsMail PrmductSale.!Agrwmmi No. 2e02ae.
Indiudud Sutipdm raw 1 year (9 isuas) domtic S79; hkrncn andCanadaS104. ForeignS119; lndlulkmd/likmw ml,% dmnesric$119, Cansda& Menim $1!4,
Foreign$159. To subrnifmddm, plwxe wnd dm’tmnk fiks on didr in the Edtir.! ar SS5 MnsduwlandsOriw #50e. Olfawa. OrrinrioK2c 3N2, Camda. or via Internet in
.shwpm@nb@@pfmn.ca. FWem.d kmmis Im l~ms are Mm or 00S EM, TJF,n! MF fwrnats. At.wayssmd n papw cow of ymv nwnumipi, includin~rmmrz.rq
mpies ofpw IItfum: (lmmrmrpul is fine).
FQ3TMASTEFI:Smd nddrws channm and subsxipdm mdws h: Tm Smdhdk Flepml,P.lf. Em 2027, Langhnmn,PA 19M7. hr swim on cumenlsubscriptionscdl
215.705 .5SS6, 215.7 e5.sIr73 (iml. MLf97W@inh,mm (msil) FfrmlEO IN Tff UNrfm sm7E3.

March-April 1995 1

W
ile attending the 00P ’95 conference in

Munich, it was impossible not to notice that

the move towards Smalltalk and Smalltalk-

based visual programming environments that

Wehave experienced in North America is also beginning to

:ake place in Europeand most notably in the German-

ipeting countries. A “Smalltalk-Abend” (the German equiv-
alent of a birds-of-a-feather session) attracted more than 100

:onference attendees. The session was in German, but thanks

:0 a friendly translator from Daimler-Benz, it was possible to

liscern that many groups have significant Smalltalk projects

mder way. A number of attendees raised the idea of a

European Smalltralk Solutions in the near futur~ now that

;ounds like a nice idea. How about Paris in the spring?

Richard Helm of “Gamma, Helm, Johnson, and Vlissides””

tie gave a wonderfid talk entitled “Using design patterns:

Elements of reusable architectures” at the conference. Patterns

las been one of the hottest 00 topics in North America for

he last twelve months or so and it was “stardng room” only

n Europe too. As SmaUtalk educators, we are very much

lttracted to the notion of patterns. In our work we find it a

wd challenge to transfer the knowledge and experience we

lave acquired from many years of programming in Smalltalk

:0 new developera climbing the Smalltalk mountain. Smalltalk

PIUS have a sixth sense about which reusable design or micro-

mhitectures can be used to help solve a particular problem.

rhey have an arsenal of reusable patterns up their sleeves and

:he experience to know when and how to apply them. Patterns

xovide a way of cod@-ing and communicating these recurring

lesign structures to others.

The work of Gamma et a/.provides us with a vocabulary

or patterns to aid communication and the classification sys-

em (e.g., creational, structural, behavioral,...). Their intro-

duction gives us a starting point for cataloging patterns in

)attern handbooks and ident-i$ing similarities between pat-

erns. Smalltalk people may find it a little strange at fist to

:hkik of Model-View-Controller in terms of Oherver Pattern

)r the use of Wrapper classes (as in VisualWorks) to embell-

sh visual components as an instance of the DecoratorPattern.

Gamma, E., nt al. DESIGN PAITESN. EUMENTS OF REUW#LE OSJECTOWWEIJ SOITWRE,

Mdiao#eslay, 1995.

Lalonde, W. and Pugh, J. CWMUNICATI?W REOSAIM Dreamvu DESIGN PAiTESNS, JMNMAL OF

OWECTlkmNTEO pFQGSAMMf?&, FEh. 1995.
2

Because a common vocabulary is so vital,

let’s hope that the names selected for the

patterns by Gamma et al. are universatiy

accepted. Since most patterns are lan-

guage independent, a common vocabulary

will allow us to communicate with our

brethren who use C++, for example.

We would like to encourage you to

contribute patterns which you have

found useful in your work Most of the

examples of patterns in the Smalltalk lit-

erature draw their examples from the

Smalltalk system itselft While these are

interesting, it would be even more valu-

able to see examples of patterns from

domains such as banking, insurance,

power systems, or telecommunications.

JOHN PUGH

PAUL WHITE

~so, much of the discussion to date has dealt with “how to

build something” patterns. As Kent Beck stated at Digitalk’s

DevCon last year, the patterns that will reaIly provide leverage

are the “how to use sornetling” patterns.

There seems to be a fme line between what are called

idioms, patterns and fiarneworke. Idioms are more often than

not language dependent and tend to be more concrete manifes-

tation of programming techniques in a particular language than

the more abstract higher level design structures we describe as

patterns. Similady a fine distinction can be made between

fhrnevvorks and design patterns in that frameworks are more

concrete than design patterns, Frameworks represent a reusable

architecture for some domain but, unlike the more abstract

design patterns, they provide a partial implementation of that

architecture. Design patterns, idioms, and frameworks all assist

us in transferring good design and programming practices to a

new generation of developers. We’d like to hear from you

whether you have an idiom, pattern or framework to describe!

Kent’s columns will give you plenty of inspiration.

Lest we all get carried away in the euphoria of patterns,

let’s take note that recognizing brand new patterns is a very

challenging activi~ and that, even when we are armed with a

catalog of patterns, recognizing situations when a pattern can

be applied is not always e~, particularly for beginnera. We

already see designers and programmers trying to “force” pat-

terns onto problems for which they are not suitable.

Enjoy the issue.
The Sma[ltalk Report

Introducing Argos
The only end-to-endobject developmentand deploymentsolution

An integratedobjectmding toolprowidesmodd-driwn
dwel.opmentfur enteq%ise-wideape I

AU object modeli me numaged in a shad reposby,

suppmting Gmm developmentand tmceabili~

I. . . -
Amm I.IJ:

&i-“ ““”-:
.......... ,,.,q .,,.,,.,.,:>,.,

DamO 1 Flnmncm

Main 2

%“ l’l&

—.
,_ . . .

D,-. E-, .,h!!-r’11
1- - IldlunFod - .1

w“ p;

Iil+?”;
>hangsPml :.’ !

‘WI :. !
-if !:;-” I

. ..—----------
h 1 —’ AWZ.V Ml:

Emymd I j. :

m#Eiiii w

[

~W ~n ,+V ‘m?- I ;salaryHislo~ mtogwDalaSeriesn ;

~- L!!n; WW!-fl-eI& ----- --: !
$“

w- . . . --- . ---

,/{ l!

~~ ~H,asrwa ‘– [-~.: _

menu FrOdUalm E0und4 POlnl :

Elk
240.

Ho ---— -- -- ---
1s0””
150 *== .:9..:: ;
I?m. .-- .
m

dwcriptmn:l-xl
Q mime alphtIN.m#

ao --–-----9--- --—- n“mb90fPws0ns

0
1294507 BB1OI ? ‘. ‘“~ ‘ .,,

I

- Powe@ drag and dmp “enzymes”make appbion

dewe&nent intuitive

Cumprekm”ve set of @e~, incbding business

graphics, muhnedia, and others& application —

VERSANT ArgosT”

environment (ADE)

kd@rnenteusyandpowa$.d

is the only application development

that makes it easy to build and deploy

powerfid, enterprise-wide object applications. Easy because

Argos features an embedded modeling tool and Smalltalk

code generation that ensure synchronization between your

models and applications. Powerfi.tl because Argos supports

fill traceability and workgroup development through a

shared repository.

Argos automatically generates multi-user database applications

that run on the industry-leading VERSANT ODBMS. Argos

deals with critical issues such as locking and concurrency

VERSANT
~ The Database For Objects TM

U:
lassTool

,i ,. ,
:.,

, .,>
.,.
,. ,J, :
.,. ”

— ‘=k?iiuiz
Ssn

-1m ,
.4—-.-..–.——.---..-——.. -—-. --...-... -..A.-.

control transparently. And only Argos is packaged as a

completely visual ADE built on ParcP1ace VisualWorksa.

Leading organizations — in industries fi-om telecommunications

to finance — are using Argos to deliver business-critical

applications. Find out how Argos can help you deliver your

critical applications in weeks, instead of years.

1380 WI11OWRoad ● Menlo Park, CA 94025 ● (415) 329-7500

Building a Gopherfrom
socketsandwidgets
Patrick Mueller
NO, THIS ISN’T an article on cyberbiology. I’ll be

describing how to build an Internet Gopher client

within IBM Smalltalk, using the Widgets user inter-

face programming model and the sockets communications pro-

tocol used on the Internet. Plan on learning a couple of thh-ge

after reading the article:

“ what an Internet Gopher looks like

“ how the Gopher protocol works

- an introduction to socket programming in IBM Smalltalk

“ an introduction to user interface programming in IBM

Smalkdk.

WHAT IS GOPHER?
Fkst let’s talk about Gopher. If you don’t already know what

Gopher is, the best way to learn is to play with a Gopher client.

Ask your local Internet guru for a test drhe. In case you don’t

have one locally available, here’s a description.

You start up a gopher client by running the gopher program

and speci$ing a gopher server to start at. The gopher client

will contact the server and ask for a list of items. Those items

will be dkplayed by the gopher client, with some kind of user

intefiace for you to select items (see Figure 1 for an example of

my Gopher client dkplaying a menu of items). Each item in

the list is typed common types are:

- another gopher menu

“ a text file

“ a graphics file

When you select one of the items, the gopher client will send

a command to get the appropriate type of item horn the server

Wmthar mndibnr at 11PMesIon4Jm95 hldS@dLU~tlC.

1

‘II

Teap[~ -%) wind[mp~prmems(rn]wsather
=::==xa=========:==2:=========s===:==2============.-------. .-...= ==

32 WA northat 10 30.30 rlwdpewdp

B“~hrm-sdgecmbe-hmklin-gdss~mvibhhfm
Harlfor - arwpersrllw~erl+lsor
lrCb.u&R%%RSR%hhdm...MwUslaw.
#M,fiw,dJm4 ,9,5

[

I
Tmtighl...3Mlydear mdquieemid. bw15k120. t@d
NorIhwe51Fiind.
tisday...Mos@sunny bui tnld. Hiiinthemid 30s.Li@tnorih
UW. 1d

Figure 1. hample Gopher test window.
4

and return it to the client. In the case of another gopher menu,

another menu will be displayed. In the case of a text file, a text

editor will be dkplayed with that terrt (see Figure 2 for an

example of my Gopher client dkplaying a text file). You get

the picture. It’s a very simple program to use. And there’s lots

of information available. Wkhln IBM, for example, we have

more than 60 well-know gopher servers, servicing more than

8000 different menu items (sorry folks, thk is primarily IBM-

only information).

THE GOPHER PROTOCOL
The protocol a gopher client and server use to exchange infor-

mation is one of the simplest used over the Internet. To get a

gopher item from a server, the client needs to know thre;

pieces of information the name of the server (TCP/IP host-

name), the TCP/IP port for the server, and a selector string.

Most gopher servers use port 70. The main menu for a gopher

server uses an empty selector string. So, to get the main menu

from a gopher server, you really only need one piece of infor-

mation: the name of the gopher server.

The client creates a new TCP/IP socket and connects it to

the server at the port requested. It then writes the selector

string, followed by carriage return and linefeed to the socket.

At thk point, it starts reading from the socket, terminating

when the socket is closed by the server. The data returned by

the server is interpreted dependhg on the type of the item.

Mter receiving the data, the client closes the socket.

The most common type of gopher item is a men~ that is

the type of item returned for the main gopher server, when

passed an empty selector string. The da;a-returned for a menu

m6turni13Ffwia313b

AUmta Wtlmc
~

i3ma R8tm Weather ~
Ci34Ui43tteW4mtlmr

b .— ‘-l--—.. —-.
-!

———

figure 2.Semple Gopher menu,
The Smalltalk Report

(componentsforSmalltalk,VA,&PARTS
Tools from Objectshare help you get your applications finished
fast. W1dgetKit’” components are available for WindowBuilder
Pro, VisualAge, and the PARTS Editor in Vkual Smalhalk,

Charts& Graphs I
WidgetKit/Business Graphics I
provides a wide variety of charts
and graphs for your applications.
The basic types include bar, pie, area,
line, tape, high-low-close, and more.

Most types have options such as 2-D and 3-D stacked, exploded,
absolute and 70. Capabilities include printing, autoscaling, control
of fonts, colors, label, grids, and more.

20New Controls
.6. ~ OU-M Subpanes has 20 must-have

controls. Columnarlist box,
,.” Sl#O .r.x~w:.,w=. hierarchical list box, table pane, ‘

bitmap pane, 3-D frames, rmd a i

selection of buttons, sliders, and gaug~s~ The-table pane and
columnar list box support collections of objects and let you
control headers, justification, fonts, colors, disabling of items,
and more. Date, time, and number editors provide validation and
easy editing.

K7ii77acuA’’’contrO1s: WidgetKit/Busmess/CUA’91 has the

pj-a___J_l‘-~~ p=; ; full sjiteofCUA’91 controls for your I
applications. It includes notebook,
slider, spin button, and value set. I

m Spreadsheets& More
M.%~ WidgetKit/Business Profes-

sional provides spreadsheets,
multi-column list boxes, table
editor, and graphic viewers for

BMP, PCX, and GIF. Also includes inputval;da;ion(12 types),
flexible graphical/3-D buttons, file system widgets, spreadsheet

printer and more, Spreadsheet power is similar to Excel,
with formulas, drag and drop, load, save, and more. Vktual

BuildUISFast
WhrdowBuilderm Pro
is a pair of interactive
tools that lets you
build polished user
interfaces fast.

Versions for VkualAge
& IBM Smalltalk, for
Vkual Smalltalk &
PARTS Programmers

that use VA or PARTS will generate UIS faster and have more
control in WBPTO. Bypass the wires. Generate VA or PARTS
components, Smalltalk programmers will find that WBPro saves
them from building UIS in code.

Select controls from a palette. Place and edit them interactively.
Build composites of controls. Includes autosizing, automatic
alignment, control of fonts, menus, colors, tabbing order,

and more.

Use Objactsham Visual Smalltalk and/or
productwith... Visual SmalltallaEnterprise SmaUtalk/V IBM Smalltalk VisualAge

e;~”ri; ...

T

PARTSEditor WB Pro/V WindowBuilder Pm VA CompositionEditor 1.mthisplfstiorm.. WINDOWS 0S/2 WI NOOWS 0s/2 WIN lE WINOOWS WINOOWS 0s/2 0s/2 WINOOWS WINOOWS
I Ow -o;;-

STANOARO TEAM STANOARO TEAM STANOAHO TEAM STANOARO TEAM

WindowBuilder Pro $495 $495 aa $295 $495 S695 $495 $695 bb bb

WldgetKtiProfessional $395 i $495 i $395 S495 $795 I i $495 $795 i I
(02’95) (0295) (Q2’95) (0295)

WidgetKti S495 $495 $495 $495 $495 $495 $795 $495 $795 $495 $795
Business Graphics (02’95) 102’%) (02’95) /02’95)

$495 S795

Subpanes $235 S235 $295 $295 S-235 i i i i’ i I I i
(02’W) @2’95)

WldgetKit/CUA91 i

a Order WBPrn/V for corresponding Visual Smalltalk platform. No runtime faes are required for applications devslopad with thma products. Frse support for tha first 90 days, All products include

b Order WBPm for corresponding IBM Smalltalk platform. complete documentation. WidgetKit products for SmalltalkpJ Wn32 are available, plaase inquir!+. Support subscription available.

i Planned, inquire shout availability and pricing. @ Objactshara Systams, Inc. 1995

Objectshare Systems, Inc.
5 Town& Country Wage
Suite 773 Call to order today (408’) 970-7280
San Jose, CA 95128-2026
Fax 408-970-7282
CompuServe 76436,1063

Orcall for free info. 9AM to 5 PM PSZ M-E 30-daymoney-backguarantee

consists of a set of lines, separated by carnage return and line-

feed characters, up to the line that contains nothing but a peri-

od (“.”). For each line, the first character is a type indicator.

The rest of the string is tab delimited. The field after the type

indicator is a string to display in the user interface for the

item. The next field is the selector. The next is the server

name, and the last is the port, The selector, server name and

port are all used to get that item. The type indicator (first

The best way to learn is to play
with a Gopher client

character in the line) indicates what type of item this is (e.g.,

menu, text, graphics, etc).

For the text type, the data returned from the server is just

the text to dkplay back to the user. For the graphics type, the

contents of a GIF or TIFF fle might be returned.

CLASSES IMPLEMENTED
Fhsta little class hierarchy creation. We’re going to implement

a class called GopherItem, with a subclass for each of the gopher

data rypes. GopherItem is defined with instance variables:

display description of the item to displayto the user

selector selector to send to the server

host name of the server

port port number for the server

data data returned by the server

Besides defining accessors for these variables GopherItem contains

- the logic to get the data for an item from a server

. the logic to parse a line of menu information returned from

the server

“ the logic to determine what type of data a particular line is

We’ll create the following subclasses of GopherItem:

“ GopherItemMenu to display menus

. GopherItemSearch to prompt for a search string, and display

a resulting menu (used to search phone books, for instance).

“ GopherItemText to display textual information

- GopherItemUnknown to handle Gopher data our client does

not understand.

We’ll create a class named Gopher to manage the user interface.

USING TCP/lP SOCKETS IN IBM SMALLTALK
Now we’ll actually implement the main processing of the

gopher clienc connecting to a server to get the some data.

If you aren’t already famik with sockets, here’s a brief

overview. Sockets are a lot liie file handles. You open them,

read from them, write to them, and close them. Except,

instead of having a disk drive to read from or write to, there’s
6

getData

“Set data instance vsriable to the data returned for the gopher

menu item,”

I abtHost abtPort abtsock dataChunkall.llata I

self data “.

selfport istiil ifllue [selfport 70].

self selector isNilifl’rue: [self selector: “].

abtHost:= AbtTCPInetHostgetHostByName:self host.

abtHost isCommunicationsErroriflkue [“nil].

abtport:= Abfi%PPortusingHost abtHost potiumbec self port.

abtPort isCommunicationsEmorifl’rue: [“nil].

abtSock:= AbtSocketnewStresmUsingPorLabffort.

abtsock isConununicationsErrorifh-ue: [“nil].

abtSockbuffdength: 8192.

(abt.sockconnect) isCommunicationsErrorifTrue: [AN1].

(abtSocksendDatz (self selector, CrasString, LfasString))

isCommunicationsErrorifi’rue: [“nil].

allData:=”.

[abtsock isConnected]wl-de’hre: [

dataChunk:= abtSockreceive.

dataChunkisCommuticationsErrorifhue: [“nil].

aUIJata:=aUData,dataChunk contents asString

1.

abtSock disconnect.

seIf data: alUJata.

.-—–,.. “-—L-J.-—.-–-.”--- —-.-,
mmpm I. uOpnenlem~qwmla mwmn,

another program over the network who is reading what you

are writing, ;r writing what you are reading. And instead of

specifying a file name, you speci$ a host name and a port

number to connect to.

The logic to get the data for an item from the Gopher

server is implemented in the instance method

GopherItem>>getData. GopherItem supplies instance methods

to return the host, port and selector of the Gopher server we

want data from, Example 1 contains the Smslltalk code for

this method.

Data is first initiahzed by getData to an empty string, and

defaults its port and selector if not set. It then obtains an

instance of AbtTCPInetHost, AbtTCPPort, and AbtSocket from the

host and port information. AbtTCPInetHost is used to convert

host names into TCP/IP addresses. AbtPort is used to associate

a tcpflp port with a TCP/IP address. AbtSocket is used to man-

age the acti~ socket, based on the AbtPort it was created ~th.
Up to this code, we have defined what we want to connect

the socket to, but haven’t actually connected it. Sending con-

nect to the socket will cause the socket to connect to the server.
The Smallta[k Report

The Exciting WORLD of Object-Oriented Technology

Technical Resource Solutions is a nationwide consulting firm catering to
information intensive clients. TRS provides Object Oriented analysis/design and

implementation, conversion, training, mentoring, project reviews, and support !

using Smalltalk and other leading edge tools and methodologies.

..”, /”,. -“,.. .$.,. :- ~ ..,. .:,. ”

,,,,,:{,:.~<~ helped many successful Fortune 1000 Cornpaniw to overcome their systems challe~~e~~ CIUr
,,:,;:,:#@@@ints have developed expertise working on large development projects interfacing with “”
“~“”: i+jagement, developers and users alike. TRS can manage all or part of a development project’

~“~iwtively, efficiently & economically.

TRS has close partnerships with ParcPlace for VisualWorks and Texas Instruments for IEF. Our
strong partnerships allow us to work very closely with these vendors, providing continuous feedback to
improve their tools and product, the building blocks of your systems.

You csn examine our services by calling 1-800-801 -lTRS and one of our professional representatives
will help you plan new system solutions.

-,,”.:”,
;“

TEcHNIcAL RESOURCE
3900 W. Alameda Ave., Suite 1700 ● Burbank ● CA

818 /972-1744” Fax 818 / 972-1685. email 74601.
,., ,,,,,, ,,:,.:,‘,,,,.,.. ,,., .,. .

,...,,.,--.—, . ,.,- ..,..—.

\

e .+
Automatic Documentation - Easier Than Ever %%+~

‘.$:%+”
With Synopsis for SmalltalVVDevelopment Teams ~&:c

%*
DevelopmentTime Savings

\
Synopsis prochees high qualityclass documentation

automatically. With the mmbination of Synopsis and

Small W, you eutdevelopment time and eliminate the

hzg between the production of code and the avaihbility

of documenkztion.

Synopsis for SmalltalWV
. DocumentsClasses Automatically

● Provides class Summari es and Source Code Listings

t Builds Class cm Subsystem EllCyC@M2dhS

. Publishes Documentation on Word Processors

. Packages Documentation as Encyclopedia Files or
as HelpFiles for Distribution

+ SupportsPemmslizedDocumentationand
Coding Conventions

Coding DrwmanMi
Without
Synopsis * A

salt FkIbh

With
Codng

Synopsis

I
Products: $TIOpSiS for Smalhalk/V and Team/V

Synopsis fm ENVY/Jkeloper

Environments: windows, win32, 0s/2

Pricing Smalltalk/V $295, ENVY S395
Site knaes available.

Working with Synopsis is easy. Install Synopsis and see _

%

Synopsis Software
immediate results --- without changing a thing about the —

way you tite Smalltalkemk!
8912 Oxbridge CoI@ Raleigh NC 27613
Phone 919-S47-2221 Fsx 919-8474650
Once connected, we send the selector, followed by carriage

return and linefeed, then start reading from the server. As long

as the socket is connected, we receive the data from the socket

and append it to the end of a local variable. When the server

finally closes the socket, isConnected will return false. At this

point, we close our end and set the data to the entire string

returned from the server.

That’s the ordy TCP/IP related code in the entire gopher

client. Each gopher item subclass is responsible for interpreting

the data received by thk code.

USING WIDGETS IN IBM SMALLTALK

Widgets are the programming interface used for user interface

programming in IBM Smalltalk The terminology comes from

Motii, upon whkh the user interface classes are based on. If

you’re already familiar with Motif Widgets, I have real good

news for you—you’re already famihar with IBM Smdkdk’s

Widgets. If not, don’t worry-it’s a simple and elegant model.

Widgets are used to model all the visusl building blocks

needed to create a user interface:

. the shell, to contain the frame, system menu, title bar, and

minimize/maximize buttons

“ main windows to contain the menu bar

. forms and bulletin boards to contain other widgets

. core widgets Iiie buttons, list boxes, text fields, etc.

Each type of widget is a subclass of CwWidget. There are two
8

primary ways to change the behavior of a widgeti through

resources and through callbacks.

Resources contiol the basic state of a widget, such as color

and font information. Most widgets have a unique set of

resources associated with them, and resources me inherited down

the CwWdget class hierarchy. Resources are set and queried via

instance methods named after the resource. For instance, to

query the width of a widget, send it the message width.

Callbacks are a way to get feedback from the user when they

interact with the system. Like resources, each widget class

implements its own set of callbacks, which are inherited down

the CwWidget class hierarchy. As an example, to be notiiled

when the user presses a button, the following code maybe used.

buttonWidget

addCallhack XrrNactivateCallback

receivec self

selector #pressedclientDati callData:

clientData: nil.

Each callback has a name, in thk case Xrrd’.IactivateCallback.

This particular callback is invoked when a button is pressed.

When the button is pressed, the message

pressed: clientData:caUData: will be sent to the object that exe-

cuted thk code (since the receiver was specified as self). The

callback message is passed the widget, the client data specified

when the callback was added (in this case, nil), and an object

containing information specific to this type of callback.

Ok so those are the basics, let’s dhre right into our gopher

client. Our user interface is going to be a new window, with a

read-only text field at the top giving a description of the cur-
The Smalltalk Report

Datake Solution for SmahWV
A class libnuy for ODBC Database Access

■ ODBC 2.0 support for 50+ databases
m@!##-# ■ 00 to RDEMS mapping

ODBTalk ■ Native data type support
■ Ordine help, source included, no runtime foes

Available for Win16, Win32s, Win-NT, 0S/2 and VST

‘!.. Si/SSph?fisd r?h?gfWsl...”- Australian Gilt Securities

Client Server Sohdion for SmaUtaWV
A class library for Windows Sockets Development

■ UDP acrdTCP Sockets

m%=

■ Synchronous rmd asynchronous support
■ Seemple code for remote disk browser app

Sochtalk
■ Online help, source included, no runtime fess

Available for Winl 6, Win32s, Win-NT

Tel: 416-787-5290
listWidgetitems: (OrderedCoUectionwith: a wit.k b with: c)

createWindow

“Createthe gopher menu window”

I sheUmain formtext bst I

shell:= Cv/TopLevelSheU

aeateApplicationShelL ‘gopherMenu’

argBloclc [:wI w

title: ‘GopherMenu’;

widti (CgScreendefault width)// 2

1.

form := shell

createForrrr ‘form’

argBlock niL

form rnanageChild.

text:= form

createLabeklabel’

argBlock [:W I W

labeL%ng: ‘‘

1.
text roamgeChild.

list := form

createScrolledListilist’

argBlock:[:W I W

seletionPolicy XcnSINGLESELECT;

visibleItemCounti20

1.
list manageChild.

text setValuesBlock [:w I w

topAttachmenti hnAITACHFORM;topOffsek 2;

leftlittachrnenk XrnAITACHFORM;leftOffset 2;

rightAttachmenk XroAlTACHFOlU4;rightOffsek 2

1-

list parent setValuesBloclc[:w I w

topAttachmenh XmAITACHWIDGET;topWidgektext;
bottornAttachmenbXMAITACHFOSM; bottomOffseh2;

leftAttachmenk XmAITACHFORN;leftOffsek2;

rightAttachmenfi lbrrAITACHFORM;rightOffeeti2

1.

list
addcallback XcnNdefaukktionCaUback

receiver self

selector #selectItem:clientDatz caUDatz
clientData: nil.

shell reahzeWidget.

self listWidg& list.

seUtextWidgek text.

self sheUWldgebshell.

self menuStack OrderedCoUefionnew.

Errsmple 2. GophePXrestnWlndow method.
March-April 1995
rent gopher menu item we’re viewing and a list box containing

the items available on thk gopher menu, Gopher text items

will be dkplayed in a separate window (a Workspace), which is

not described here.

The widgets we’ll need are:

- a shell, to contain the flame, system menu, title bar, etc.

“ a form, to contain the text field and list box

“ a text field

. a list box

A form is a widget that knows how to resize the widgets con-

tained vvithkr it. We’re using it to allow the user to resize the

window and have the widgets contained in the form automati-

cally resize themselves.

As mentioned before, we’ll be implementing a class called

Gopher to handle the user interface. Gopher is defined with

the following instance variables:

data to hold the data associated with the menu-

items (ie, the selector, server, and port of

the menu items)

listWidget to hold our list box widget

tetiWidget to hold our text field widget

sheUWidget to hold our shell widget

menuStack to keep track of where we came from, so we

can backtrack through the gopher.

The instance method createWindow is used to create and setup

all the widgets. Example 2 contains the code for this method.
9

The fMst thing we do is create a shell window. This is done

with the message CwTopLevelSheU

classS>createApphcationShell:argBlock. The first parameter is

the name of the widget. AU widgets have a name, which is

usually not externally visible to the user. The second parameter

is a block used to set resources when the widget is created. In

this case, we’re going to set the title of the shell window, which

will be placed in the frame’s window bar, and the width of the

frame, making it half the size of the screen.

You might be wondering why we use the argBlock parameter

(and the setValuesBlock: later in the code) to set our resources.

The message to create the shell widget could ako have been

written as:

sheU:= CwTopLevelSheU

createApplicationSheU:‘gopherMenu’

argBloclcrd.

shell

title: ‘GopherMenu’;

width: (CgScreender%ultwidth) // 2

In IBM Smalltal~ widget resources are “hot”—that is, when

changed, the user interface is immediately updated. In order to

allow the system to optimize changes to a widget, the argBlock

parameter and setValuesBlock message are the recommended

ways to set resource values for a widget.

Next, we create the form. Most widgets are created using

widget creation convenience methods named

createXXXh.rgBlock:, where XXXXis the type of widget to cre-

ate. These messages me sent to the widget that will contain the

widget to be created. In this case, we’ll create a form with the

name form, and don’t need to set any resources.

After the widget is created, we send it the message

manageChild. TMs is a Motif-ism, which you don’t need to be

too worried about, but will need to call it after creating your

widgets. Managing and mapping widgets allows some interest-

ing behaviors, such as causing widgets to instantly appear and

dkappeu as needed.

Contained withkr the form will be a label widget, created

with createLabekargBlock. We’ll set the initial text of the label

to a blank string.

Also contained within the form is a list box, created with

createScroUedListiarg Block:. The selectionPolicy resource sets

the type of selection allowed - -single select, multiple select,

etc. The visibleIterrtCount resource sets the initird size of the list

box, eg. the list box will be sized to contain 20 items.

As mentioned previously we’re using a form so that the wid-

gets inside the form can be automatically resized. In order to

make thk happen, we have to attach the widgets to the form.

For each of top, bottom, left and right, there are three basic

types of attachment:

“ attach the widget to the edge of the form

“ attach the widget to a position in the form (position based

on 100-setting to position 50 attaches the widget to the

middle of the form)

“ attach the widget to another widget.

In our case, we attach the label widget to the top, lefi and right

sides of the form. We don’t need to attach the bottom, since a label
10
field has a default height (tke height of the font the text is being

displayed in). The list box is attached to the bottom, left and right

sides of the form, and it’s top is attached to the label widget. Note

also an offset is specified for aesthetic reasons (to keep the user

interface from looking as if it’s all crammed together).

Now when the window is resized, the label and text win-

dows will have their widths changed automatically since they

are attached to the sides. When the height changes, the label

won’t change size but the list box will, since it’s attached to the

label widget at the top and the form on the bottom.

As a further example of attachments, if we change the label

widget to attach the bottom as in

bottomAttachment XmAITACHPOS~ION;

bottomPositiom 25;

the label widget would take the top 25% of window and the list

box would have take the bottom 75%.

Note that for the listbox, we send setValuesBlock to the

parent of list, not list itself This is because a CwScroUedList

widget is a list box with a set of scrollbars around it. It’s the

widget (which we don’t see) that contains the list box and

scrollbars that we need to attach to the form.

To be able to execute some code when an item in the list is

selected, we need to use a callback. In the previous code, the

XmNdet%ultAclionCallback is used on the list widget. ‘Ilk call-

back is invoked when an item is double-clicked in the Listbox.

We specify sendhg the message selectItem:clientDat.zccalLData

to self. The actual callback is implemented as follows:

selectItem: widget clientDati clientData caUDatz caUData

“Callbacksent when an item is selected. Opena viewer

for the appropriate GopherItemsubclass for the item.”

I pos menuItem I

pos := caUDataitemPosition.

menuItem:= (seti data) at: pos.

menuItem view self.

calLBata is an object containing information specific to this call-

back in this case, sending it itemPosition answers the one based

offset of the item within the menu that was selected. The data

instance variable of Gopher contains an ordered collection of

GopherItem instances returned from the server. We just get the

appropriate menu item and tell it to view its~f
Finally we tell the shell to realize itself, which causes it to

be displayed, and set our instance variables.

The contents of the listbox are maintained with the items

resource. The data associated with this resource is an

OrderedCollection of Strings, For instance, to set the contents

of a list box to the items a, b, and c, you would use the code in

Example 2.

CONCLUSION
The source for the gopher client is available via anonymous fip to

st.cs.uiuc.edu, and will work on 0S/2 and Windows, with IBM

Smalltrdk or Vis* with the Communications Component. ~

Patrick Mueller is a member01the IBM Smalltalk Oistnbrstadteam at IBM

Cary.Ha so-authoredths HP/lBM submissionto OMG for Smalltalk

mappingsto CORBL Pstrick can ba reachedby einsil at

pmusllr@vnat.ibm,com,
The Smalltalk Report

Viiualwtorksdialogdevelopment

Tim Howard
D
EVELOPING CUSTOM DIALOGS can often be quite

frustiting even for the well seasoned VkualWorks

developer. Ideally, custom dialog development

should be as easy and straightforward as that of non-

modal window development. In this article I will cover some

issues concerning VisualWorks dialogs. F~st, the basic role of

dblogs in the application, as well as the current VisualWorks

aPPmach tO CUStOmdi~og development! wifl be ~mined. Then
I will discuss an abstract subclass of SimpleDialog, called

ExtendedSimpleDialog, which makes dialog development much

easier and straight forward. ExtendedSimpleDialog works in con-

junction with ExtendedApplicationModel.’

Some related enhancements to ExtendedApplicationModel

me also dkussed. Full source code and examples are available

from the archives at the University of Illinois (st.cs.uiuc.edu).

Here are some questions pertaining to dhlog development

that confront most VkuslWorks developers. See if any of these

are familiar to you.

● When should a dialog be used in an application?

■ When is it necessary to build a custom dialog instead of

using a stock dialog?

■ Should custom dialog classes be subclasses of

ApplicationModel or SimpleDialog?

=Why is it that an application model opened as a dialog can-

not access its components at runtime?

=Why is it that an application model opened as a dialog will

not execute preBuildWith: and postBuildWith: methods?

■ Why is it that accept and cancel action methods are never

executed?

■ What should a custom dialog return-an edited object, nil,

a boolean?

~ Should a dialog ever edit an object directly or just a copy of

the object?

~ How can a dhlog be opened at a specific location?

The answers to these questions are provided in the remainder

of this article.

PURPOSE OF DIALOGS
In VkualWorks, a dialog is a modal window. A modal window

receives all user input until such time as it is closed. As long as

a modal window is open, no other windows can receive user

input. Dialogs are used to perform certain functions in the

application and these functions can be placed into four broad

categories.
March+rd 1995
1. Notifj user of an error or display a simple message.

2. Acquire permission or simple information from user.

3. Allow user to instantiate and edit objects in the application.

4. Perform other application specific services.

The first two categories of fhnctionalty listed above are handled

quite nicely by the stock dkdogs provided by the Dialog class.

The Dialog class is not meant to be instantiated, it is merely an

access point for the stock dialogs. For the meager price of a sin-

gle line of code, the stock dialogs provide the following func-

tionality display a message, ask for a yes/no confirmation, solicit

simple information such as a string or a selection in a list, and

provide simple file access. The stock dialogs should be used

whenever possible however, many applications may have slightly

varying requirements for displaying messages and acquiring sim-

ple information. For such cases, the developer can enhance the

Dialog class, subclass the Dialog class, or build custom dkdogs.

While custom dkdogs are optional when performing such sim-

ple dialog fictions, they are absolutely essential when it comes

to performing application specific services and editing objects.

VISUALWORKS CUSTOM DIALOG DEVELOPMENT
In VkualWorks, dkdog behavior is implemented in the

SimpleDialog class, a subclass of ApplicationModel. SirnpleDialog

differs from its superclass in the following ways.

● The initialize method instantiates three instance variables—

accept, cancel, and close-to be ValueHolders with the ini-

tial value of Mae.

■ The irdidim method populates the builder’s bindings with three

aspectiacc~ #cance~ and #close, The associatd value for

each of these aspects is the corresponding instamx variable.

. The window opened by a SimpleDialog is necessady modal.

■ The window constantly polls its model, the SimpleDialog, by

sending it the value message that returns the value of the

close instance variable, which is initially hlse. As soon as

thk value becomes true, the window closes.

● A SimpleDialog is often used to open the interface of anoth-

er application model.

● Changes in acceptor cancel instance variables will trigger a

change message that sets the value of the close variable to

tru~thus closing the window.

● The statement that opens a dialog suspends the current

thread of execution until the dialog is closed.

● The return value of a SimpleDialog is the value of the accept

variabletrue or false.
11

Currently there arc two approaches to custom dialog develop-

ment-and both have limitations. The fit approach is to sub-

class SimpleDialog. One problem with this approach is that accept

and cancel action methods will not be executed by action buttons

bound to the #accept and #cancel aspects. This is because, the

initialize method bds the #accept and #cancel aspects to their

corresponding instance variables, eliminating the chance of bind-

ing them to corresponding action methods. Also, a subclass of

SimpleDialog cannot open a nonmodal version of its interf~

the window is necessarily modal. Furthermore, a subclass of

SimpleDialog wil not inherit functionality from an abstract sub-

class of ApplicationModel such as EsrtendedApplicationModeL

Therefore, you must duplicate such behavior in a complimentary

abstract subclass of SimpleDialog or do without.

The semnd approach to custom dislog development is to

subclass ApplicationModel and open it as a dialog. When such an

app~cation model k opened as a dialog, it does not assume the
responsibfity of building the interface with its builder but dele-

gates thii to an instance of SimpleDialog. For this discussion, I

will refer to such an application model as tAe client application

model and the instance of SimpleDialog as the surrogate applica-

tion modeL This approach tiers tlom the dormant accept and

cancel methods that plagues the tiorementioned SimpleDialog

subclass approach. krother drawback of the ApplicationModel

subclass approach is that the client application model’s pre- and

postbuild methods me never executed. Instead, it is the pre- and

postbuild methods of surrogate application model that arc exe-

cuted. While thk can be remedied with Si.mpleDialog’s pre- and

postbuild blocks, such a solution is awkward and cumbersome.

By far the greatest drawback to subclassing ApplicationModel for

custom dialogs is that the client application model cannot access

its own interface during runtime. The reason for this is that it is

the surrogate application model, and its builder, whkh builds the

interface (browse ApplicationModel>>openDialogInterFace: and

SimpleDialog>zopenFo~interhce:). The client application

model’s builder instance variable references nil and therefore, the

client application model has no means of accessing the interface.

INTRODUCING ExtendedSimpleDialog
The class ExtendedSimpleDialog has been developed to work in

tandem with ExtendedApplicationModel to enhance

VkualWorks custom dkdog development. Custom dblog classes

should be subclasses of ExtendedApplicationModel-do not

bother with either ApplicationModel or SimpleDialog. By design-

ing your dialogs as subclasses of ExtendedApplicationModel, you

gain the following functionality

● Prebuild and postbuild methods we executed without hav-

ing to define pre- and postbuild blocks.

= All interface components can be accessed via the builder.

- Implementations for accept and cancel action methods can

be bound to corresponding action buttons.

I All i%nctionali~ in ExtendedApplicationModel is available

for implementing the behavior of the dialog.

● The application model can open either a modal or non-

modal version of its interface.
When a subclass of ExtendedApplicationModel (or an instance of

such a class) is told to open its interface as a dialog, it instantiates

an ExtendedSimpleDialog. The BrtendedSirnpleDialog class re-

implements the allButOpersFrorn aspec method shown below

allButOpenFrom:aspec

“Makesure the client references the builder and send pre and post

build messagesto the client.”

selfbuilder source isNil

Ml’rue: [builder source: sew

ifFalse: [builder source builden builder].

preBuildBlock==NI

ifhue: [selfbuilder source preBuildWith:builder]

ifFalse: [preBuildBlockvalue: selfvalue builder].

builder add aSpecwindow.

builder add: aSpec component.

self preOpen.

postBuiMBlock==nil

ifl’rue: [self builder source postBuildWiti builder]

ifFalse: [postBuildBlockvalue: selfvahre: builder]

This implementation does two things. Fkst it makes sure that

the client application model references the surrogate application

model’s builder. This gives the client application model access to

the interface during runtime. Second, this method sends the pre-

and postbuild messages to the client application model instead of

the surrogate application model (provided the pre- and postbuild

blocks m- not defined). This implementation &es the l&owdedge

that the builder’s source is the client application model. The

ExtendedSimpleDialog class also redefines the #accept and #can-

cel aspects in ita own initialize method shown below.

initialize

‘~ suchthat the sourcecanimplementacceptand cancelwhichare

triggeredwheneverthat buttonispressedbut priorto the actualclosing.”

super initialre.

self builder

aspectAt #accept

put [selfbuilder source accept. seLfacceptvabm tie].

seti builder

aspechlk #cancel

puk [selfbuilder source canceLself cancelvalue: tie]

This implementation allows the client application to define

accept and cancel action methods that can be bound to action

buttons. When the button is pressed, the action method is

executed first, and then the corresponding ValueHolder is set to

true that results in the closing of the window.

DIALOGS AS OSJECT EDITORS
Many custom dialogs are used to instantiate or edit an object of

some type. I refer to such a dialog as an object editor. Object

editors allow the user to edit an object and accept the changes

or cancel to roll back to the previous state of the object. Since

the object editors are dialogs, the user must conclude the object

editing session one way or the other before moving on to any-

thing else. This gives you the developer a great deal of control

over the user’s navigation of the application. A good way to

aPPrOaCh object editing iS the fo~~ng tie step process-
The Smaflta[k Report

continued on page 32
1.

2.

3.

Copy the object to be edited.

Open a dialog object editor on the copy.

If the dialog returns nil, do nothing. If the dialog returns—
the copy, then replace original with copy,

Step 3 has our dialog returning either nil or the edited object

and it was stated previously that dhlogs always return a

boolean (the value of the accept instance variable). Is this a

contradiction? No, not really. It is the instance of our dialog

that returns the boolean but we send the interface opening

message to the class. As an example, lets consider a dialog that

edits a ColorValue object. A ColorValue object has three attrib -

ute=red, green, and blue— one for each of the RGB values

required to define a color. To edit a ColorValue object, we

might create a class called ColorValueEditor as a subclass of

ExtendedApplicationModel. On the class side, we would have

an interface opening method such as this one:

edit aColorValue

“Opena dialog on aColorValueand return the edited

ColorValueor nil.”

I colorValueEditorI

‘(colorValueEditor:= se~new color: aColorValue)openAsIlialog

itltux [inst color]

ifFal.se: [nil]

In this implementation, we fist create an instance of our

apphcation model, colorValueEditor, and pass it the ~Wment
aColorValue. Then we open the application model as a dia-

log-allowing the user to edit the ColorValue objeckand wait

for its return value that is a boolean. If the dialog returns true,

then the method returns the edited ColorValue object. If the

dialog returns false, then the method returns nil. As an exam-

ple of how thk might be used, suppose we would like to allow

a user to edit the background color of a window. To do thk

using ColorValueEditor, we might do write lie the following.

insideColor:= aWindowinsideColor.

reply:= ColorValueEditoredih insideColorcopy.

reply nottiil ifllue [aWlndowinsideColoc reply]

In the code above, we first access the window’s inside (or back-

ground) color that is a ColorValue object. Then we open a

ColorValueEditor on a copy of this object. Remember, an object

editor operates on a copy and not the orignal object. The reply

variable will be either nil in which case we do nothing, or the

edited ColorValue, in which case we replace the originaL

INTERFACE OPENING PROTOCOL
ExtendedApplicationModel has been enhanced to provide more

flexibility, flmctional@, and consistency in the interface open-

ing protocol. Thk protocol is implemented on both the class

and instance side and accounts for the following variations.

“ Opening a specific interface.

“ A reference to a parent application model.

■ Opening at specific locations-both absolute and relative.

“ Opening as a modal dialog.
March-April 1995
■ Guaranteeing that no more than one instance vviU ever be

opened.

To account for all the permutations of interface opening meth-

ods, the following message naming convention has been adopted.

open{Interface: asymbol] (From:aParentApp] {At aLocation]

The bracketed elements are optional. The From: and At

options sometimes appear as key words in which cases they are

not capitalized as follows:

openInterface: asymbolati aLocation

ibd sometimes they are just part of a key word and therefore

appem capitahzed as is shown here:

openAk aLocation

The argument aLocation is used to determine whereon the

screen the window should be placed. If aLocation is a Point,

then it indicates the intended opening origin of the window. If

aLocation is a Rectangle, it specifies the origin and dimensions

of the window. If abcation is a Symbol, then it can be one of

several values— #centerOfParent, #centeredOfScreen, or

#centeredAroundCursor, for example. Each of these opens the

window in the manner described by the symbol.

A dkdog is opened with an opening method of the form:

openAsDialog[Interface: asyrnbol}[From:aparentfipp] {At:aLocation].

The single instance behavior is a guarantee that only one

instance of an application model will ever be open at one time.

For example, if the application model class SessionParameters

is a subclass of ExtendedApplicationModel, then the following

interface opening message will gusmmtee that only one such

application ~1 ever be open at any given time:

Sessioflarameters openSingleInstance

If the window is already open, then it is brought to the front

of all windows and made the current active window. If the

window is collapsed, then it is expanded. If the window is not

currently open, then a new one is created and opened. A single

instance is opened with an opening method of the form

openSinglelnstance[Interface: asyrnbol]{From:aPsrentApp] [At:

sl.ocation].

Unlike the opening protocol discussed earlier, single instance

opening protocol only applies to the class and does not apply

to instances.

The following are just a few of the many permutations of

interface opening protocol provided by

ExtendedApplicationModek

operuik aLocation

openInterface: a$nnbol from sParentApp

openSingleInstanceInterface: aSymbol

openAsDialogAhaLocation

openAsDialogInterface:asymbol

openAaDialoglnterface:aSymbolfrom: aParentAppat: aLocation
13

Cleaningup afteryourself

Alec Sharp & Dave Farmer
WHAT DO WE MEAN by cleening up after your-

self? Whenever you reference external resources,

such as files, sockets, or UNIX processes, the

garbage collector will not take care of closing or ter-

minating these things. For example, you may have an object that

opens a file. You cars certainly close the file yourself when you are

fmiehed wit% it, but what happens if you simply stop referencing

the object that opened the file? The garbage collector will clean

up the object, but the operating system still has the file open,

Don’t believe us? Do the following experimen~

count := 1.

[file:= ‘foobar’aaFilenamewriteStieam.

TranscriptR; show count printshing.

count:= count + 1.

ObjectMemorygarbageCoUect] repeat.

When we ran this on a Windows system, we got an exception

after opening 15 fdes (the number depends on what other files

you have open and on the fdes setting in conflg.sys). If you are

on a UNIX system, you’fl get a lot more fdes open. On a UNIX

system you can look at the fdes open by doing the UNIX com-

mand crash. Once in crash, type p then look for the oe20

process (st60 if you are using VkualWorke 1.0) and find ita

number. Then do u <nurnbe~, for example u 49. In Smalltrslk

you can see the open files (as long as you opened them in a

standard way, such as sending the #writeStieam message) by

doing an inspect of ExtemalStieam classPool ati #openStieams.

The; you c~ close individual fdes by inspecting the element of

this collection and doing a self close.

Okay but what does all thk really mean? Shouldn’t you

close Nes after using them? Well, here’s how our product—
works, and why we need to clean up after ourselves.

The Smrdltdk part of our product consists of several Smalltalk

processes, each one sitting in an infinite loop, waiting for input

fim either a socket or a shared queue. We have at least one sock-

et permanently open. When we are developing and debugging,

we keep a debug file permanently open. On top of&at, some of

the processes talk to robot tape libraries. Unfortunately our device

drivers block waitig for a response iiom the libraries, so we can’t—
talkto them directly from Smalltalk because of performance

issues. Instea~ some of our Smalltalk processes fork and exec

UNIX processes which they communicate with via pipes.

At this point, we have sockets and fdes pemnanently open, and

UNIX processes sitting out there wakkg to tdk via pipes. We &m

“ Mote: This arlicle is Isasad on work ws hsve done et StorageTek using VisualWorks 2.0

from PsrsPlace Systems.
14
key
executor

#key
#executor

CleanUp

~

openFiles
forkedProcesses

#finalize

Figure 1.

have several Smalltalk processes waiting for things to do. As we are

busy developing and debugging the code, perhaps we get a nofitier

window because something went wrong. After stepping through

some of he code, we are at a point where we can’t continue, so we

terminate the operation. Alternatively something might have got

stuck in a loop, so we press ctd-C to get control back.

If we didn’t have some way to clean up after ourselves, we

would now have stray UNIX processes, open files and sockets,

and stray Smalltalk processes. In fact, this is exactly what we

did have at fist, to our frustration, so we had to come up with

a way to prevent it.

FIRST’ WAY
The first scheme we came up with was to have an

OrderedCoUetion called ThingsToCleanUp in our Pool Dictionary

Whenever we opened a file, created a process, etc., we recorded

this event in ThingsToCleanUp. Here area couple of examples

(with code removed to show only the relevant portions):

StartInputOutput

...

ThingaToCleanUpadd:

‘terminate LMInput’ ->

([(~~put newwithSockti socket
andQueue: self inputChreue)start]

forlck StkConstanteforkedProcessPsiori&).

...

initialize: aDeviceName

OSErrorHoldererrorSignal

handle [:ex I ex restartDo: [“nil]]

do: [writeDevice:= aDeviceNameasFilenamereadWriteStream.

ThingsToCleanUpadd:

‘closewriteDevice:‘ , aDeviceName-> writeDevice].

The items we add to ThingsToCleanUp are associations. The key
The SmalltaIk Report

is a string that both specifies the operation which closes or ter-

minates the thing, and gives us debug information we can log.

The value is the forked processor opened file, etc. We thought

this was pretty slick when we created it! To give a better idea of

what is going on, here’s the code that does the cleanup.

cleanUp

ThingsToCleanUpdo:

[:thing I thing value noiltil

ifTrue:

[Logdebug: thing key.

thing value perform:

(thing key copyUpTo:Characterspace) as$rnbol]].

ThingsToCleanUp:= niL

...
If the key is the string “close debug file,” thing key copyUpTo:

Character space gives the string “close.” If the value is the fle

itself we get file perform: “close” asSymbol, which sends the

#close message to the file.

Now, suppose we open a file and add it to ThingsToCleanUp

and then later on want to close the file. We do something like:

close

file notNil ifltm

~gsToCleanUp removeAUSuchThat

[:elernent I element value= file].

file close.

file :=NI].

All right, now we have in place a structure that allows us to

record and perform cleanup operations. What triggers off the

cleanup operations? The following method is how we start our

Smslltalk product, and you’ll see we’ve wrapped the entire

product operation inside a valueNowOrOnUnwindDo block. Thk

allows us to speci$ an operation that will take place when thk

method is being unwound, such as when we terminate a debug

window or use ctrl-C and close the notifier window.

start

[self stattInputOutput. [nerrtRequest := self inputChreuenext.

nextRequest queueYourseMLlsing:self ChannelManager.

] repeat

] valueNowOrOnUnwindDo:[seti cleanUp]

SECOND WAY
What is wrong with this technique? Well, there is one thing

that can definitely cause problems, and another that has the

potential to do so. F~st, ThirtgsToCleanUp is not threadsafe. If

two processes were to do simultaneous operations, there is the

possibility of problems (in fact we’d probably be okay because

the Smalltalk processor is non-preemptive). Second, there is

the possibility (although unlikely) that there are order depen-

dencies. For example, if we closed a ile before terminating a

process that read the file, we might run into a problem.

So, phase two was to make ThingsToCleanUp threadsafe and

to guarantee a certain amount of ordering of cleanup opera-

tions. To do this, we created a new class called CleanUp, which

has several instance variables. It has a mutual exclusion sema-

phore and OrderedColleclions for things such as files, sockets,

UNIX processes, and SmaUtaJk processes. Our example here

shows just files and Smalltalk processes.

The mutual exclusion semaphore lets us make access thread-
March-Apnl 1995
stie, and the separate instance variables for the different objects we

want to close, terminate, etc, allow us to make decisions about

what order to do things. Here are examples of the new code show-

ing how the object is initialized, and how you can add and remove

fdes ilom the collections of objects that will need to be cleaned up.

initiabe

processes := OrderedCollectionnew,

files := OrderedCollectionnew.

accessprotect := SemaphoreforMutualIxchrsion.

addFile arulssociation

‘accessProtect cciticak [files add: anhociation]

removeFile aFile

“accessProtect criticab

[files removeAUSuchThak

[association I association value= aFile]]

And here is the clean-up code. Out mutual exclusion sema-

phore protects everything, and within the protection, we termi-

nate processes before closing files. As before, cleanup would be

invoked in the valueNowOrOnUnwindDo: block.

cleanUp

accessProtect critical:

[processes do:

[:assoaation I Lag debug: ‘Terminatingprocess ‘,

association key.

association value termimte.

processes :=nil].

files do:

[association I Lag debug: ‘Closingfile’,

association key.

association value close.

files:= nil]

1

HANDLEREGISIRY WAY
One advantage of the way that we handle cleanup is that it

happens quicfiy. A disadvantage is that we rely o; a globally

accessible object rather than handling things locally.

Another way we could have handled the problem, without

the use of our global ThingsToCleanUp object, is to use the

HandleRegisiry class. A HandleRegish_y is a very interesting

object that allows us to set up a special relationship between

our work object and a clean-up object. When our work object

is garbage collected, the garbage collector informs the clean-up

object about the garbage collection, and allows the clean-up

object to do whatever cleanup we have coded (see Fig. 1).

Let’s create two classes: MyClass and CleanUp. MyClass is where

we open files and fork processes. CleanUp is where we close the

files and terminate the processes when the MyClaSSobject is

garbage collected. In these examples we write to the Transcript so

that you can ~ the examples yourself In a real ~tem we would

not do that because the Transcript is not threadsafe. Ti-y the code

that foil-t’s an interesting exernse in magic!

Here are the definition and the class initialization method for

MyClaSS.Since class initialization happens at FileIn, we need to

explicitly initialize MyClaSS.Mter you have typed in the class ini-
15

tirdization method, select the self initialize text and execute it.

We’ll explain cdl the variables after the code:

Objectsubclass: #MyClaZs

inztanceVariablelJames:‘keyexecutor’

classVariableNames:‘lastKeyRegistryAccessProtect’

poolDifionaries: “

category ‘Examples’

irritiabze

“seLfinitialize” AccessProtect:= SemaphoreforMutualExchssion.

Regisby:= HandleRegistrynew.

LastKey:= 0.

We have to register our MyClass object in a HandleRegistry

object, so the fist question is where to put the HandleRegishy.

To avoid keeping a global objector using a pool dictionary, we

put the HandleRegishy in a class variable in MyClass. When a

MyClass object is created, during object initialization it registers

itself in the HandleRegistry

initilize

key:= seti class newKey.

executor:= CleanUpnew.

selJ class registec self.

Each object that registers with the HandleRegis@r has to be reg-

istered with a unique key, usually a SrnalUnteger. We don’t pass in

the key when we register an object instead, the HandleRegishy

asks the object for its key, so our MyClaSSobject must return the

key when sent the #key message. To generate unique keys for the

specific HandleRegishy, we’ll have the class keep track of the last

key used. And because we may create MyClaSSobjects horn dif-

ferent processes, we’ll create a mutual exclusion semaphore to

make sure that access to the class methods is threadsafe.

Now we need some class methods to return the unique key

and to register our object in the HandleRegistry. The first one,

#newKey, simply increments the key and returns the new

value. The #registe~ method registers the object in the

HandleRegisby and logs a message to the Transcript

newKey

AccessProtectcriticak

[LastKey:= Last.Key+ 1.

“L.ast.Key]

registen anObject

AccessProtectcriticak

~anscript cr; cr; show Registering: ‘ , anObjectprintshing , ‘

with key ‘ , anObjectkey printstrircg.

Registryregister anObject]

Now we need some instance methods for MyClasS.We’ve

slready seen the initialize method, which gets a unique key for

the object, stores a CleanUp object in the executor instance vari-

able, then registers itself with the HandleRegisby. We also

define accessors for the key and executor instance variables.

executor

‘executor

key

‘key
16
VeakDictionary

lobiect2 executor I

I I

#finalizeElements
I

#register

Figure2,

Fhll~ we create a method called start, which adds files and

processes to the CleanUp object. We’ll take a very simple

approach here and just add string~ in a production s~tem We
would open a file and add the actual fde, not a sting. Similarly

we would fork a process and add the actual process, not a string.

What we have here is just to make the example a little simple~

start

self executor addFile: ‘fileI’.

self executor addprocess:‘processI’.

self executor addFlle: ‘file2’.

self executor addprocess: ‘process2’.

Well, that’s about it for the main application class. Now we

need to define ou CleanUp class and its methods:

Objectsubclass: #CleanUp

imtanceVariableNames:‘openFilesforkedprocesses‘

clasA%riableNames:“

poolDictionaries:“

category ‘Examples’

new

‘super new initialize.

initialize

openFiles := OrderedCollecbonnew,

forkedProcesses:= OrderedCollectionnew.

addpile: aFle

Transcript cr; show ‘Txecutor adding file ‘, aFileprint.%ing.

openFilesadd aFile.

addprocess: aprocess

Transcript cr; show ‘Errecutor:addng process’ ,

aprocess print%ing.

forkedprocessesadd: aProcess

To see all thk work simply type in MyClass new start,

To understand how the clean-up work is done, we need to

take a look at three classes: HandleRegistry, WeakDitionary, and

WealcAmay, A HandleRegishy is a subclass of WeakDitionary

which understands the #registe~ message. Most of the work

done by a HandleRegistry is actually inherited, so most of the

HandleRegistry methods we will tslk about are implemented in

Weakl)itionay (see Fig. 2).
The Smalltalk Report

Are you maximizing your Smalltalk class reuse? Now you can with...

Mlm from ARS
● adds multiple inheritance to WsualWorksW Smalltalkt !. :$&l@w ~ :::#@:@w””

● provides seamless integration that requires no new syntax

+ F

j,’~nfe ,:~f,j:,:,
, ,,<,;9 ,<, ,, ‘.” ‘w>:,:. 5:

● installs into exfsting images with a simple file-in

● is written completely in Smalltalk
,, :,?>...:

Leading methodologies (OMT CRC, Booth, 00SE)

++

:W%@rii : “~:;”” ‘ “~,~;;.;
advocate multiple inheritance to facilitate reuse. Smalltalk’s

.+> ;~:!.i+: ,,:: ;: :,,:,,,: ~::.,,.,, ,. ..* ..,.,, ’:,
/ack of mu/tip/e inhetiance suppofi impedes the direct
application of these methodologies and limits class reuse.
Ml is a valuable tool which enables developers to apply

!4 %

,Jk.titi ,::,.:.;:,

advanced design techniques that maxhnlzrs reuse.

H

,,~l; , ;-K., #
,,;;~,,... .-,: :p,;~

1.........3iiiJd..:lm@j&d.c,<“,’,p:”“m”‘“i’i’&”@’“:’””,,l.!>.,,,>; .,.:
Applied Reasoning Systems Corporation (ARS) Is an innowtlva devahyw of high
qualify Sms/rtrr/k development tools, spp/i@htr frrrmaww/ra, inta///ganf sofhvara
systams, asrd M/sled servicae that provideadvanced soluflons 10complex pmblams.

Smslltalk Products ● Consulting ● Education ● Mentoring

tim~mrar~s inVICtUmgem snd Smalirsl@’ am bfthmn.he
Phons/Fsx (919) 781-7997 ● E-mail: info@ aramrp.com

[

Introductory Pdce: $195
To order Ml or for more information on ARS’S family of products and

services, please call 1-800-260-2772 ore-mail lnfo@areco~.com.
—
A HandleRegistry inherits two particularly interesting instance

varisblm vshdwray (a Weaklmay) and executors (an Array). When

we register an object in the Ha.ndleRegishy, the HandleRe@ty

mmputes an array index hm the object’s key It puts the registered

object in valueArrsy and the object’s executor in executors.

This is the reason we implemented the executor method in

MyClas=o that the HandleRegishy can ask the object for its

executor. The default executor method is implemented in

Object and returns a shallow copy of self, so even if you don’t

implement the exeeutor method, the HandleRegi@r still gets

something to put in the executors array.

Where things get interesting is in the WeakArray. Objects ref-

erenced by a WeakArray are referenced uJeukly.This means that

they can be garbage collected if the Wealuirray is the only thing

that references them. (Actually they can be referenced by multiple

Wealdrmys and still be garbage collected.) This is in contrast to

normal references between objects, which are s~g references.

For example, an object in an OrderedCollecdon will not be garbage

collected until the OrderedCollecdon no longer references it.

Fwthermore, when the garbage collector collects an object

that is referenced by a WeakArray, it sends the WeakArray a

#changed message. The WeakArray informs all its dependents

by sending them an #update:with:from: message.

When our HandleRegishy creates the WeakArray in the

valueArray instance variable, it immediately registers itself as a

dependent of the WeakArray. When the HandleRegistry

receives the #update:with:from: message from its WealrArray, it

sends itself a #finalizeElements message.

The ilnafizeElements method finds all the objects in valueArray

which have expired and sends a ffilize message to the executor
March-April 1995
of each one. The default tinalize method, implemented by Object,

does nothing. However, since we want to close files and tetite

processes, we override the finafize method in our L’leanUpclass.

fimlise

forkedprocessesdo: [:process I

Transcript CK;show: ‘~ecuto~ tetiating process’,

process printString]

openFilesdo: [:file I

Trmscript cr; show ‘Exemtor closingfile’ ,

file printshing].

In our example, we first terminate (or pretend to) the forked

processes, then we close (or pretend to) the open files. We do it

in this order just to make sure that no processes try to access

closed files (although they shouldn’t because we only get here if

the object that opened the files is being garbage collected).

CONCLUSION
In conclusion, external resources usually need special processing to

make sure they are released. We have presented some cliflerent

techniques to do this, from the simple approach using a Pool

Dictionary object which tracks the external resources, to the more

interesting and magical approach of using a HandleRegi@. ~

Alac Sharp is en AdvisorySoftwara Enginaarat StorrrgsTak.Ha is tho

authorrslSomvArrEflrLAurYAmDPtrooucnvITY,prrblishodby Van Nostrand

Ffainhold.Ha can be raachadat alac_sherp@strrrtak.com.Dava Farmaris a

SaniorSoftwara Enginaarat StoragaTafc.Ha can ba raachadat

david_farrrrer@stortak.com.Thay bothwork on Ura UNIX StoragaSarvar

softwara, wfdchmanagasconnations to natworkadhosts and drivastha

StoragaTakFamilyof robotictapa Iibranaa.
17

Suggestionsfor a
successllduserinterface
Amy S. Gause
T
HE MAJOR DECISIONS in creating a user interface

for a network management system that monitors a

switched digital video network and is the access to

video services is examined here. The complete system

was rewritten using Smalltalk (it had all been priiarily-in C).

Several problems that were encountered are addressed and theii

solutions are offered. The design is baaed on the Model Vkw

controller (MVC) paradigm, where the model is the dati holder

and notifies dependents of data changes, the view is the screen dis-

play and the controller controls the view and amEwe.s the model.

ANALYSIS AND DESIGN PHASE
The iiretstep taken in creating a user interface for this project was

initially prototyping the basic smeens and investigating how they

would work together. After completing three different prototypes,

it became clear what would work and what would not. The fit

prototype just ported the screens fmm the previous user interface

(ASCII based), just to get farniJiar with VkualWorke. The second

prototype did not include any of the screens in the first prototype.

These screens were completely nw, again, just to see what

VisuslWorke could do and how our reorganization of the screens

would mesh. Nevv ideas were tried to see if they were doable. A

third prototype was done to investigate a completely clifTerent idea

of presenting data. These prototypes helped give us a basic foun-

dation to make more informed analysis and design decisions.

Second, analysis began with itemizing the information and

fimctions to provide for the user. By grouping these items, deci-

sions were reached on what types of screens to implement.

SeversJ methodologies were examined, but none seemed to

address the special needs of user interfaces. Booth had thk to

say about user interface A &D: “The design of an effective

user interface is stilJ much more of an art than a science. For

thk domain, the application of prototyping is absolutely essen-

tial. Feedback must be gathered early and often from end

users., .The generation of scenarios is highly effective in driving

the analysis of the user interface.” It is true that feedback from

users is extremely important, but something must be

designecVimplemented for which the users can give feedback

The third step taken was using the CRC technique to fur-

ther the analysis phase, but augmented to suit the specific needa

of a user interface. For example, CRC cards are normally used

for listing Class/Responsibili~/Collaborato~ this was changed

to Window (which also turned out to be the class), Navigation

(where couJd the user go from this screen), Afions (what the

user can do on thk screen) and Data (what data is dkplayed on

this screen). Each card represented a screen.*
18
It became clear how to derive the superclasses of these win-

dovva(classes) after several cards were done and commonalities

could be seen. The superclass names were added to the cards as

more of a reminder to factor out the common finctionali~.

Cards were also made for the controller classes (controllers for

the windows) and windows not implemented in the prototypes.

These cards more closely followed the CRC methodology by

listing the responsibilities and collaborators.

The cards also helped to make the logical groupings of the

windows more apparent. Laying the cards on a table and orga-

nizing them in different arrangements helped to decide how to

gToup the windows and how the navigational Klerarchy could

be set. ENVVbeveloper also made these groupings easier by

allowing the Windom to be grouped into SubApplications

according to behavior and inheritance.

Another round of proto~ing the screens then began. Using

the augmented CRC cards, screens were implemented going by

their data, navigation and actions listed. After some initial

screens were created, they were “hooked” together navigational-

ly. This prototype (called a mock-up) helped determine how

the screens could logicaJly work together.

SCENARIOS
Thirty (an arbitrmy number) typical functions that tlis I-II

should provide served as the basis of these scenarios, These

iimctions were attained from the user requirements documenta-

tion. The prototype screens were used to follow the scenarios

to see how these functions would be accomplished by the user.

When deficiencies were noticed, they were fixed in the proto-

type. The prototype was being iterated upon and eventually

grew into the completed UI. One of the problems encountered

was once the prototype was stable and provided on-the-surface

functional@, an approach on hanrhg demos should have been

considered (see the following).

USER FEEDBACK
After a good collection of navigational sueens (one view being

able to launch another view, and so on) was attained, user feedback

was requested. The users worked with the screens (although they

had no real functionality at this point) and noted what they liked

and dieliked. We watched and noted the users confosion, prob-

lems, and comments for about two days. By doing this we gained

valuable information from our users, and the users were pleased

because we were interested in providing them with a tool they

● The Ihree prototype were done before the cards (see Fig. 1).
The Smalltalk Report

wanted and liked. We enhanced the proto~ with the users sug-

gestions; in most cases we found alternate ways to provide them

with the functionally they desired. It must be understood that

they may not Imow the ramifications of their suggestions. It is the

I-II designers responsibfi~ to provide the user with the functional-

ity they want without deteriorating the interface or the tilgn.

DEVELOPMENT PHASE
The next step was to provide the screens with a mechanism of

obtaining “real” data. AU that these screens contained until this

point were labels, fields, buttons, empty tables, empty lists, etc.

An initial data model was stubbed-up to provide data to the

views. The data model is a logicsl view of the network and exists

to provide the user interface with a view of the network but

from a users perspective. It has connections that do not exist in

the network but provided navigation among screens. It provides

the views with the data. The views each had their own data

“controller” to convert the data km the data model to exactly

the way it was to be displayed (format). For example, some data

may be dkplayed as a string on one screen and as an integer on

another depending on the widget. At this point, more enhanced

functionality was provided, such as: disabling and enabling cer-

tain areas of the screens depending on which items were select-

ed and providing different types of menus depending on which

navigational path the user happened to choose, etc.

PFIOBLEMS AND SOLUTIONS
(Using PsrcPlace Smalltslk with VisualWorks) During the

development of thk user interface, many problems were

encountered. The significant ones along with the solutions

implemented are listed below.

Context Menus
The yellow and blue button menus (on all the screens) provided

by the development environment still were available to the user

at runtime-which could be potentially dangerous to the run-

ning image if the user happened to get curious. For the yellow

button, an extension was made to the ApplicationModel that

provided a class method that returned nothhg but an empty

PopUpMenu, On each screen that contains fields, this method

answered the menu of that field. For the blue button, a subclass

of ApplicationStandardSystemController was created to override

contioLAfivity as follows:

control.lltivi~

‘self conholToNextLevel

Extanding the Application Model
Some screens had large amounts of data, meaning many of

components (labels and fields). When the control layer (the

data controller and the view controller) was put in, there was a

lot of’ not very readable’ code when it comes to

disabling/enabling components, grabbing the value of a Label

off the view, etc. When disabling/enabling components, the

following code was implemented

aBuilder:= selfbuilder.

(aBuilder component #narrre) disable.

(aBuilder componentAt #socialSecurityNumber)disable.

(aBuilder compenentAk#salary) d~able.
March-April 1995
The article “Extending the Application Model”l addresses a

solution to thk problem by extendhg the ApplicationModel

with a method crdled “dkable” that could look something like:

disable anArrayOfComponents

mArrayOfComponentsdo: [:each I

(selfbuilder componentAtieach) disable].

The same could be done for enable. A method could be added for

returning the value of a IabeL Our initial try at this looked like:

labelFor aSymbol

((sewbuilder componentAt aSymbol)component component label

text string) asNumber.

Even in Smrdlt~ GUI code can look complicated. Many exten-

sions could be made to the ApplicationModel depending on what

is nece.cwuy If they are diversified, each type of screen might have

m ApplicationModel of its own. Extensions can be developed for

such behavior as intilbility taking keyboard focus, or any other

view functionali~ that is implemented across several screens.

Updating Tables
Tables are not as easy to develop as the examples in the

VI SUALWORKS USER’S GUIDE, especially if dynamic updates

are necessary The tables on our W were to be read-only with

dynamic updates. When a window with a table on it is instslled

and methods for thk window are defined using the default ini-

tialization, a method is created on the instance side of the class

under the aspects protocol. The example provided in the user’s

guide uses a TwoDlkL TwoDLists will not let dynamic updates

happen to the table. The solution was to edit the method that

was created in the aspects protocol to use laissez-faire initial-

ization and return a TableInterface whose selection InTable is

set to a TableAdaptor on a Lkt. So it looked something like:

exampleTable

“errampleTable==nil

ifTrue: [exampleTable:=TableInterfacenew

selectionInTable:(SelefionInTable with: TableAdaptorom Lkt new

adaptors: (RowAdaptoradaptForhdexes: #(12))));

cokrmWldths: #(100 100);

columrJ.abelaArray#(‘Name’‘Address’);

yourself.

“Fordynamicupdates add self as a dependent of the

selectiorsInderrHolder”]

ifFalse: [exampleTable].

For dynamic updates, in the update: method it is necessuy to

provide a way to re-read the data into the table-a call to the

same method that read the data into the table in the first place

woold do.

aswmsssle/wbdow- (SIQ.aa?nslsmse)

Ibd@im Adhss

ma

Figurs 1.
19

Flow Lsbnls for Tablas
Row label widths did not dynamically resize according to the

longest label and were sometimes chopped on the left for long

labels. Several screens displayed tables that had row labels. If

the row label width was set to 100 (pixel width) then a long

string as a row label would get chopped on the left side. If all

the row labels were short strings then the space at the left was

too large. By dynamically calculating the pixelwidth of the

longest row label and setting the row label size to that value,

the table resizes automatically and no row labels get chopped.

This seemed a simple enough solution, but the hard part was

how to calculate that pixelwidth. If the graphicsContext of the

table is gotten, its font appears to be #firted (we were using the

#defiult font). This throws off the pixelwidth calculations if

the widttrOfStig: method is used. As of present, changing the

font of the row labels to #6xed is the implemented solution.

bother solution is to convert the row labels to Composed T-

and use the width to recalculate the row labels width.

Ilamonatrations
Marketing and Documentation departments requested

demonstrations for the current state of the system during all

phases of the project. Demonstrations should be considered

during the design phase. One of our problems was that we

were not thding about providing demos, so when a demo

was needed, the process was not an easy one and the demo had

flmctions in it that would throw wslkbacke. Dependhg on

how clzsses are setup in a system there will be different

apprOaCheS On how tO handle this problem- OUr eyetem iS
arranged in such a way that utiilzing subclasses could be help-

ful. For example, there is a class for a data entry window. A

subclass of this class, DernoDataEn@lVindow, could have the

same windowSpec, same functionah~, but override the neces-

sary behavior that would not be appropriate for a demo.

Replace functionally with descriptive Dialogs.

Displaying Data
Every window opening should default with the most important

data for the user using as little screen real es~te as possible, but

other data needed to be on the window too. Several suggestions on

Figure 2.

:Othcr dab .

Wm8m’:.......,

LIYS important &w

LESS important ti%

Lms impmmnt data:

LUS important&w

............
n~,!
20
how to handle this were given have two windowe, but if the par-

ent window closes so should the child, have one window with a

toggle switch to expand the window if set and shrink the window

if not set. The latter was implemented. The window was ueated

with important data on top and lees important data on bottom. A

check box was sdded for expanding and shrhking the window.

The minimum size of the window was set such that the bot-

tom data could not be seen. Thk is done by choosing the win-

dow->bounds->fixed size options on the <operate> menu when

editing the canvas. When the window is expanded, it was

desired that some buttons should stay with the bottom of the

window. Instead of moving a component to another part of the

window, the invisibility property was used.

When the check box in Figure 2 was checked then the top

divider and button were made invisible and the screen was expand-

ed to in complete size. When the check box was not checked the

top divider and button were made visible and the screen returned

to the minimum size. The method that handled the expanding

and shrinking is dependent on the value of the check box.~

hititie

self toggle value: false.

self toggle onChangeSend #resizeViewto: self.

resizeb

seLfshowDetailevalue

ifTrue: [(aBuilder cornponentAh#topButton) behwisible.

(aBuilder componentAk#topDivider)beInvisible.

winRectangle := aBuilderwindowdiapla.yBorr.

(aBuilderwindow)moveTo:(currentRectangle origin)

resizw ((winRectangleextent)+ (o@400))]

ifpalae: [(aBuilder componentAk#topButton) beViaible.

(aBuilder componentAt:#topDivider)beVisible.

winRectangle:= aBuilderwindowdisplayBorr.

(aBuilderwindow)moveTo:(currentRectangle origin)

resize: ((winRectangleextent) - (O@400))]

The 400 depends on how much expansion is necessary to reveal

the lower data. Since thk is a hardcoded number, whoever edits

the canvas and changes the length of the window wiU have to

be aware that thk value may very well need changing, too. A

better way would be to derive the value instead of hardcoding

it. Consideration of the window manager is necessary when

dealing resizing capabilities.

CONCLUSION
Prototypes are extremely important, especially if the developera

are ncvv to Smalltalk. Prototypes help developers gain a basis

for making important design decisions. Scenarios help develop-

ers relate to users. They should be understandable for both

developers and users. Scenarios are an excellent test of the user

interface and help to locate potential usage problems early. ~

Flafarsnca
1. Howard, T., and B. Kohl, Extending the application model, %lAUTALK

REPORT,3(7):1-7, May 1994

AssayS. Gauseis a seftwsrn engineerst BroadBandTechnologies,Inc. and

has been workingwith ParePlsceSmalltalk and VisualWorlra1.0for a year.

Sha asn ba rsachadat ssg@bbt,cem.

t Code enhancemank aa dascribed earliarare diractly applicable hare.
The Smalltalk Report

Storing objects
into files in VisualAge
Wayne Beaton
~ ~SUAL PROGRAMMING IS the way of the future! A boldvstatement that certain playera in the computer industry

hope to make come true. VkuaWge offers a step in this

direction. Currently VialAge Ids the rich set of parts that will

make it ara overwhehng .sucms. With some third party involve-

ment, and some ingenuity, we can solve tbie problem by providing

VkuaL4.ge parts to visually solve any problem. Okay not uny prob-

lem, but we can come very close.

Before I gu tm far, let me get this out into the open. I like

VialAge. ~ helps me to do my job faster and easier. VisualAge

just lacks some features that I would like to have. When it is

decided that a new part is required a decision must be made on

how to implement it in a way that makes it the most ueefld. I’ve

heard it said that “in general, general solutions don’t work” I

believe that this means if you W to anticipate what tbe next guy

wants your part to do, you’re likely to be wrong.

The fi-st part that I thought that I might like to have that was

missing, was a part that could provide fde access. AU I really want

to do is write a single object to a file and then read it back From

this was born the ObjeetLoaderAndDumper.

THE OBJECT SWPPEFI CLASSES
IBM Smabdk comes with two classes that provide fle access. The

class ObjectDumper can be used to write objects to a fdq the class

ObjectLoader will read objects from a tie. The interfaces for these

classes are pretty straight forward. To write a single object to a file,

the following code can be used

ObjectOumpernew

unload anobject

tiome ‘c~ul-kdar

Retrieving the object back from the fle is another simple matter.

anObject:=Objectlaadernew

loadFromHle‘c~onkdat’

Using these classes, we em easily build a reusable nonvisual part to

--..-—————.
I

; ,____ -——-——— ~

I
Attributes 1 ~

I
I Actions \
I :1
I 1 I

I fdeNseoe

e:

~% “ /’d !

!- ,,>1

object dump ~
‘1
IIII

l___________ J o___________:

igure 1. The Public Intrnfece of the Object loader And Dumpar
March-April 1995
use in VisualAge. How would such a part work? The

ObjeetLoaderAndDumper has two attributes, filelhrne and object.

Ftier, it has two actions, load and dump (see Fig. 1).

To load an object from a fde, the filehne attribute is set to the

full name and path of the file to loa~ and the action load is

invoked. The result of the load action puts the contents of the tile

into the object attribute. To dump an object to a tie, the fileName

attribute is set to the name of the file, and the object attribute is set

to any object. The action dump is invoked, and the contents of the

object attribute is written into the tie.

BUILDING THE ORJECTIOADEIUWDDUMPEt!
The ObjectLoaderAndDumper was created as a nonvisual part. Both

attributes use the default attribute settinge, with the flelkirne

attribute of type Sbing and the object attribute of type ObjecL The

load action invokes the script load and the dump action invokes

the script dump. The generated scripts for the atibutes will not be

included here, the ecripte for load and dump are as follows.

0Ljwtbaddm!lhunper5utmce metbodr:

load

“Sets the receivds -object’athibute to

the cuntentsofthe filenamedbythe

receives’s’61eName’atkilmte.”

selfobjech

(Objectkada new

loa&romFie: self61eName)

dump

‘Writesthe contentsofthe receives’s‘object

atiute to the fle namedbythe receivefs

‘61eName’athibute.”

ObjectOumpernew

unload seLfobject

htopiie selffilelkune

This code alone makes the Objetiaderk-dhunper easy to use

visually. Howevc r, a nice extension might be to provide file

prompters to allow the user to select a fde name. Again, it would

be nice to do this all visually

Fill SELECTION
The class CwFileSeleclionPrompter provides a connection to an

operadng system spedic fde browser. We can use this class to get

file information hm the user. Actually there’s a better class to use,

one that itself employs the CwFileSelectionPrompter. The class

Etl%lhneprornpter provides a little more behavior for ile browe-

ing, This class has two class methods. Using the class method

#prompfforFiieName: defaulb shouldExist at we can provide a
21

message to the user, suggest a default, stipulate whether or not the

tie spedied by the user should exist, and suggest the location (in

screen coordinates) where to open the file browser.

The message to the user is the message that is displayed at the

top of the tie browser, The default is the name of a tie, which can

include wild-card characters, to initially provide to the user.

6 I like VisualAge. It he@ me
to do mg job faster and easiez--

Stipulation of whether or not the file exists allows us to force the

user to select a fde d-sat already exists. This can be pat-dcularly use-

fld for specifying a file to load. If the user specifies a file name that

does not exist, they si-e idormed and motivated to provide a dif-

ferent name. The Jast parameter, the screen coordinate to open the

file browser at, does not seem to have any dlect in the code.

This message will answer the name of the fde specified by the

user including the flsll path, or nil if the Cancel button is clicked.

I fileNameI

61eName:=EtFileNarcrePrompter

prompfforFileNama‘Selecta fileto operc’

defaulk - ‘.dat’

shoul&ist tie

* or@o,

fiklhrne iaNilifl’rm ~’them.ercanceUed”]

Using this new knowledge, the ObjectLoaderAndDumper can be

extended to include afions called prompfforFileNameAnd.Load and

promptForFileNameAndDurnp. The corresponding methods follow

0b&Zoader4ndDumpers%tance methodr:

“Promptsthe user forthe name ofthe 61e

to load and then loadsit.”

I newFileNameI

newFileNanre:=EtFiiNsmeRompter

promptForFileNamw. Loadfromfile’

dei%ultselfdefaultFiieName

shouldExkLtrue

ak O@O.

newFileNameiallilifltue [“sew.

seti

filekone newFileNam~

load

“Promptsthe user forthe nameofthe file

to saveand then savesthe conterh ofthe

reeeiver’s.objeet’athibute to that file.”

I newFiiame I

newFileName:=!MileNamePrompter

pmmptForFiieName. Saveto file’

default selfdefaukFiMWmre
22
shouldhist fike

at O@Ol

newFileNarneislil ~R [“sew.

self

fileName:newFileName;

dump

ObjectLoadewlndDumper~wte method:

“Private-Answersthenametou seby

der%it whenprom@ngthe user.”

“self61eNameisNil

ifl’rue [.*.*’]

ifFaLsrz[sellfiNarne]

READ-ONLY AllRIBIJTES
Read-only a~ibutes were added to provide the abfity to disable

buttons or menu items when loading or dumping are not possible.

Read-only atibutes, when created in the public interface editor,

have only the get selector, changed event symbol and type fields

specified, Ftier, instance variables need not be created for read-

ordy a~ibutes.

The read-only attributes isLoadErtabled and isDumpEnabled

both have the type Boolean.

ObjectLoaderAndDumper krtance method:

‘Answers wheth= or not it is possibleto

bad. Theret- w load onlytithe

.61eName’athibute is specil%d.”

“selffikliacneWring

‘Answerswhetherornot it is possibleto

dump.Thereceivercan dumponlyif the

. fileNsme’attcibuteis spetied andthe

. objed attribute is not nil.”

“selffleNameisSI@

and [seUobjectntiil]

To make these read-only attributes work as expected, we must sig-

nal when they change. Clearly, id.oarhalied changes when the

fileName attribute chan~, isDumpEnabled changes when either

the fleName attribute or the object attribute changes. Extensions

cars be made to the set methods for these attributes.

Objectl.oaderilndlhonpe rirrstancemethods:

~a!Mrlg

“Setsthe. 61eName’atiute to aShingY

fileNacne:=astring.

Sdf

sigmlXverrk#lileNsmewitlr a.Ming;

Sigmhent #iaLoadEnabled

wittt selfishad.habkd;

sigmlEvenh#isDumpEnabled

witlx selfisDurnpEnabled

~ anObject

“Setstie. object’athibrrteto anObject.”

object:= anObjecL

self

signaWvent#objectwitlr anObject;

signalIvent #isDumpEnabled

wittc seti ist)umphbled
The Smalltalk Report

R--
Object LoaderAnd Dumper

Figurn2.The object loader and dumper in tha composition ed~or.

PFIEITY ImNs
By dei%rlt, new parts created by developem represent themselves i]

the Cornposition Editor as simple puzzle pieces. It might be better

to use a different icon to distinguish the ObjecLLoaderAndDuntper

from other parts. To do this, we can specifj a class method

#abtlnstanceGraphicsDes@tor.

ObjedlasderArrdDrmrper class methods:

“hewers the descriptorforthe iconto

&p@in the CompositionEditor.”

“MconDesaiptor new

modukthrm ‘AETICONS’;

id 2SS

This method answers an instance of the class AbffconDescriptor,

which requires the name of a module and en id within that mod-

ule. In the 0S/2 world, modules are DLLS containing icons.

Fortunately VisuelAgc comes with a DLL filed with icons that w

can use (an appendix in the USER’SGUIDE lists them all). Icon id

288 holds a picture of two disk drives stacked on one-another (see

Fig, 2). I thought this icon was appropriate enough,

A SIMPLE TEXT EDITOH
With the ObjectI.oaderAndDumper specified it is an easy matter to

create a simple text editor wihout euipting.

The required parts were assembled using the Composition

Editor. A multiple line text was added to a window with appropri-

ate sizing information. Several menus were also added, along with

an Object Loader And Dumper. Figure 3 shows the endre assembly,

including all required connections.

The connection labeled”~ in I?lgure 3 connects the filelhne

i-_____--_l

Figure 3.Thesimple text editor.
March-April 1995
riieiii=---””l . 1

+

,>.,.Q*,:, ~,, ‘
,~. _: Sav:{ “:”. ,

.’.”.ijabi+#is.=.
-

(3qie
Oblecl Loader And 13umper

-——. 1

Figure 4. Connections Irelwaan tha menu and tha Objact

attribute of the Object Loader And Dumper by a one-way atibute-

to-attribute connection to the “title” atibute of the window. This

has the effect of changing the title of the window to the name of

the iile speded by the user in any open, or save operation. The

connection labeled “2” comecte the object attribute of the Object

Loader And Dumper to the object attribute of the multiple line text

by abi-directional attribute-to-attribute connection. For this con-

necdon to work the Nom change on each keyshoke attribute of

the multiple line text must be set to true.

F* 4 shows a closeup of the connections between the Fiie

menu and the Object Loadw And Dumper. The connetion labeled

“l” hooks the clicked event of the Open... menu item to the action

prompfforFileNarneAndLnad. For the “Save” menu item, the con-

KIf you ty to anticipate what
the next guy wants your part

to do, you ‘re likely wrong.

nection labeled “2” connects the enabled attribute to the

isDumpEnabled attributq the connection labeled “3” connects the

clicked event to the dump action. The connection labeled “4” con-

nects the clicked action of the Save As... menu item to the aciion

promptForFiLeNarnddDurnp.

From these connections, the Fii menu springs to life. The

“Save” item is disabled until a valid tile name has been speci6ed,

either by opening a file, or by saving one. Once enabled, the Save

item will save to the existing file.

CONCLUSION
VialAge is miseing some obvious features that would make life

easier for developers. Unfortunately, anticipa@g the needs of

thousands or millions of developers ie a daunting task and provid-

ing a general solution that eveyone can live with is nearly irnpos-

eible. However, creating our own reusable parts is an easy matter.

The ObjectLoaderAndDumper ie en example of a reusable norrvi-

sual pert which will read a single object from a fde or write a single

object to a file. Large applications may require a more sophisticat-

ed part to eatis$ disk file access. The ObjectLoaderAndDumper is a

starting point which demonstrates the smazing potential of

VkualAge.

WayneBoetmris a seniormemberofthe teehniselstaff andpert-limeimtmator

at the O~act PenpleIns.,Ottawa,ON,Cenada.He findsjust aboutanykindof

prohlam‘tiamadinteresting.”Ha canbe raachada-mailet

wayrra@objectPaoplamr.ce.
23

ALAN KNIGHT

Instance
initialization
ONE OF THE goals of the object-oriented approach

is not to have to worry about the internal representa-

tions of objects. One aspect of this is that clients

should not have to care about initiahzing the objects they use,

and that newly created objects can be expected to be in a

usable state. There are a number of ways of accomplishhg this

in SmaUt@ and (naturally) a wide vtiiety of opinions on the

relative merits of each.

OVERRIDING NEW
The most common initialization technique is to override the

class method new to be

new ‘super new initialize.

With this override, any object created using new is guaranteed to

be initialized before any other messages are sent to it. It does

have a drawba~ however. We have to implement this method in

quite a few places, and be quite cweful about which places. The

default implementation of new doesn’t call initialize, so we must

provide an implementation in our classes, but only if they inherit

directly from Object. If we provide it in other classes, then their

initialization code will end up running more than once.

To see how this happens consider the following class

hierarchy.

Object

AbstractClass

ConcreteClass

We override new in both AbWactClass and ConcreteClass, and

provide initialize methods. The expression ConcreteClass new

will result in the following sequence of calls:

Concrete>>new

Abtiact>>new (calledvia super from ConcreteClass)

Behavior>>new(calledvia super FromAbstract)

Concrete>~initialize(called fromAb~a&>new)

Abstra@%tialim (called via super from Concrete)

Concrete>~initialize(called from Concrete>>new)

Abstract>>initialize(called via super FromConcrete)

This multiple initdization is inefficient and can cause prob-

lems if it’s not safe to run the initialize routine multiple times.

It’s important that new only be overriden once, in immediate
24
subclasses of Object. It’s also important that we call super ini-

tialize in our initialize methods unless we inherit directly from

Object, in which case we must not call it.

This is a bad thing, since we must be aware of a class’s posi-

tion in the inheritance hierarchy and modify code if the inheri-

tance hierarchy changes. It’s not that diffkult, but it’s an

unnecessary and tricky detail that detracts from something that

tries to be errtremely simple.

There’s a very simple way to fm this. The default new

method (in Behavior) should be:

‘self basictiewinitialize.

and there should be an Object>>iniMize that does nothing.

This would allow the elirnksation of almost all overridden new

methods and make the usage of initialize much more consistent.

There are, however, a couple of problems. The first is that not

all objects require initialization, and some of those that don’t are

importsnt system objects. We don’t really want to add an extra

message send to the cost of every Point Rectangle, or Pleat cre-

ation. This is easily overcome. Instead of overriding new in most

user classes, override it in those system classes where it’s important.

In the absence of a
proper specification, an initialize

method provides an easy way to see
at a glance the e~ected types

instance van”ables.
of the

Most of these objects are ah-early created with special class mes-

sages, and these can be changed to call basicNew instead of new.

The name basicNew even makes sense as a basic creation operation

that does nothing else, not even the normal initilir.ation. This is

simpler and more consistent than current usage, and it takes the

burden of worrying about the problem off of “normal” users.

The second objection is backward compatibility. It would

have been nice if Smalltalk was originally designed with thk ini-

tialization scheme, but it wasn’t. If a Smslltalk vendor were to

make this change today, it would break almost every class writ-

ten for the old initialization scheme. In fact, it would introduce

exactly the multiple initialization problem it’s designed to avoid.

If only one vendor introduced thk convention, it would add an

additional incompatibilky with all the other dblects. Because of

thk, I doubt such a change wiU be adopted unless it’s mandated

by a higher body like the ANSI standardization committee.

This suggestion isn’t original, but has been suggested by

quite a number of people. I believe I first heard it suggested by

Bobby Woolf(woolfl%crn.erg).

OTHER INITIALIZATION ISSUES
There’s another potential problem with automatic initiahzation.

Even if the initiahze only runs once, it can still do unnecessary

work It’s rare that I actually want an instance of something
The Sma[ltalk Report

--
with the default values. Generally I’m going to create an object,

initialize it to default values, then immediately overwrite those

with the correct values. This wastes at least one memory alloca-

tion for each initialized variable, and probably more if those

objects have their own initifllzation code.

Thk isn’t usually seen as very significant, for several reasons.

First of all, there isn’t the same possibility of actual error as

with multiple initiahzation. While initialize methods often

make assumptions about the state of the object, setting values

after initialization will normally use public accessors, which

are much safer. For example, an initialize method might be

written as

initilise

tempFile := (Filenamed: self defaultFileName)open.

If thk is run repeatedly because the original file variable will

get overwritten and the first file will ne~er be closed. On the

other hand, public access methods usually assume they may be

run repeatedly and take appropriate precautions.

tempFileName:aHleNasne

(tempFilenotliil and [tempFileisOpen])

ifMe: [tempFileclose].

tempFile:= (Filenamed aFileName)open.

Overwriting initiahzed variables is not only safe, but it doesn’t

usually cost much. Object creation is extremely cheap in

Smallt~ and if the default values are simple, the cost just isn’t

worth worrying about under normal circumstances.

If you do want to worry about it, it’s possible to work

aroun-d this problem using class creation-methods. Lots of

objects aren’t created with new, but with custom class messages

which either require specification of the important variables or

provide defaults. Often there will be simpler versions in which

most of the arguments default to simple values and more com-

plex messages where all the parameters must be fi.dly specified.

A typical example might look something like:

new

‘seti foo: self defaukFoo.

fm aFoo

“seLffoo: aFoobar self defaukBar

foo: aFoobac aBar

‘self basicNewfoo: aFoo;ba~ aBar.

If dl instance creation is done through these class messages,

then all the variables requiring initialization should be initial-—
ized exactly once, with no wasted effort.

Of course nothing’s perfect. Thk method has the dkadvan-

tage of spreading code for default values even more than lazy

initifllzation (see below). It also suffers from Smalltalk’s strict

requirements on message form. To define something liie this,

I really want to say that there is one creation method with N

arguments and that some or all of them maybe omitted, in

which case they should use the default value. In Smalltalk I

have to explicitly define ZNdifferent messages if all the combi-

nations are possible. The usual compromise is that only a few

different messages are defined, representing what the develop-

ers feel are the most common cases.

LAZY INITIALIZATION
A more general way of overcoming these dlt%culties is to use

lazy initialization. With thk technique, variables are not initial-
March+pd 1995
ized when an object is first created, but on first access to the

variable. This usually involves writing get methods as:

foo

foo == nil

ifltue: [foo := #dehukFoo]

ifFals& [Afoo].

There’s no danger of a variable being initialized twice, and if we set

the variable any time before it’s accessed there’s no duplicated work

Thk technique has its own disadvantages. Whale it eliminates

the possibfi~ of unnecessary work in initialization, it introduces

some overhead on each variable access. There are two sources,

the nil test and the inabfity of the compiler to optimize the

access method as is normally done for pure getiset methods. This

inei%ciency is still negligible for most cases, and if there are sig-

nificant numbers of variables that aren’t accessed at all, the sav-

ings from not initializing at all can easily outweigh tbk overhead.

A stylistic objection is that lazy initiahzation pretty much

requires all varia-ble access to be through messag~ sends. That

isn’t such a bad thing, and in fact lots of people advocate it as

good style. The big disadvantage is that you must define access

methods for everything, even private variables. Since no

Smalltalk currently supports enforced private methods these

methods must be public. Some of the issues involved with this

style of coding are discussed in Kent Beck’s article “To acces-

sor or not to accessor?” (THE SIVMLLTALKREPORT, 2(8):8).

A number of people I spoke to didn’t like lazy initialization

because they believed it was important to keep all the initial-

ization code in one place. None of them had a convincing

explanation why it was important, but I have a theory. I ~hhk

it has to do with specification rather than initialization.

Since Smalltalk is dynamicrdly typed, there’s almost no

information in a class declaration. You know the superclass,

and the number and names of the instance variables. There’s

no information on the expected type of each variable, and even

if the names are good they don’t necessarily indicate types.

Information about possible types is one of the valuable things

class comments provide. Unfortunately an awfid lot of code is

written without class comments, and those that exist aren’t

necessarily accurate. ln the absence of a proper specification,

an initialize method provides an easy way to see at a glance the

expected types of the instance variables.

WHICH IS BEST?
The ideal initialization mechanism depends on what you’re try-

ing to accomplish. My normal technique is to use super new ini-

tialize by defas.dt. If I start to run into dlfilculties or serious inef-

ficiencies with that approach I’ll use lazy initialization as it seems

appropriate. One situation where lazy initifllzation is particularly

useful is with class variables and class instance vmiables. There

are lots of other issues associated with initializing classes. One

reference for these is Juanita Ewing’s article “Should classes be

initialized?” (THE SMALLTWK REPORT 1(3):6). Q
25

fi~.~nwd
aml+i~wre, and
*e pragmatic of

the dwelopment
pI-OC~S that

help a team
dwekp and dine
an arctitiecture.

-“ ‘

AGENDA April 24 Chicago TO REGISTER
PI@’@ 212-242-7515

. conceptualmodels ~nde~ April 25 Newyo* Ciw ::;,%~@s7B
lying the F@och m4d @il 27 Dallx~d the 0M7 lnfo@&uucp.netco m-corn

* A pr~tlcd e~mple illus- April 28 San Francisco price: $550 ~r ‘*”
tnting both methds

. Roed~ to snethd Mamh 3I and g~ a FREEnewer ~ “a, ~o~~ for windowsunification

. Future Trends
cOpy 04 Ratio
(Solo Vmion) or OMWI’” for the PC.

&ir~ “shw yOU
htw to deveb an
~~t-~nted
~m usingthe
ri@ model at the
right time.

.)isn Rum*ugh

KENT ❑ ECK

what? what
happenedto

garbage
collection?
I
‘LL TELL YOU what happened to garbage collection. I sat

down three times to write the next column about garbage

collection, and nothing came out. Between that, my wife’s

ten-game-winning streak at Cribbage, and 46 inches of rain so

fw thk year (and it’s stii January), I’m pretty frustrated.

I’ve been readkg Edward DeBono’s book Thinking Course

(highly recommended). One of the techniques he suggests, and

also one I’ve seen in art, is when you’re stuck do the opposite.

In art, if you’re having trouble drawing a thing, t~ to draw

something that is completely the opposite. Of course, it’s

impossible to draw “not a flower,” so you end up with some-

thing which gets at “flovverness” backwards. I’m writing a col-

umn about “not garbage collection.” I’m not sure where I’ll end

up, but at least the column will be done.

CLASS
Bob Williams pointed out a problem with the column I wrote a

year and a half ago or so on instance specific behavior. The

SmaUtalk/V version works fine, but when you speciab an

instance in VkualWorks, all of a sudden a bunch of code stops

working. The problem? Class tests.

For example, Point comparison (comparison is where thk

happens most often) is implemented like thk:

Poin~~= aPoint

‘self class = aPoint class and: [selfx = aPoint x &(selfy = aPoint y)]

It’s implemented this way so you can put Points and Rectangles

and Arrays and Sh-irtgs and a bunch of other objects that don’t

respond to x and y in the same Set and not have things blow

up. All well and good, until you start specializing instances.

The problem is that “class” returns whatever is in the class

field of the object. Instance speciahzation in Vh.mlWorks oper-

ates by creating an anonymous Class (really a Behavior), and

setting the class of the instance to it. That way, you can make

changes to the Behavior without affecting all the other objects

of the same class.

The Point comparison code above, though, will fail, even if
two Points are equal. If the receiver has been specialized and

the argument not, the class of the receiver will be reported as

this funny Behavior while the class of the argument is just good

old Point. kc they equal? No way. Therefore the two Points

aren’t equal, even if they both print as “2@3”.

I turned to David Llebs, my own personal guide to

VisualWorks arcana, for ideas. Here’s what we came up with.

When you ask an object for its class, it should return a real

Class, the thing you defined in the browser. If you want to use

instance specflc behavior in VkualWorks, you need to make

the following changes. Note that if you try the following, the

order in which the methods are defined is important. Trashing

images is exciting, but it doesn’t rank high on the productivi~

scale.

First, the class primitive, the one that just returns the con-

tents of the receiver’s class field, has to be renamed:

Object>>primClass

<primitive:111>

selfprimitiveFailed

Next, we have to be able to go up the superclass chsin looking

for a rerd class. Instances of Class and MetaClass are real.

Class>>realtis

‘seli

MetaClass>>realClass

%eLf

Behavior, however, needs to ask its superclass for a real class.

Note that thk code ignores the kinky case of a Behavior with-

out a superclass, which doesn’t arise in normal use, nor in the

instance specialization code. I’d have to think carefully about

what I wanted the code to do in that case.

Behavio~>realClass

nse~ superclassrealClass

Finally,Object>>classneeds to be modified so it finds a real class:

Object>~class

“self prhrtlass realclass

Now it works. You can specialize Points and still have “=” work

correctly.

FORMAlllNG
Onto the chosen secondary topic for the day-code format-

ting. What? You think this is a dull, dry, boring topic best rele-

gated to corporate style guides? Not so. As soon suggest that

typography is useless, that content is all that matters. The

medium is the messageformatting your code is an opportuni-

ty to communicate subtle but important information to your

readers. It is the first thing people will look at when they see

your work. In groups, it is the one topic most likely to cause

friction. Everybody has to do it the same or everyone is frus-

trated, but no one wants to do it like anyone else.

I decided to apply the power of patterns to the problem of

source code formatting. Ward Cunningham and I used to have

long discussions at Tektronix about just the right way to format

a method. Roxie Rochat also produced an excellent style guide,

which I didn’t entirely agree with, but that took a comprehen-

sive look at the issue of formatting. In the yesm since, I have

often wondered if there were rational rules of formatting, or if

it really was just a matter of personal style.
27

The appearanceof the new Cooper and Peters product ecUt,.-
with its cool programmable formarnng, also drove me to try to

canonize my own formatting style.

When I started writing these patterns, I thought I’d end up

with fifteen or twenty. As it turns out, I ordy found five, and

me Suggesting Parameter Name isn’t really about formatting.

The code they turn out isn’t exactly like I would have formatted

it before I enumerated the patterns, but I like it. It is simple

and consistent, and it meets the main goals of code formatting.

What are the goals of formatting? As far as I can tell, the

main forces influencing any code formatting style are:

● Minimize heighkFormatting should produce the fewest

possible number of lines, consistent with the rest of the con-

straints. This is important in Smalltalk, because fewer lines

translates into more browsers, or less scrolling in the existing

browsers.

● Mhimize width-Formatting should produce code that

doesn’t have to be either scrofied horiz~ntally or line

wrapped. Line wrapping makes reading more dficult,

because it messes up the shapes made by indentation, and

horizontal scrolling slows down typing because you’re always

adjusting that darned scroll bar.

● Qtick recognition-Formatting should produce code whose

gross structure is apparent at a glance. Important features

like flow of control and the presence of blocks should be

obvious within a fraction of a second of seeing the code.

● Careful readin~Formatting should produce code that

reads well in detail. You should be able to accurately read

selectors. You should be able to understand the flow of con-

trol in detail,

These constraints are often in conflict. A good formatting style

finds the right balance between them. I’m not saying that what

follows is the be all and end all of formatting, but it is simple

and consistent. If you dkagree (and I’m sure some of you will),

try to writeup your own formatting style as patterns. Figure

out what constraints you are resolving and how you are resolv-

ing them.

These patterns, and a whole lot more, also live on the

Portland Pattern Reposito~, a Web server operated by

Cunningham and Cunningham. Check them out by pointing

your Web client at ‘http://c2.cod’.

TVPE SUGGESTING PARAMETER NAME
What should you cdl a method parameter?

There are two important pieces of ifiormation associated with

every variable-what messages it receives (its type) and what

role it plays in the computation. Understanding the type and

role of variables is important for understanding a piece of code.

Keywords to communicate their associated parameter’s role.

Since the keywords and parameters arc together at the head of

every method, the reader can easily understand a parameter’s

role without any effect on the name.

Sma.lltalk doesn’t have a strong notion of types. A set of

messages sent to an object appears nowhere in the language or

programming environment. Because of this lack there is no

direct way to communicate types.
28
Classes sometimes play the role of types. You would expect a

Number to be able to respond to messages like +, -,*, and/; or a

Collection to do: and includes:. Therefore:

Name parameters according to their most general expected

class, preceded by “a” or “an.” If there is more than one para-

meter with the same expected class, precede the class with a

descriptive word.

An Array that requires Integer keys names the parameters to

atipuk as

at: anInteger puti anObject

A Diclion~, where the key can be any object, names the para-

meters:

at keyobject put: valueObject

After you have named the parameters, you are ready to write

the method. You may have to declare Role Suggestig

Tempormy Variables. You may need to format an Indented

Control Flow. You may have to use a Guard Clause to protect

the execution of the body of the method.

INDENTED CONTROL FLOW
You are writing a method following ‘l@e Suggesting

Parameter Name.

How do you indent messages?

The conflicting needs of formatting to produce both few lines

and short lines is thrown in high relief with this pattern. The

only saving grace is that Composed Method creates methods

with little enough functionality that you never need to deal

with hundreds jr thousands of words in a method.

One extreme would be to place all the keywords and argu-

ments on the same line, no matter how long the method. This

minimizes the length of the method, but makes it difficult to

read.

If there are multiple keywords to a message, the fact that

they all appear is important to communicate quickly to a scan-

ning reader. By placing each keyworcVargument pair on its own

line, you can make it easy for the reader to recognize the pres-

ence of complex messages.

Arguments do not need to be dlgned, unlike keywords,

because readers seldom scan all the arguments. Arguments are

only interesting in the context of their keyword. (Thk would be

a good place for a diagram with an arrow going down the key-

words in order to read at:put:, and another scanning left to

right as the reader understand the message and its arguments.)

fierefore, put zero or one argument message on ~e same

lines as the receiver.

foo isNil
z+3

a <b We: [...]

Put the keyworcVargument pairs of messages with two or

more keywords each on its own line, indented one tab.
acb

ifl’rue: [...]

ifFaLse:[...]

array

at 5

put: #abc

Rectangular Block formats blocks. Guard Clause prevents

indenting from marching across the page.
The Smalltalk Report

Oddly enough, a company with possiblythe largest
and most deployable Smalltalk/00 workforce is

virtuallyunknown - Until Now.

● On-Site Small-P “ sg&Mentosing ● GUI Front-End Des@@.W to kgacy Systems

s On-SiIE Cusmrnkd SrnaUtalk/00Training ● tiM__~ti
● 00DBMS llcvelopmem Object%rre, Oemsmne & Vermnt ● SrnaUtaWbject Mapping to S* Oracle &DB2

❑
✘✎✌✎

9 ‘J Call (919) 859-7384 Or e-mail: info~objectint.com
●.

ObJect/n#/! Corporation ● 6300-138 Creedrnoor Rd., Ste, 196 ● Raleigh, NC 27612 ● (919)8484045 Fox

mntinued on page32
RECTANGULAR BLOCK
How should you format blocks?

Smalltalk distinguishes between code that is executed immedi-

ately upon the activation of a method and code whose execu-

tion is deferred. To read code accurately, you must be able to

quickly distinguish which code in a method falls into which

category.

Code should occupy as few lines as possible, consistent with

readabfity. Short methods are easier to assimilate quickly and

they fit more easily into a browser. On the other hand, making

it easy for the eye to pick out blocks is a reasonable use of extra

lines.

One more resource we can bring to bear on thk problem is

the tendenq of the eye to distinguish and interpolate vertical

and horizontal lines. The square brackets used to signify blocks

lead tbe eye to create the illusion of a whole rectangle even

though one isn’t there. Therefore:

Make blocks rectangular. Use the square brackets as the

upper left and bottom right comers of the rectangle. If the

statement in the block is simple, the block can fit on one

line:

iP1’rue:[selfrecomputehgle]

If the statement is compound, bring the block onto its own

line and indent

ifl’me

[seLfclearCaches.

seti recomputeAngle]
March-April 1995
GUARD CLAUSE
How should you format code that shouldn’t execute if a con-

dition holds?

In the bad old days of FORTWN programming, when it was

possible to have multiple entries and exits to a single routine,

tracing the flow of control was a nightmare, Which statements

in a routine got executed when was impossible to determine

statically, ‘Ilk lead to the commandment “Every routine shall

have one entry and one exit.”

Smalltrdk labors under few of the same constraints of long

ago FORTRAN, but the prohibition against multiple exits per-

sists. When routines are only a few lines long, understanding

flow of control within a routine is simple, it is the flow between

routines that becomes the legitimate focus of attention.

Multiple returns can simplifj the formatting of code, partic-

ularly conditionals. What’s more, the multiple return version of

a method is often a more dkect expression of the programmer’s

intent. Therefore:

Format conditionals that prevent the execution of the rest of

a method with a return.

Let’s say you have a method which connects a communication

device only if the device isn’t already connected. The single exit

version of the method might bti

cormect

self isConnected

fialse: [self connectConneclion]

You can read thk as “If I am not already connected, connect my

connection.” The guard clause version of the same method is:
29

Smalltalk Developers

JMB Realty Corporation, one of the nation’s largest
and most diversifkd real estateowners and managers,
is developing high impact lmowledge-based software
for the retailreal estateindustry.

This is an opportunity for you to play a significantrole
in state-of-the-artproduct development, and to work in
a unique, highly collaborative environment. If you’re a
professional with strong business and 00 or GUI
experience, please mail your cotildential resume to:

JMB RealtyCorporation
Information Services Recruiting

900 N. Michigan Ave ■ Chicago, Illinois 60611
IntemeK LLN@jmbcorp.mhs.mmpuseme.com

Fax: 312-915-1193

JOIN THE FASTEST GROWING LEADER
IN HEALTHCARE SOFTWARE

Information Technology Professionals
MaU@@~m~pUm&titi*
HBOI%aqmy(f-fBOC)14=Wdeve10PSandmairmimaeftw=
solutionsfor our business partner hospitafaand other members of
the hdhcare enterprise. Celebratingover 20 years of profitable
growth and with 1994revenues exeeeding $300million,HBOCis
he seeond largest and fastest growing provide-r in our industry.

Slllautalk
rhe ideal candidates wifl have expedenee with objeet-oriented

malysk and design, PC am%vare development and sndltalk
programming.

- c++

Pmsitionsrequire 2+ yearsof development experience with Visual
C++in a Windows a-wkmtnent.

Sybase
RequirementsinchIde 2+ yeaK Sybase SQLServer admbdahation
experienceand knowledge of relational table designs.

The professionalswe seek must possess excellent communication
skillsand the abitity to work in a team environment.

fiBOCoffersexcellentbenefits, competitive salaries and a team-
orienkd professional work environment where promotion AFromwithin Lsthe norm ForwarcVfzdemaflyour resume to _
HBO & COlnpally, ~ Remlitinlb sin/95,

(wllWmeter Gmter NorttLAtlant& Gi30~faX ~
b (404)393-6063iesmutnslfEapMapS@~ a

Smalltalk careers from Wall Street to Main Skeet,
Access tbe best Smalltalk cultures & applications.
Contact & dtict careersnationwide.Clientfee paid.

800-220-1044
PaulMorrisPersonnel

Sendasciito ptm@pmotis.com

. .

To advertise

in the

Recruitment

Section,

please call

Mike peck at

212.242SIGS..

30 The Smalltalk Report

At SHL SYSTEMHOUSE, client/semr computing isn’t just a part of our business. It ~ our business.
We’re a billion dollar systems integrator dedicated entirely to business transformation through client/
server computtng.

And we’re using object technology to make these transformations a reality

Join SHL and help us build mission critical applications using object technology from analysis to
construction. We’llchallenge you and support YOU.You‘Ucollaborate with the industry’s top object
technology professionals. Andyou’ll make a major impact.

As a leader in a $100 billion industry our potential for growth is extraordinary Ifyou’ve got the
knowiedge, imagination and vision, your career opportunities at SHL are endless,

If you’re committed to object technology, join a company d~at is firmly committed to
your future. Plea..c send your resume and letter of introduction to: SHL, Manager of
Human Resources, De t. MJS-395, 300 South Wacker Dr., Suite 2500,

&Chicago, IL 60606. F : (312) 939-0066. E-mail: rmps@chi.shl.tom,
SHL is an Equal Opportunity Employer M/F/l)/V.

SHL SYSTEMHOUSE
!!!!!2S&
EY@TEMEIOllUE

I

1
I

I

Smalltalk Developers

Experienced Smalltalk and
ENVWDeveloper consultants

wanted for 3-6 month contracts
in Europe. 0S/2 and Visual Age

experience helpful.

Lingo Allegro U.S.A., Inc.
113 McHenry Road, Suite 161

Buffalo Grovel Illinois, 60089 USA
Phone: +1 3122034926

Fax: +1 7084598501

I

I

I

I
II

SUCCESS-..
0!!2((

SmcdltcdkDwcdop~rs @q@ ,

At QSYS we have successfully
provided Object Oriented consulting
services to our customers for over u’
seven years. TFIS has created opportunities
for Smalltalk Specialists to participate in
leading edge, mission critical assignments withQ

our Fortune 1000 clients.

[f you have demonstrated experience implementing
large 00 systems using IBM Smalltalk or Visual
Age,m ParcPlace VisualWorks,” Oigitalk Smalltalk/V?
we would like to hear from you!

For further information, contact
Elspeth Koor at 1-800-999-9776. I

1 Yonge Street, Suite 1801, Toronto, Canada
M5E 1W7 Fax (416) 36941515 I

90 Park Avenue, Suite 1600, New York NY
10016 Tele~one (2L2) 9840715

Ernail: 72072.2575@compuserve.com I
I

March-April 1995 31

contz”nuedj+ompage 29

continuedfiom page 13

32
SUMMARY
In ViiualWorks, a dialog is an application model that opens a

modal window. There are four basic purposes for dialogs: dis-

playing simple messages, acquirhg simple information, provid-

ing application specific services, and editing objects. The stock

dialogs provided by the Dialog class provide basic dialog fimc-

tionality but there is SW a need for custom dialogs. There are a

few drawbacks with the cument approach to custom dialog

development in VkualWorks. A dialog that is a subclass of

SimpleDialog cannot leverage off of the powerful features pro-

vided in ExtendedApplicationModel, nor can it implement the

accept and cancel methods, nor does it provide the option of

opening a nonmodal window. A dialog that is a subclass of

ApplicationModel cannot access components during runtime and

its pre- and postbuild methods are never executed. For these

reasons, the ExtendedSimpleDialog class was created to compli-

ment the ExtendedApplicationModel class and facilitate custom

dialog development, A dialog should be designed as a subclass

of ExtendedApplicationModel. Thk provides the following

benefits: execution of pre- and postbuild methods, accept and

cancel action method execution, runtime interface access, option

for modal or nonmodal versions of the interface, and all the

additional features of ExtendedApplicationModel. Fidl source

code for ExtendedSimpleDialog and ExtendedApplicationModel,

as well as examples, is available from the archives at the

University of Illinois (st.cs.uiuc.edu). ~

Referance
1. Howsrd, T., and B. Kohl, Extending the application model ,

%IALLTALKREPORT,3(7): 1-7, May 1994.

Tim Howard iss seniorconsultantat FH Protocol,Inc. He is irrtsrsstadin

spplicatimrdavalopmantusing00 tschrrrrlogiasin garwml, and usingtha

languageof Smalltalk in particular,Ha can Isaraachadat

74Z13,1517@compusama.comor 214.931.5319.
connect

self isConnectedifl’rue: [Aselfl.

self connectCormetion

You can read this as “Don’t do anything if I am connected.

Connect my connection.” The guard clause is more a statement

of fact, or an invariant, than a path of control to be followed.

You may need to return a Nil Return Value to signal an

unusuaf condition.

SIMPLE ENUMERATION PARAMETER
What should you call the parameter to an enumeration block?

It is tempting to try to pack as much meaning as possible into

every name. Certainly, classes, instance variables, and messages

deserve careful attention. Each of these elements can commu-

nicate volumes about your intent as you program.

Some variables just don’t deserve such attention. Variables

that are always used the same way, where their meaning can be

easily understood from context, call for consistency over cre-

ativity. The effort to careiidly name such variables is wasted,

because no non-obvious information is communicated to the

program. They may even be counter productive, if the reader

tries to impute meaning to the variable that isn’t there.

Call the parameter “eaeh”. If you have nested enumeration

blocks, append a descriptive word to all parameter names.

For example, the meaning of “each in:

se~ children do [:each I seti processChild each]

is clear. If the block is more complicated, each may not be

descriptive enough. In that case, you should invoke Composed

method to turn the block into a single message. The Type

Suggestig Parameter in the new method will clarifi the mean-

ing of the object.

The typical example of nested blocks is iterating over the—
two dimensions of a bitmap:

I to: seMwidth do:

[:eachX I

I to: self height do:

[:eachY I ,..]]

Nested blocks that iterate over unlike collections should proba-

bly be factored with Composed Method.

You may need Composed Method to simpli@ the enumera-

tion block.

INTERESTING R~fJRN VALUE
When should you expliady return a vaIue at he end of a method?

All messages sends return a value. If a method does not explici-

tly return a value, the receiver of the message is returned by

default. Thk causes some cont%sion for new programmers, who

may be used to Pascal’s distinction between procedures and

fi.mctions, or C’s lack of a definition of the return value of a

procedure with no explicit return, To compensate, some pro-

grammers always explicitly return a value from every method,

The distinction between methods which do their work by

side effect and those that are valuable for the result they return

is important. An unfarnihar reader wanting to quickly under-

stand the expected use of a method should be able to glance at
the last line an instantly understand whether a usefd object is

generated or not. Therefore:

Return a value only when you intend for the sender to use

the value.

For example, consider the implementation of topComponent.

Visual components form a tree, with a ScheduledWindow at the

root. Any component in the tree can fetch the root, by sending

itself the message top Component. VkualPart implements thk

message by asking the container for its topComponent

VisualPart>XopConrponent

“container topComponent

ScheduledWindow implements the base case of the recrmion by

returning itself The simplest implementation would be to have

a method with no statements. It would return the receiver.

However, using Interesting Return Value, because the result is

intended to be used by the sender, it explicitly returns self

ScheduledWindowXopComponent

‘self
The Smalltalk Repod

	By Article Title
	Building a Gopher from sockets and widgets
	Cleaning up after yourself
	Storing objects into files in VisualAge
	Suggestions for a successful user interface
	VisualWorks dialog development
	What? What happened to garbage collection?

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Farmer, Dave
	Gause, Amy S.
	Howard, Tim
	Knight, Alan
	Mueller, Patrick
	Sharp, Alec

	By Topic
	comp.lang.smalltalk
	Smalltalk Idioms

