
June 1994 Volume 3 Number 8

A BRIEF LOOK

AT INHERITANCE

METRICS

by Mark Lorenz

Contents:

, Features/Articles

I 1 A brief look at inheritance metrics
by tirk Lorerrz

I 6 VisualWorks List Components
~ by BillKohl& Tim HouIard

Columns

9 The best of comp.lang.arnalltalk:

Still more frequently aeked
questions
by Alan Knight

~ 13 Smalltalk idioms:
Birds, bees, and browse-
obvious sources of objects

1 by Kent Back
1

1 14 Getting rea/:

I Return vakses

I by Juanita Ewng

I ‘8 ~~SmalltaIk-
The VisualWorks UIBuilder

I by Ky/eBrowrr

Departments

21 Product Announcements

22 Recruitment

❑
n my book OBJECr-ORI ENTEII SOFTWARE METNICS,l 1 divide static

metrics into two categories:

“ Project metrics. A group of metrics that deals with the dynamics

of a project. Used for estimating work effort and progress.

. Desi~ metrics. A group of metrics that looks at the quality of the project’s de-

sign at a particular point in the development cycle.

As we all know, there are fundamental concepts underlying 0-0 software sys-

tems, including the use of inheritance. These differences from function-oriented

development result in the necessity for a different set of metrics to measure the

quality of designs. In this article, I’m going to discuss a couple of design metrics

dealing with the use of inheritance. In upcoming articles, I’ll take a look at some

other 0-0 metrics.

INHERITANCE HIERARCHY NESTING

The deeper a class is nested in the inheritance hierarchy, the more methods there

are available to the class and the more chances for method overrides or exten-

sions. This all results in greater difficulty in testing a class.

Our experience has been that large nesting numbers indicate a design prob-

lem, where developers are overly zealous in finding and creating objects. This

will usually result in subclasses that are not specializations of all the super-

classes. A subclass should ideally extend the functionality of the superclasses. If

you look around your everyday life, you see that specialization goes only so far.

For example, if you look at a transportation domain, you might find a hierarchy

similar to Figure 1.

Figure 2 shows some project results for nesting levels. Our rule of thumb is six

levels as a threshold for identifying possible anomalies. Frameworks area

significant exception to this heuristic.

As we see in Figure 3, someone using the View framework will start at a nesting

level of three. This will affect the maximum nesting level for the domain classes.

In this case, we offset the heuristic, counting the nesting levels from the bottom of

the framework instead of the top of the hierarchy.

Action plans
So what do you do if your nesting levels are beyond the rule of thumb threshold?

First of all, the threshold is a heuristic, so it is possible that nothing is wrong in a

particular case. There may be good reasons why you see classes nested nine-levels

deep, for example. The point is to make a conscious decision about the anomaly

rather than to ignore it. Assuming you decide that an action would improve your

design, you can:

t-(,lufi)ildctltIIIP,3XC.1

continuedfiom page J ■ INHERITANCE mnucs
Vehicle

I

I 1
Boat Car Plane . . .

I

) I
Ford Honda . . .

I

) I
Prelude Accord ..-

1

) I
DX LX LXi . . .

gure 1. Emmple transportationdomain hierarchy.

10
9

8

Deepest 7
nesting 6 I

5 -

4 -

3

2

1
0

Smalltalk projects c++ I
gure 2. Project maximumnesting levels.
“ Move subclasses that are not specializations of all their su-

perclasses to another location in the hierarchy.

. Merge subclasses and superclasses that were created for ex-

pediency during rapid prototyping but that logically belong

together.

“ Consider whether a subclass should be a peer of its

superclass.

. Factor out new classes that should have reused base classes,

such as String or Stiearn.

METHOD OVERRIDES

A large number of overridden methods indicates a design

problem. Because a subclass should be a specialization of its

superclasses, it should primarily extend the services of the su-

perclasses. This should result in unique new method names.

Numerous overrides indicate subclassing for the convenience

of reusing some code and/or instance variables when the new

subclass is not purely a specialized type of its superclasses.

Figure 4 shows some project averages for method overrides.

Our rule of thumb anomaly threshold is three method over-

rides by a class. We also weight this threshold by the irzheri-
4

tance hierarchy nesting measurement, so that more deeply

nested subclasses have lower thresholds.

There are a number of affecting factors when considering

the meaning behind overridden methods:

.

.

.

Framework. Classes that are a part of a framework provide

some functionality that is meant to be finished by applica-

tion developers. One mechanism is used to define some

methods that are meant to be overridden. Creating a

method of the name defined by the framework architecture

is not really an override—it is merely filling in the blanks

and should not be considered for this measurement,

Abstract class. Abstract classes often act as miniframe-

works, providing method templates to be filled in by sub-

classes. Selectors such as implementedBySubclass and sub-

classResponsibility are used to note where subclasses are

supposed to override methods in the abstract class. Again,

these should not be included in a measurement of

method overrides.

Invocation of superclass method. Methods in subclasses can

include the statement

super <methorlllame>
Digitaik View

Frame work

Hatteras View
Frame work

Object

LViewManager

L MtxBaseVlew

L <your class>

Figure 3. Framework emmple.

5-
4.5 -

4 .

3.5 -

3 .
2.5 .

2 .
1.5 .

1

0.5 -
c)L

Smalltalk projects
I

gure 4. Average number of methods overridden per class.
THE SMALLTALKREPORT

Are you locked-in to a
limited clientlserver

architecture?

With HP Distributed Smalltalk, you
can move beyond clientiserver to true,
distributed, enterprise applications.
That’s because you get distributed
tools, a CORBA 1.l-compliant object
request broker, and related services
that make it easy to create business
objects and distribute them wherever
you like on your network.

HP Distributed Smalltalk is an
extension of the ParcPlace
VlsualWorks Smalltalk environment.
Put together, your programming team
gets an easy way to segment large
tasks and deliver distributed
applications more quickly.

Send us your name, address, and
phone # and well send you a free
white paper on why HP Distributed
Smalltalk is a better approach to
distributed application development.

Phone: (408) 447-4722

FM: (303) 229-2180

e-mail: dst@sde. hp. com
Attention: HP DST white paper

@1S94Hewlet&Packmd Company

F! HEWLETT”
PACKARD
where <methodName> is the selector of the method being over-

ridden. If this statement is always executed, then the subclass is

specializing the behavior. This is not the same as a complete

override, and should be weighted differently in measuring the

method override metric.

Action plans

So what do you do if you have a class with a large number of

method overrides (that weren’t planned to be overridden)?

Again, treat the threshold as a heuristic and make a conscious

decision about the anomaly. A suggested action plan: Move the

ill-fitting subclass to another place in the hierarchy. Look for a

superclass in which the subclass is the same kind of thing. This

means the expected behaviors should be similar, with few

needed overrides. If you don’t find such a superclass, move the

former subclass under Object.

SUMMARY
We have taken a brief look at O-O metrics dealing with the use

of inheritance. In particular, we examined a class’ position in

the inheritance hierarchy and a method’s use of overrides. We

have seen that there are factors that affect the meaning of these

measurements and have taken a look at possible action plans

for anomrdies. H

References

1. Lorenz, M. OBJECT-ORIENTED SOFTWAREMETRICS: A

PRACTICALGUIDE, Prentice-Hall, Englewood Cliffs, NJ,

1994.
— . . .— . .—

Mark Lorenz isfounder and president of Hatteras Sojlware,
Inc., a company that specializes in helping other companies use

object technology effectively. He welcomes questions and com-

ments via email at 71214.3120@compuserve. com or voicemail

at 919.851.0993.
JUNE1994

VISUALWORKS
LIST COMPONENTS
William Kohl d- Tim Howard
7
ist components provide a flexible means for dk-

playing a collection of objects and allowing the

user to make a selection. What many developers

may not realize, however, is that there are a vari-

ety of ways in which a list component can display

the objects in this collection. In this article, we

will discuss the collection on which a list component operates,

and we will offer several techniques for displaying that collec-

tion’s elements in the list.

A list component displays a collection and allows the user

to select elements within the collection. For a single selection

list, the aspect model is a SelefionInList, and the widget is a

SequenceView, For multiple selections, the aspect is a MultiSe-

lectionInList and the widget is a MultiSelefionSequenceView.

The examples in this article concern a single selection list com-

ponent, but all the material applies to multiple selection list

components as well.

THE COLLECTION

The SelectionInI.kt will only operate on sequenceable collec-

tions. This is because a SelectionInList tracks the current selec-

tion by its index—not by referencing the object directly. Se-

quenceable type collections include: OrderColletion, Iist,

SortedCollection, and Array among others. Nonsequenceable

collection types include: Set, Bag, and Dictionary among others.

It is important to remember that the objects in the collec-

tion can be of any type, and we are not restricted to just using

textual type objects such as String and Text. Every object knows

how to represent itself textually, whether it is a bitmap, a geo-

metric, or a VisualWorks tool, because all objects understand

the message print.string, Any type of object can go into a list

component’s collection. Furthermore, because Smalltalk is

typeless, we can have a heterogeneity of objects in the same

collection, and the list component will perform admirably. In

the example to be used throughout this article, we will create a

list component to display a collection of all current instances

of AppLicationWindow. To do this, paint a canvas with a single

list whose aspect and ID are both #windows. Install this canvas

as the application model IktExarnples:

ApplicationModel subclass: MhtEscample
instanceVtibleNames: ‘windows’
classVarhbleNacnes:“
poolDitionaries: “
catego~ ‘ll_Mpplications-New’

Edit the windows aspect method to look like the followinK
6

windows

windowsisNil
iflhe: [windows:= SelectionInListwith: ApplicationWindow

aUInstances]
iffalse: [windows]

Now open the application and your list will display ‘an Appli-

cationWindow’ for each of the instances of ApplicationWindow

currently in your image (note that browsers, inspectors,

workspaces, and debuggers do not live in AppLicationWindows,

so don’t expect to find them in your list!).

You should be aware that the collection that is displayed by a

list component incurs a dependent. The collection contained by

the SelectionInIist is also known to the widge~ this is a

SequenceView. The SequenceView registers itself as a dependent

of the collection. The reason for this is that if the collection object

is a L@ it can notify the SequenceView of a change of its con-

tents. However, even if the collection object is not a List, the de-

pendency is established. In such a case, a dependency is estab-

lished on an object that is ill equipped to behave as a model. This

dependency can cause problems when trying to make persistent a

collection that is currently being displayed in a list component,

LIST CLASS

The List class was created specifically for operating in tandem

with a SelecbonInList. The List object behaves as a model.

Whenever an element is added or removed, it notifies its depen-

dents of this change. Because the SequenceView is a dependent,

it redraws itself to reflect this change in the collection. This is

not the case for other sequenceable collection types such as

OrderedColletion and SortedColletion, Although these other

collection types do acquire the SequenceView as a dependent,

their behavior defmhion does not include model-type behavior,

so they are ill equipped to know about internal changes and

broadcast updates. Any changes to these collections will not au-

tomatically update the list component. In such cases, the burden

is on the developer to send invalidate to the list component. This

will cause the list widget to redraw itself based on the new infor-

mation in the collection maintained by the SelectionInList.

PRINT STRING METHOD
There are several ways to display items in a list. They can be

represented as strings, formatted text, or as visual components.

Furthermore, each object can have a different appearance for

different list components, The remainder of this article ex-

plores these many possibilities,

By default, the SequenceView displays each object in the col-

lection by sending it the message displ.ayshing, All objects

know how to respond to thk message, and the default behavior

is to return the printString value. Every object in Smalltalk also

knows how to respond to printString. For most objects,

printsbing returns a string describing the object’s type, such as

‘a CompositePart’ or ‘an ApplicationWindow’. The printOn:

method is the method actually responsible for constructing the

string returned by printstring. If you want to change the way

an object displays itself as a string, edit the printOn: aStream
THE SMALLTALKREPORT

Cmiir-rgtkusenewdierltandsewerapphtiorrs

Wouldbe frrrmorerewardbrg ifyoucorddrwse

existing code instead of rewriting it. And now

thot gool becomesreality with obiectmriented

programming. [specially when you con rely

on VisuolWorksW,the PmcPloce Smalltalkm

Applications Development Environment that

createsapplicationsthat are instantly portable

betweenWlsdaws,0S/2, Mocintashand UN)(.

True 00P, it pravides a robust set of tools to

build sophisticated graphical applicationswith

accesston wide varietyal relationaldatabases.

Fully armed with superior flexibility, dynamic

compilationfor impressiveperformanceand the

world’s largest set of tried and tested CIOSS

*i-kk*hg

40 -da;@ M0&75%n72

:*.a’*’@*wYti&*w

w~F@Mlm_

huveselectedVhJWOksfordentandw

dweloprttent. Andstopped rewriting histary.

■ VISUALWORKS LIST COMPONENTS

continuedonpage 12
method. As an example, to make our list of windows appear

more informative, add the following instance method to Appli-

cationWindow under the printing protocok
printthu atltreasn

astream
nextPutAILself labe~
neztPutAIL’ at’;
nerctPutAlhse~ globalOriginprintsting

Now open I.iatiample again and you will see a much more in-

formative list of your windows. We strongly recommend that

you define a printOn: method for each kind of object you create.

Even if a particular kind of object never appears in a list com-

ponent, the dividends will pay off enormously in debugging

and inspecting. It is the printing message that displays an ob-

ject in a debugger or inspector, and having an informative

printstig can often mitigate the tedium of using these tools.

DISPLAY STRING METHOD
You can also specify how an object will appear in a list compo-

nent by implementing the displayshing method directly. This

allows an object to be displayed one way in generrd (printString)

and another way in a list component (displaysbing). For Appli-

cationWindow, add the following instance method under the

printing protocok

displaystring
“’ApplicationWindowlabeled ‘, self label

Now open ListExample to see that the list component is using

the displaying message in favor of the printhing message.

ARBITRARY DISPLAY STRING SELECTOR

To add some flexibility, you have tbe option of telling the Se-

quenceView which selector to use to retrieve a printable repre-

sentation of the objects in its collection—displaystring is

merely the default. Do this by sending the SequenceView the

displaySb-ingSelecto~ aSymbol message as part of the post

build operation. The argument asyrnbol is a message selector

understood by each of the objects in the collection. To illus-

trate this, first add the following instance method to Applica-

tionWindow in the printing protocok

disp@OpenStatos
“selflabel,’ is’, (self isopen il’1’rue:[’open’]iffalse ~closed’])

Now add the following method to ListExample in the interface

opening protocol:

postBuikfWitlu aBrsiier
(aBuilder cornponentslk#windows)widget

diaplayStingSelector: #dMplayOpenStatus

Open I.&tExample and the windows will be displayed in the list

using the displayOpenStatus method.

FORMAlTED TEXT

The display string selector does not necessarily have to return a

string. It can also return formatted text, or a Text object. This

allows you to have certain items in the list appear italicized,
8

bold, in color, or even in a different character size or font. In

this next example, we only display the windotis label, but all

closed windows will appear in normal text, collapsed

(iconized) windows will be italicized, and expanded windows

will appear bold. Add the following instance method to Appli-

cationWindow in the printing protocol:

diaplayLabelAndSMms
self isOpenifFaLsw[“self label asText].
“self isCollapsed

ifhua [self label asTexteorphasizeAllWith:#italic]
ifFalse [self label asTextallBold]

and edit the postBuildWith: method in ListExample to read

posWhRdWitk aBuiMer
(aBuilder componentAt:#windows)widget

displaySbingSelecto~ #displayLabeL4ndStatus

Open L&Example to verify these changes.

GRAPHICAL REPRESENTATION

The objects in a list component do not even have to display

themselves in a textual manner at all. The objects can be dis-

played visually, although this does require a certain amount of

setup. Visual display requires defining the SequenceVietis two

visual blocks: visualBlock and selectedVisualBlock. These

blocks determine how the items in the list are represented visu-

ally (including both text and graphics).

Each block takes two arguments the SeqeunceView itself and

the index of the selection currently being drawn. Both blocks

should evaluate to a visual component. The blocks are set by

sending the messages visualEllock and selectedVisualBlock to

the SequenceView. This procedure should be performed in a

post build operation. In addition, the visual blocks can be set at

any time during runtime, and they will take effect immediately

upon the next display of the widget. For our example, we will

have our list component display the label of each window and

prefix the label with the window’s icon. First, we must add the

instance method below to ApplicationWindow (put it in the

printing protocol, although it does not really belong there):

icon
‘Yconmask

Now we will install the appropriate visual blocks to achieve the de-

sired look Edit the po.stBuildMti method in ~ple to read:

poaWhddWitlu aBrsilder
I sequenceViewI
sequenceView:=(aBuilder componentAti#windows)widget.
sequenceViewvisualBlock

[:SV:i I I windowlabelAndIconicon I
window:= w sequence ati i.
icon :=windowicon.
labeLAndIcon:=(LabeUmdIconwith: windowlabel offseb 4@O)

icoru icon.
BoundedWrapperom labeLAndIcon].

sequenceViewselectedhsuall!lock
[:SV:i I I reversirrgWrapperwindowlabellmdIcon icon I
wirrdow:=sv sequence ak i.
icon :=windowicon.
THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk

Still more frequently
asked questions

Alan Knight
Commercial use of Smalltalk continues to increase, re-

sulting in a constant stream of new users with ques-

tions about Smalltalk. Although there are many new

user questions on comp.lang.smalltalk, this is only a small frac-

tion of the people discovering Smalltalk. Many of them don’t

have a good way to get accurate information about Smalltalk.

They are left with rumors, misinformation, overhyped market-

ing literature, and salespeople (sometimes the salespeople are

disguised as consultants).

In this column, I attempt to provide some simple an-

swers, free of propaganda, to some of the most frequently

asked questions. These are a lot less technical than the ques-

tions normally discussed in this column, and I hope that the

answers are more or less what any knowledgeable Smalltalk

person would say. One word of warning: I’ve not had much

opportunity to work with Enfin or Smalltalk/X yet, so it’s
possible I have inadvertently failed to mention some of their

capabilities.

Are people using Smalltalk for real projects?

Yes. The primary uses of Smalltalk used to be in academic or

research projects, but applications have been changing very

rapidly. Smalltalk is now used extensively in financial and MIS

applications, particularly in updating or providing graphical
interfaces to legacy systems. Beyond that, it’s possible to find

Smalltalk projects in almost any application area. In fact, the

use of Smalltalk is increasing so rapidly and the commercial

opportunities are so numerous that many research projects
have trouble keeping their Smrdltalk programmers.

Can Zintetjace Smalltalk to my relational database?
Yes. Most of the legacy systems mentioned previously have a

database component, and a good interface from Smalltalk to

the database is essential. Many different interfaces are avail-

able. Some Smalltalks come with database access built in or

available as an option. There are also various products avail-

able from third parties.

It’s important to note that the biggest difficulty is not con-

necting to the database but overcoming the impedance mis-

match between the relational model and the object model. A

naive interface can have much worse performance than either

the relational or object models separately, so the interface

should be carefilly thought out.
JUNE 1994
Can I interface Smalhalk to code written in other languages?

The answer is a qualified yes: it depends on the language.

AU implementations provide mechanisms to call C. Some of

these read C header files and automatically generate Smalltalk

classes and methods. If the other language (e.g., FORTR4N) can

be called from C, then it should be possible to call a C routine,

which in turn calls the other language. MS-Windows and 0S/2

implementations usually support calling code stored in DLL’s,

which could be written in language that can produce a DLL.

Some implementations are starting to support languages

other than C. IBM’s VisualAge can call COBOL as well as C.

Digitalk’s PARTS can create wrappers for other languages, in-

cluding COBOL. That isn’t quite the same as being able to

call COBOL from Smalltalk, but should be close enough for

most purposes.

It would be particularly nice to be able to call other object-

oriented languages from Smalltalk. Most O-O languages sup-

port a C interface, but that only allows calling C functions, not

sending messages to objects. This situation should improve

soon. Most Smalltalk vendors have announced their intention

to support one or more of the emerging interlanguage object

communication standards (CORBA, SOM, OLE, etc.).

These mechanisms should also allow Smalltalk to be called

from other languages. Current Smalltalk implementations like

to be in charge and only support calling back to Smalltalk

when Smalltalk is the initiator of the computation.

What tools do I need?

Smalltalk already comes with a complete programming envi-

ronment, eliminating the need for many of the traditional de-

velopment tools. This doesn’t mean that tools aren’t necessary,

and there are two categories that are particularly common:

1. Window layout. Even in Smrdltalk, laying out Windows

manually is tedious, error prone, and unnecessary. Took

for window layout and (more or less) visual programming

have been available for some time now. Some, like Easel’s

Enfin, IBM’s VisualAge, and ParcPlace’s VisualWorks are

more or less bundled with Smalltalk. SmalltallcW can be

used with both Digitalk’s own PARTS product and Object-

share’s WindowBuilder.

2. Team programming. Smalltalk was originally designed as a

single-user single-machine development environment. A
——.-.—.

9

■ THE BEST OF COMP.IANG.SMALLTALK
number of additional tools are available for dealing with

team programming, version control, and configuration

management issues. The most widespread is OTI’S

ENVY/Developer system, which works with Smalltalk/V,

VisualAge, and VisualWorks. For Smalltalk/V, Digitalk

makes Team/V. These are both relatively expensive pack-

ages, but there are a number of other lower-priced packages

available as well.

66 For the vast majority of applica-

tions, garbage collection should not

pose any problems. ~

How can Ifznd out what’s available?

Rather than give contact information for all the products men-

tioned here, I’m providing pointers to some general resources

for finding commercial products.

. The Smalltalk Report. This magazine is a useful resource, as

it has a lot of information about commercial products in re-

views, advertisements, and new product announcements,

* The SmaUtalk Resource Guide. Creative Digital Systems

publishes this; it attempts to be a complete listing of

Smalhalk-related products and resources. (293 Corbett

Avenue, San Francisco, CA 94114 vIE 415.621.4252, email:

72722 .3255 @compuserve.com or cds.sem@applelink.-

apple. corn.)

. The Smalltalk Store. This is a mail-order source for

Smrdltalk products. (4o5 El Camino Real, #106, Menlo

Park, CA, 94025. v 415.854.2557, f 415.854.2557, email

75046 .3160@compuserve. com or info@smalltalk.com.)

Isn’t Smalltalk too slowfor commercial applications?

In general, no. Smalltalk does have overhead in both speed

and space relative to assembly language or optimized C, par-

ticularly for very small programs. This has restricted its use in

the low-end shrink-wrapped software market, where develop-

ment time is much less important than the ability to run on

low-end hardware.

These obstacles have been diminishing for some time. Many

of SmalltaIk’s advantages don’t show up in small benchmarks

but can be very valuable in larger programs. For example, con-

sider garbage collection. On a small benchmark, a C program

can usually allocate all of its storage on the stack and avoid any

storage management overhead. For larger programs, some form

of storage management becomes essential, and often ends up

being implemented using a simple but inefficient technique
10
such as reference counting. Smalltalk’s memory allocation is

much more efficient than malloc, and its garbage collection is

much more efficient than most manually implemented tech-

niques. This and other factors can result in large Smalltalk pro-

grams outperforming similar programs in other languages.

In fact, Smalltalk has been and is being successfully used in

many areas where many people had thought it was completely

unsuitable. Hard real-time systems are often cited as an area

where Smalltalk could not be used, yet SmalltaIk has been suc-

cessfully used on a number of commercial real-time systems,

including a line of oscilloscopes from Tektronix.

Another factor is the use of operating system facilities. In

modern programs with graphical user interfaces, the main bot-

tleneck is often calls to the windowing system. When this is the

case, the efficiency of the remaining code is much less impor-

tant. This factor has made interactive development environ-

ments like Smalltalk and Visual Basic much more widespread.

How portable is SmalltaJk code?
There are two main questions here—portability between plat-

forms and portability between Smalltalk vendors. The first might

concern, for example, portability between Smalltalk/V Mac and

Smalltalk/V Windows. The second might concern portability be-

tween SmaUtalk/V Mac and VkualWorks for the Macintosh.

In both cases, code that does not involve the user interface

should be very portable. With a few minor tweaks, it is usually

possible to load non-GUI code directly into any version of

Smalltalk. The exceptions occur when using classes that do not

exist in the other version or have different semantics. This is

usually not a big problem.

User interface code is more difficult to port, particularly be-

tween dialects of Smalltalk. VisualWorks is strongest in this

area, as it can normally use identical code on any supported

platform. Digitalk code is much less portable, because it uses

native platform facilities and often has different user interface

frameworks on different platforms. None of the other vendors

support multiple platforms yet, but both IBM and QKS are

promising to be very portable.

How do I destroy an object in Smalltalk?

You don’t destroy objects in Smalhalk-the garbage collector

destroys them automatically. This is a great mental leap for

people used to programming languages with manual storage

allocation. Once there are no more references to an object, it

will be disposed of, It’s that simple. . . most of the time.

Problems can arise when there is cleanup that needs to be

done when an object is destroyed. One example of this is the

global Dependents dictionary. At least some objects imple-

ment dependents by adding themselves to this dictionary.

When the object is no longer referenced, that dictionary entry

needs to be removed.

Another example is that of objects that refer to non-

Smalltalk storage. For example, FileStreams may refer to oper-

ating system file handles, which should be closed if the object is

garbage collected.
THE SMALLTALK REPORT

H
No
yo

OOMe
engi
spec

OOMe
each
engi

00Me
proje
There are three ways you can deal with this:

. Avoid it ParcPlace provides a class Model with a depen-

dents instance variable. This removes the need to do any

cleanup on objects inheriting fi-om Model. This is good if

you can do it, but it doesn’t solve the problem for other

classes, and it won’t work when dealing with operating-sys-

tem storage.

u Make the programmer do it. Many objects support a mes-

sage like release, which does any necessary cleanup. The

programmer is expected to send this message when the ob-

ject is no longer needed. This works, but it rather defeats

the purpose of garbage collection, because the programmer

must now know when the object is not needed.

. Finalization. It’s possible to provide hooks into the garbage

collection mechanism to run code when a particular object

is garbage collected. This is, in my opinion, the ideal solu-

tion, but it is currently only supported by Smalltalk4gents

and VkualWorks.

Isn’t garbage collection too slowfor real applications?

No. Garbage collection algorithms have been the subject of a

great deal of research and are very carefully tuned. Most oper-

ate incrementally, so the system pauses only for extremely

short intervals unless it is critically short of space. For the vast

majority of applications, garbage collection should not pose
owgtihvomdAw ●

w,not only will you be able to tell h
ur design is, you’ll know how to imp

m

ric ./..

tric is astate-of-the-artsoftware

<

../.;:

neering tool that measures metrics geared
:.:;?-
‘:. ,&:

ificallyto 00 systems. .,.....”.

1

.,..
tric helps managers, technical leads and ;~~”, ~,’:;::,-,,
of the project’sdevelopersefficiently ,y~;~.~.’.(:{,,’:.

neer better 00 systems. ..;,,”.....”.:.....:,.’., ., .,-,.,.,.,,.,,.-,..,; ...>.... . .
tric, for quality 00 designs and,,eff$@’~ ““’”j~’~~~..~~~”;;”
ct management. ,. ::...“:....”.”.’..... :.,?, ,,:, ,,. ;.. ,.,....-..:......... ,: ...’.““...’’..:...“~.. .:.. ,..’:: :.’-.’

.
..-..,-.,. ,.,.. ,,:,.. ,,

..,,..,.,... ,: , “,,>.,

208LochsideDrive.’:@if<#o
919.851.0993● e-malk”.?l&
any problems at all. Most large applications need to do some

form of storage management, and a built-in garbage collector

can be much more efficient than one written from scratch for

the application.

Does the garbage collector work if.. ?

For example, what if I have code like this:

I garbagel garbage2 I
garbage 1 :=Arraynew 1.
garbage2 :=Arraywith: garbagel.
garbagel at I puti garbage2.

Now there are two objects, each of which has a reference to the

other but which no other object knows about. Both objects

should be garbage, but the garbage collector can’t tell that by

looking at either of them individually. Will the garbage collec-

tor work?

Yes. This is known as cyclic garbage, and any garbage-col-

lected system should be able to handle it. This is only a prob-

lem for systems using reference counting. Very few systems

with built-in garbage collectors use reference counting. Even

without the cyclic garbage problem, it is much less efficient

than other methods. ❑

Alan Knight is a consultant with the Object People. He can be

reached at 613.225.8812 at by email at knightti?acm.org.
m?..;j-;2..w ..:,..:.............::-:...’-:>.,....,.
ow good
roveit! .:R:::;:;;”.:%:,.;”.,.;, ‘.,.,,“’:::;:./,.“:.;,,;~:,,

~<? ‘:““”%.’”

k
.,:,~,:.,\?.,..........:’+ ‘~’;,...,;%,>’

,+:,% ,!
“..

. . .

-’”,.. .;*;. :>~.
.-
.,. % ,3
.%:.,%A

; ,,x~

>;J

,:T!Fj
,....,.
’‘“”-+(
.
--

/

■ VISUALWORKS LIST COMPONENTS corstinucdjrotn page R

ODBMS

4P%

ODBMS 2.0
Smalltalk Object Management

Client-Server Arehimc%ure
Objeet Management supporting
Version% Transactions, Distribution
Multimedia-Objeets
Objects to RDBMS

Available as
Single User, Network and Server Version

Supports Smalltalk under
Windows, Whdows NT, 0S/2, Unix

Successful applicatiomx
Smalltalk Team Development
Personal Data Manager
Configuration of Complex Systems

C)bjeetoriented Technology by
Vc software

12
I labelAndIcon:= (LabeLAndIconwith: whrdowlabel offset: 4(Qo)
icon: icon.

reversingWrapper:=ReversingWrapperon: labelAndIcon.
reversingWrapperrwerse setValue:true.
BoundedWrapperon reversingWrapper].

sequenceViewlineGrid 32

The example above used IabelAndIcon objects, VisualBlock ob-

jects, and ReversingWrapper objects, which are often very in-

strumental in defining a list widget’s visual blocks. Also, we

had to adjust the grid size of the SequenceView. The grid is the

total height, measured in pixels, allotted to each element in the

SequenceView. Open ListErrample to verify that the code works.

MULTIPLE SELECTION LIST EXAMPLE

As one final example, edit the specs in your list such that it is

now a multiple selection list. Now edit the windows method so

that it reads as follows:

windows
windowsistiil

WTnre:[windows:= MultiSelectionInListwith:
ApplicationWindowalUnstances]
ifFalse: [windows]

Normally, a multiple selection list uses a check mark to indi-

cate a selection. To make a multiple selection list use high-

lighted selections instead and send normaLSelection to the

MuUiSequenceView in a post build operation. Edit the post-

BuildWith: method to read as the follows:

postBuihiWW aBuilder
(aBuilder componentAti#windows)widget normalSelection

This will cause the unselected items to be drawn regularly and

selected items to be drawn highlighted-no check marks are

used. Open ListExample to verify this.

CONCLUSION
List components display to the user the information in a se-

quenceable collection. The aspect model is a SelectionInList

(MuMSelectionInList), and the widget is a SequenceView (Mul-

tiSelectionSequenceView). VisualWorks makes the collection a

dependent of the SequenceView. The List class was created to

operate specifically with list components. Whenever its content

changes, it uses this dependency relationship to notify the Se-

quenceView, which redisplays itself. The elements in the collec-

tion can be displayed in the list component in a variety of

ways—string, formatted text, or some arbitrary visual compo-

nent. A SequenceView can use printString, displayString, or any

arbitrary dkplay selector to represent the elements in the col-

lection. The SequenceView object’s visual blocks can be

redefined such that the elements in the collection are repre-

sented in the list as visual components. ❑
— -.

Bill Kohl is a Training Administratorat RothWellInternationaland

can be reached at the RothWellInternationalojjicesat 8(X1256.0541.

Tim Howard ha been dmeloping application software for thepast

eight years and hold an MBA and a Masters degree in industrial
engineen’ng. He can be reached at 74213.15 17@compuserve.com.
THE SMALLTALK REPORT

MALLTALK IDIOMS Kent Beck

Birth, bees, and browsers-
obvious sourcesof objects
conh”nued on page 17
T
his is the fourth and final installment in my series on

where objects come from. I deliberately started with

the unusual and difficult ways of finding objects.

There are lots of books that will tell you how easy it

is to find objects. Just underline the nouns! The fatuous phrase

that keeps popping up is,”. . . there for the picking.” Or maybe

it’s “plucking.” In any case, none of the objects you’ll find with

Objects from States, Objects fkom Variables, Objects from Col-

lections, or Objects from Methods is there for the picking.

They are, rather, deep, powerful objects that will change the

way you see and structure your systems.

That’s not to say that program-derived objects are the only

important objects. There are a couple of kinds of objects that

are necessary for a well-structured application. They just aren’t

sufficient to take full advantage of all the benefits objects can

offer. Here are two patterns that capture the way I think about

obvious objects: Objects from the User’s World and Objects

from the Interface.

pattern: Objects from the User’s World

Problem: What are the best objects to start a design with?

constraints: The way the user sees the world should have a

profound impact on the way the system presents informa-

tion. Sometimes a computer program can be a user’s bridge

to a deeper understanding of a domain. However, having a

software engineer second guess the user is a chancy propo-

sition at best.

Some people say, “I can structure the internals of my system

any way I want to. What I present to the user is just a function

of the user interface.” In my experience, this is simply not so.

The structure of the internals of the system will find its way

into the thoughts and vocabulary of the user in the most insid-

ious way. Even if it is communicated only in what you tell the

user is easy and what is difficult to implement, the user will

build a mental model of what is inside the system.

Unfortunately, the way the user thinks about the world isn’t

necessarily the best way to model the world computationally.

In spite of the difficulties, though, it is more important to pre-

sent the best possible interface to the user than to make the

system simpler to implement. Therefore. . .

Solution: Begin the system with objects from the user’s world.
JUNE1994
Plan to decouple these objects from the way you format them

on the screen, leaving only the computational model.

Commettti This is a pattern Ward Cunningham and I

named years ago when we first began exploring patterns.

Looking at it again was interesting. I was reminded why

having the user’s objects at the center is so important. So

many effects flow subtly from the object model to the

user. I always know a project is in trouble if I come in and

the Parsers and ProcessSchedulers are in the middle of

the table.

pattern: Objects from the Interface

Problem: How can you best represent a modern interface

with objects?

Constraints: A natural tendency is to want to make big

user interface objects—an entire table, a row of buttons,

etc. This may be a legacy from procedural programming,

wherein separating functionality into pieces is difficult. The

problem with this approach is that the result is inflexible. If

you want to add another button to the row or change the

way the table behaves, you may have to touch many parts

of the code.

A better approach is to make many smaller-grained user inter-

face objects. The more you can compose your user interface

out of small objects, the more flexibility you have, and flexi-

bility is at a premium in user interface design and implemen-

tation. The user interface is the part of the system that will re-

main unstable longest, long after the underlying model has

shaken out.

Solution: Find objects in the user interface. As much as pos-

sible, make each identifiable thing in the interface into an

object and build larger entities by composing them to-

gether. The lowest level user-interface objects become like

the tokens in a programming language.

comments: I sort of like the way Objects from the User’s

World turned out, but I think Objects from the Interface

isn’t very good. Actually, the design of objects to support

user interface is the result of a whole system of patterns. I

think I succumbed to “big patternitis,” the disease in which

you want to look comprehensive and you end up saying
13

.——-.

~uanita EwingETTING REAL

Return values
E
very method has one return value, A return value

can be a Boolean indicating the success or failure of

the operation, a new object that is the result of the

operation, or an existing object such as the receiver

of the method. The default return value of a method is self, the

receiver of the method.

In this column, we examine some common return values

from methods. Evolution of interfaces can result in an ad hoc

variety of return objects that are more ditlicult for a client to

use. A better alternative is specialized objects that encapsulate

return values.

WHAT HAS RETURN VALUES?

In Smalltalk, there are two structures composed of a sequence of

statements, that have a return value: blocks and methods. These

structures have two kinds of returns, implicit and explicit re-

turns. This column discusses method returns in detail.

An acphcit return consists of a return statement and causes

an immediate return from the method context, even if the re-

turn statement is inside a block. The return value is the value of

the expression to the right of the return operator (A). The ex-

pression ‘nameCollecbon includes: myName returns true or false,

depending on whether myName is included in narneCollection.

Another form of return is an implicit return. Implicit re-

turns are performed when no explicit return is performed, An

implicit return is performed when execution “falls off the end”

of the method.

Blocks and methods have different implicit return seman-

tics. For methods, the implicit return value is the receiver of

the method, otherwise known as self. For blocks, the return

value is the value of the last statement in the block, or nil if the

block has no statements.

EXAMPLES

Smalltalk class libraries are filled with examples of implicit

and explicit returns. The method displaytln: has an implicit

return. The implicit return is performed after the last state-

ment in the method

Wedge
di~playon: aGraphicsTool

“Graphicallydisplaythe receiver on <aGraphicsTool>,”

self fiUOrKaGraphicsTool
14
The truncated method for Line has an explicit return, but it is

the same as the implicit return. Sometimes developers use an ex-

plicit return for emphasis, even though it is not necessary. In this

case, it is probably because the method, unlike other similar line

methods, returns the receiver rather than a copy of the receivec

Line
truncated

“kmver the receiverwith the coordinates of its end points
tnmcatedto integers.”

self start self start truncated.
self end: self end tincated,
“seti

Other common return objects are nil, true, false, and strings.

By convention, a return value of nil usually indicates an excep-

tion condition or an error. Many older class libraries written in

the days before exception handling had old methods that

started out with a return of self. Later, some error checking

might be added and another return value might be used to in-

dicate the error. The other return value was typically nil, which

can be easily tested by clients. The method operationFooOn

illustrates a conditional return of nil:

opesationFooOn: anObjeet
“Performthe operation foo on <anObje&. Return nil if error,”

I fooizedObjectj
(self compatibleWith anObject)

ifFalse: [*nil].
fooizedObject:=self prepare: anObject.
self foo: fooizedObject

Another common way to indicate an error is to return a string

describing the error. The class method bindTo: checks the re-

turn value for the bindTo: instance method

ObjectLibraryBindckss
btidTo: at)LLName

“Bindthe ObjectLibraywith <aDLLName>into the current image.”

I result I
result:= sell new bindTo:aDILName.
result isShi.ngifllue: [self error result].
‘result

A BAD IDEA

As operations grow more complex, there is a tendency for the
THE SMALLTALKREPORT

interface to operations to become broader. Sometimes broad-

ness takes the form of disparate return values, each returned

under a different condition. Methods with widely differing re-

turn values require the client to execute conditional code or

perform a kind of case statement in order to use the result of

the method invocation.

Let’s look at an example of a complex operation. The oper-

ation has these characteristics:

. It might not succeed.

. The operation has a second chance of success—it can be re-

tried, with some input ignored.

. If the operation fails, it might be because of an internal er-

ror or because an external function failed. For debugging

purposes, it is desirable to distinguish between the two.

. Another effect of the operation is the creation of an Or-

deredCollection of strings containing result data from the

operation.

One possible solution to the problem of how to return this in-

formation is to use different return values to indicate how the

operation proceeded. This solution uses the following set of re-

turn objects (with their interpretation):

“ self Operation completed without error and return object

represents success.

● rd. Operation completed but some input data was ignored.

Return object represents conditional success. If the invoca-

tion of the method has user interaction available, it would

be appropriate here.

. stn’rrg. Operation failed due to internal constraints, and re-

turn object represents error message.

“ integer. Operation failed due to external constraints, and re-

turn object represents error code, Client must look up mes-

sage in error-code table. Desirable to have error code in

case error-code table is inconsistent with external interface.

This solution also makes use of a global variable to contain the

collection of result strings. The operation has a side effect of

setting the global variable to the collection.

Clients of this method must test for the kind of return value

to interpret the result of the operation. The testing of the re-

turn value and its interpretation looks like a secret code be-

tween the method and the client. Occasionally, a developer has

to break the secret code to maintain the application. Client

code might look this:

fnvolseOperalion
“Invokethe operationWithPoorInterface.Interpret the result and
conditionally return the globalvariable <GlobalResul@if the
operation succeeded. If it hiled return an empty collection. If the
invocation was irrteraclive, notify tfre user of the operation results.n

I result errorMessageI
result := se~ operationWithPoorInterface.
result ==self

me: [self invocation isInteractive
ifhue: [selfnoti&3rccess],
JUNE1994
‘GlobalResult].
result isllil

ifl’rue: [self invocation isInteractive
ifTrue: [selfnotifyDataIgnored].

‘GlobaLResuU.].
result isSting

ifTrua [selfno~Erroc result.
‘OrderedCollectionnew].

result isInteger
ifTru&[errorMessage:= (selJclass erroflable ak result ifslbsenti

~unknownerror’].
self not@Error: result printStiing,’: ‘, errorMessage.
“OrderedCollefion new]

“self erro~ ‘unableto interpret result of
operationWithPoorInterface’

The messages that can be sent to the result depend on the type

of object. If the return values from a method are highly poly-

morphic, then the client for the method can use the result

without testing for the kind of object.

This solution suffers from several problems:

“ Ease of Use. The client must map the return value to the

correct action, based on the kind of return object. The kind

of return object can be arbitrary and therefore difficult for

the developer to interpret correctly.

. A4airrterrcmce.Requires the client to have a “case” statement

that is error prone during evolution and maintenance—if the

set of return vahres changes, then all clients must be updated,

. ,%scapstdation.A global variable that is set as a side effect of

the operation is problematic because it is not protected

from modification outside of the operation.

ANOTHER BAD IDEA

The other bad idea is to package multiple return objects into

one generic return object, such as an array. We can rework

the above example to use an array for a return value. The

array contains much of the information above, but in a

different form:

- .Elenrent 1. Success Boolean. Set to true if the operation suc-

ceeded, Set to false if data was ignored or the operation failed.

- Element 2. Data-ignored Boolean. Set to true if the opera-

tion succeeded by ignoring some input data. Set to false if

otherwise.

● Element 3. Error message. Set to an empty string if the oper-

ation succeeded. Set to a descriptive string if it failed.

“ Elerrrent4. Error code, Set to nonzero if external operation

failed. Error message is also set.

. Element 5. Collection of result strings. Set to an empty col-

lection if operation failed.

In this form, we do not use a global variable to return the col-

lection of result strings. Now the client must interpret the con-

tents of the array instead of the set of return values. The code

for the client might look like this:
15

■ G~ING REAL
invokeOperation
“Invokethe operationWithPoorInterface.Return a collectionof
sbings if the operation succeeded. If it failed, return an
ernptycollection.If the invocation was interactive, notify the user of
theoperation results.”

I result errorMessageerrorCode I
result:= self operationWithPoorInterface.
(result afi 1) “success”

ifTnre: [self invocation isInteractive ifllue: [selfno@.Success].
‘result ati 5],

(result ah 2) “dab ignored”
ifhre: [self invocation isInterative Whue:

[selfnotifyDatalgnored].
“result ak 5].

errorMessage:= result ah 3.
errorCode:= result ati 4
errorCode>0

fi%ue [errorMessage:= (self class erroflable at
errorCodeifAbsenk [’rmknowrrerror’]), ‘: ‘,errorMessage].

self no@Erro~ errorMessage.
‘OrderedCoUefion new

This solution does not have a side effect of setting a global vari-

able. But, there are three reasons why capturing a set of return

objects in an array is not a good choice:

- Ease of Use. Clients of the method returning an array need

to use arbitrary indices to obtain the data instead of sending

messages with meaningful names.

■ Encapsulation. Multiple return objects forma coherent set

and should have behavior to represent operations on these

objects. An array has no way to encapsulate behavior, and,

consequently, clients of the method need to write much

more code to duplicate the behavior of the return set of ob-

jects. Each client writes the same code over and over.

“ Information Hicfing. With an array representing multiple

return objects, the constituent data, including private

data, is accessible to all clients. Also, the formation of the

objects within the array cannot be changed without affect-

ing all clients.

For a more complete discussion of these issues, see the article

“Don’t Use Arrays?” SMALLTALKREPORT (2[7]).

A GOOD IDEA

There is an alternative to packaging different return values in a

generic data structure or returning several kinds of objects.

The alternative is a single instance of specialized return object.

A specialized return object can encapsulate the successor fail-

ure of an operation, error descriptions, and multiple results.

Independent of the success of the operation, all clients can

send the same messages to the result. A single return object is

easier for clients to use and encapsulates appropriate behavior,

Using the same problem description, here is a solution that

uses a specialized return object. A partial description of its pro-

tocol follows:
16
SpecializedReturnObject
wasSueeessful “Returntie if the operationsucceeded.”
wasDataIgnored “Returntie if the operation ignored some input

data, false otherwise.”
errorMessage “Returnan empty sting if the operation succeeded,

a descriptive string if it filed. If the faihrreis external, the
message includes the error code.”

erroKode “Returnnonzeroif externalpotion failed, zerootherwise.”
atringColledon “Returna colletion of result tiings emptyif the

operation failed.”

Using a specialized return object, the client of the operation

sends messages to interpret results instead of testing for arbi-

trary return values or access arbitrary elements in an array.

Client code might look like this:

fnvokeOperation
“Invokethe operation WithPoorInterface.Return a collecbon of
strings if the operation succeeded. If it failed, return an empty
colledion. If the invocation was kteractive, nom the user of the
operation results.”

I result errorMeasageI
result:= self operationWithPoorIntecface.
result was.successful

Wllue [self invocation isInteractive ifl’rue [seLfnotifySuccess].
tiesult shingCoUeclion].

result wasDataIgnored
iffnre: [self invocation isInteractive ifhue:

[seMnotifyDataIgnored].
“result stringCoUection].

selfnotifyErroc result errorMessage.

‘OrderedCoUedionnew

In this example, special code that dealt with the error code was

dropped out. It is not necessary for the client to know the error

code for the error message to be composed. Instead, it is com-

posed by the return object. During a debug session, the error

code can still be individually accessed.

A REAL LIFE EXAMPLE

Compilation is a complex operation with multiple results. The

solution used by Smalltalk/V for compilation results is a spe-

cialized return object, an instance of CompilationResult. The

behavior for CompilationResult from Smalltalk/V for Win32

(simplified for presentation—see sidebar). The behavior can be

divided into several categories:

. methods for determining the success of the operation and

dealing with errors

■ methods for returning the results of successfully compiling

some source code

. methods for returning the results of parsing some source

code, subdivided into:

1. local names

2. selector

3. miscellaneous results, such as the messages sent by the

method.

Depending on the client, results of compiling could be used to

create methods for classes, to build static databases of messages,
THE SMALLTALKRSIPORT

;?”

■ SMAUTALK IDIOMS

continuedjlom page 13

JUNE 1994
something so vague as to be unusable, I’ll leave that pattern

there, though, as an example of how not to do it.

This concludes a four-part series on where objects come from.

Looking back, I can see I have wandered pretty far afield from

the hard, practical information I wanted to present in this col-

umn. I’m not sure what I’ll do next, but I think I may even give

patterns a rest for a while. Maybe something about what goes

on under the hood in VkwdWorks and V. Maybe some virtual

machine secrets, What do you think? Let me know at

70761 .1216@ compuserve.com. ❑

Kent Beck hm been discovering Smalltalk idioms for eight years at

Tektron& Apple Computer, and MasPar Computer. He is also

thefounder of First Class Sofiare, which develops and dis-

tributes reen@reeringproducts for Smalltalk. He can be reached

at First Class Software, P.0, Box 226, Boulder Creek, CA 95006-

0226, or at 408.338,4649 (phone), 408.338.3666 (@),

70761,1216 (CompuServe).
A
.,. .

.’. . ,. ‘““6titiPiu%”&fi’R’@i$pLT ‘:”::’”’~’:~‘,,., ., .. ;. .,... ‘“. ,’,.-: .’:

%iarver@sr@ifthemeiverrepseaerrtsa
“**M&ti*tiaE*
Msretreadbutnotdefirsidwitlrisstha

smcessfal cm@atim.” source.’
aror “rfthecompiiwaaumucmdllthenm- parse results-selector

torn the Gm@at50rISnot object that de- eaiemot ‘Answerthe method aelaetmbywhich the
scribesthe errorthat terminated compilation.” compiledmethod would normally be invoked,

emorMessage “Ifthe compilationwas unsuccessful, then re- Ans3vernUif tie expressionwas compiled01
turn a shirrg describing the error that termi- if the compiition was unauccesshd.n
nated comp~kition,otherwise return an empty
Shing.” purse resulfi-other

messages “Answera list of the messages sent within the
compilation results source,”

association “kmve.r an association between the metlod prissWveSpecff&ation “Answera abing containing the primitive
selector and the compiledmethod that was ~ specification found in the source code, in-
created. Answernil if the completion was un- chrdingthe enclosingbrackets (’<’and ‘Y).If
successfulor if what was compiledwas not a the source code had no primitive specifica-
method” tion, the answeris an empty string.”

method “Answerthe compiledmethod that was cre- aourceCode “Answerthe source code that was parsed. This
ated by the compilation.Answernil if the maybe different fromthe original source
compilationwas unsuccessful.” code if the source was modifiedby an error

handler.”
parse results-local rrames temporasyNames “Answera list of the names of all temporary

argrsmentNarnes “lumver a list of the names of all method ar- variables and block arguments defined within
guments de6ned within the source.” the source.”

localNames “Answera list of the names of all variables de-
fined within the source.”

m ‘“
or to collect data for metric and productivity measurement.

Typical use of the interface to the compiler looks like this:

involrahmpik
“Invokethe compiler.Return a new compiledmethod if the

compilationwas successful, nil otherwise.”

I compilercompilerResult I
compiler:= self compilerrlass forrlass: self c\assToCompileFor.
compilerResult:= compilercompile:isritialSource.
compilerResuhwassuccesshd ifFal.ae:[‘N1].
self instak compikrResult association withSource:

compilerResuksourceCode.
selfbuildCaUTableFrocmcompilerResukselector to: compilerResult

messages.
“self

ADVICE

When designing systems with complex operations, pay atten-

tion to the interface between the client and the operations. If

there is a requirement for multiple return values, consider the

use of specialized return objects.

i%ralyze interfaces to existing complex operations. Be wary OE

. sets of return objects,

* the use of “case” statements in client code to analyze return

values, and

- generic data structures, such as arrays, which are analyzed

by the client.

These are signs of code that could benefit from specialked return

objects. The results of rework with specialized objects will be more

understandable, extensible, maintainable, and reusable. ❑
Juanita Ew-ng is a senior staff member of Digitalk, Inc. She has

been a project leader for commercial object-oriented sojlware pro-

jects, and is an expert in the design and implementation of object-

on”entedapplications, ji-ameworks, and systems. Prm’ously, at
Te.xtronix Inc., she developed classlibrariesfor the first commer-

cial-quality Smalltalk-80 system. She can be reached via email at

juanita@digitalk. com or by mail at Digitalk, Inc., 7585 SW Mo-
hawk Drive, Tualatin, OR 97062.
17

r“UIS Kyle Brown

GUI Smalltalk: The
VisualWorks UIBuilder
v isualWorks allows programmers to easily generate

complex user interfaces in a highly automated way,

The same capabilities that make it possible to draw

windows using the point-and-click UIPainter tool are also used

to generate the resulting windows at runtime. By taking a peek

under the covers of how VisualWorks constructs its windows,

we can gain a greater understanding of how to apply the user

hooks that VkualWorks provides and start to see how to use

this knowledge to extend VisualWorks.

A VISUALWORKS WINDOW FROM THE OUTSIDE IN

Let’s start by looking at a simple VisualWorks window (con-

structed using the UI Painter) containing an ActionButton, an

InputBox, and a Label. (See Fig. 1.)

Figure 2 shows the objects that makeup the visuals seen in

the window, They proceed inward (in an “is-part-of” relation-

ship) from the ApplicationWindow.

What the pieces do

ApplicationWindo+The application window is the topmost

layer of the VisualWorks window system. It represents the op-

erating system window that you see. It is different from the rest

of the components of the window in that the class Application-

Window is not a subclass of VisualComponent-it is not

something that can represent itself with a graphics context or

be a subcomponent of somethingelse. This is why it is so

difficult (maybe impossible!) to do MDI under VisualWorks.

Instead, ApplicationWindow is a subclass of DisplaySurface.

This means it possesses a graphics context that it can pass to

other objects with which they can display themselves.

KeyboardComposite —A KeyboardComposite is a special

subclass of CompositeView that connects to a KeyboardPro-

cessor through its controller. A KeyboardProcessor coordi-

nates keyboard focus for all the Views contained in the Key-

boardComposite.

CompositeViews area subclass of CompositePart. A Com-

positePart is a visual component that holds a group of other vi-

sual components within its bounds. I For instance, when you

“group” things in VisualWorks, a CompositePart is created to

hold the things in the group.

SpecWrczpper-The SpecWrapper binds together the com-

ponent represented on the window and the spec that created it.

SpecWrappers are returned when you ask for “componentAt:”
18
to a builder, SpecWrappers area subclass of WidgetWrapper

that manage the visual state of the component—that is, is it vis-

ible or invisible, what LookPreference does it use, and so forth.

BoundedWrapper and BorderedWrapper or LayoutWrapper—
These wrappers set the position and size within the window of

the component that they contain. If you set a component to

have a border in the UIPainter, then it is wrapped in a Bor-

deredWrappe~ otherwise it is wrapped in a BoundedWrapper.

In some cases, another wrapper, a LayoutWrapper, is used. A

LayoutWrapper works tlom an instance of LayoutFrame or

LayoutOrigin rather than from a rectangle.

At the very bottom of the stack are the UI components—

the subclasses of View that actually accomplish something like

editing text or displaying graphics, and so forth.

THE BUILD PROCESS

Now that we’ve seen what a VisualWorks window is composed

of, the questions remainx How do the pieces of a window we

have just seen get from the spec generated by the UIPainter

onto the window? This is the result of the VisualWorks inter-

face building process. This process goes through several steps,

with user hooks at each level to allow the process to be

modified or enhanced.

First Step: Setup

When a VisualWorks window is created, the message open is

sent to an instance of ApplicationModel. Note that this occurs

afier the instance of ApplicationModel is created, so any ini-

tialization that took place in the initialize method of that par-

ticular ApplicationModel subclass has already occurred.

The open method sends the openInterface: message, with

the particular windowSpec symbol (i.e., #windowSpec) as a

parameter.*

openInterface: a$nnbol
“Openthe ApplicationModel’suser interface, using the specification
named.”

I spec I
builder:= UIBuildernew.
builder source: self.
spec := self class interfaceSpecFoc aSymboL
self preBuildWith:builder.

‘ All code in this article is @Copyright 1992, Parcjiace Systems. Usedby
permission.
THE SMALLTALK REPOIIT

builder add spec.
self post13uildWlttubuilder.
builder windowmodel: seM,
builder openWithExtenbspec windowbounds extent.
self postOpenWittubuilder,
‘builder

This method first creates a new instance of UIBuilder, then

creates an instance of Fr.rllSpec by sending its class the message

interfaceSpecFoc with the windowSpec symbol as a parameter.

This method turns over the job of creating a new interface spec

to the class UISpecification. The class UISpecification then

reads the literal array version of the specification from the win-

dowSpec method, decodes the literal array format of the UI

Specification, and returns an instance of FulLSpec. Here is what

a FullSpec consists OE

A WindowSpec represents the attributes of the Application-

Window, that is, its min and max size, its bounds, its label, and

so forth. The component attribute of a FullSpec contains a Spec-

Collection that contains (in its collection attribute) the individ-

ual specs of each of the components of the window to be built,

As the next step in the build process, the first user hook, pre-

BuildWlth: is called. At this point, both the UIBuilder and Full-

Spec exist, but nothing has been done with them. You can mod-

ifi the UIBuilder in this method, but unfortunately, the FulLSpec

is not passed as a panrneter. (Of course, you could always

change the method openInterface: to correct this oversight).

Second Step: Creating tha component

The next message sent by the openInterface: method is the add:

message sent to the UIBuilder with the newly created FullSpec

as the parameter. This simple little message accomplishes most

of the work of putting together the VisualWorks window.

add: aspec
“Resetmrrrentinternal state and build within the current composite
accorhg to aspec.”

self starLNewComponent.
self addspec: espec,
%rapper

The message startNewComponent cleans out some instance

variables of the UIBuilder and sets it up to begin work on a

particular component. This message then sends addSpec:,

which sets the UIBuilder’s spec attribute to be the new

specification passed in and turns the process over to the

specification by sending it the addTo:withPoliW message.

At this topmost level, aSpec is an instance of FuUSpec. Full-

“AAA”AA~

Figurs 1. VisualWorks window.

Spec implements ad-

dTo:withPolicy by

telling the builder to

add: its windowSpec

and ComponentSpec in

turn. Similarly, Spec-

Collection implements

this message by iterat-

ing over its collection of

specs and telling the

builder to add: each of
JUNE1994
them in turn. However, the superclass UISpecification imple-

ments the method this way

addTo:builder withpolicy policy

self dispatchTo:policywit.lr builder.
seMfinaliseComponentIn:builder

The method dispatchTo:with: is overridden in all concrete sub-

classes of UISpecification. As an example of how this process

works, let’s trace down the adding of one of the specs, the In-

putFieldSpec, and see how the methods are implemented.

InputFieldSpec implements dispatchTo:witlr in this way, by

using double-dispatching:

dispatchTo:policywith: builder

policyinputBox self into: builder

The class UILookPolicy and its subclasses implement many

methods that are of the form component: into:, in which compo-

nent is the name of the UI component being added (listVlew,

textEditor, etc.). These methods actually create the instances of

the correct View subclasses for each specification. If you wanted

to extend out the VisualWorks palette with your own View, one

of the first steps (which is not mentioned in the relevant chap-

ter of the VisualWorks user’s manual) should be to implement

these methods for each UILookPolicy subclass in the system.

Coming back to our example, the class UILookPolicy im-

plements inputBoxinto: in this way

inputllox spec into: builder

I component model menu performer alignment I
model:= spec modellnBuildec builder.
component:= self fnputBoxCleasnew.
spec type== #password it’hue: [component dlsplaycontents:

PasswordComposedTextnew].
component modek modeL
self setStyleOhcomponent to: spec @le.
component controlled seti inputBoxContioUerClassnew.
(menu := spec getMenuIn:builder) == nil

iff alse: [component controller menuHolde~ menu].
(performer := spec getPerformerIn:builder) == nil

iffalse: [component controller performec performer].
builder componenfi component.
component diaplayselection: false.
spec tabable

ifTrue: [componentwidgetState isTabStop:true.
builder sendKeyboardTo:component]

ifFalse: [componentwidgetState canTskeFocus:true.
component conboller keyboardProcessor:builder

keyboardProcessor.
builder component controller dispatchOn:Charactercr

to: #acceptKey.].
spec isReadOnlyiflkue: [component controUerreadOnly true].
spec numCham==NI iffalse: [component conholler maxChars:

spec numChars].
(alignment:= spec alignment)== #left

ifFalsti [self setAlignmentOkcomponent displayContentsto:
alignment].

builder wrapWith ScroUWrappernew.
spec decorationType==#bordered

il’ltue: [builder wrapWith selfborderedWrapperClassnew.
builder wrapperinset O,
builder wrapperborden se~ inputFieldBorder]

ifFalse [builderwrapWitk selfboundedWrapperClassnew].
builder applyLayouti spec layout
19

■ GUIS
The aforementioned methods (in boldface) indicate most of the

steps necessary to create the component. In general, most com-

ponenkinto methods do all or most of the following six stepx

. create the component’s model (if necessary) by calling

modeUnBuilder:

“ create the component

“ set the component of the builder to be the new component

“ do any necessary initializations and setup

. wrap the new component in an appropriate wrapper.

“ set the layout of the new component’s wrapper from the

specification.

If the component is one that requires a model, then it will be

obtained (in most cases) in the modelInBuilde~ method by

getting the return value of sending the aspect message that was

defined in the spec to the builder’s ApplicationModel.
cationwindow

oard Composite

SpecWrappers

BoundedWrappers or
BorderedWrappers or LayoutWrappers

F@s 2. Visudworks objects.

FullSpec WindowSpec

label
window

menu
component min

mas
bounds

SpecColleetion

collection

aCollection

‘LabelSpec >

ActionButlonSpec
etc.

\ J

-. .-
Figure 3. Instance of FullSpec.

—

20
Usually, obtaining the correct wrapper for the component

is done by sending a particular UILookPolicy the manui%cture-

GeneralWrapperFor: into: method. This method creates a wrap-

per based on the type of the layout attribute of the spec and the

value of the decoration attribute. This allows a component to

be bordered, unordered, or to have scroll bars based on the

decoration flags. There are a few exceptions to this rule that

need to speci~ their wrappers differently, as does

inputBox:into: above.

Finally, the finalizeComponentIn: message adds the

SpecWrapper around the newly created wrapper and adds the

resulting wrapper into the builder’s dictionary and the

builder’s composite.

At this point, most of the work of creating the window is

finished. By now, all the window components have been cre-

ated and connected to each other. All that remains is for the

window to be opened.

Lest Step Opening the window
Back up at openhterface: events quickly reach an end

after the specs have been added. The user hook post-

BuildWiti. is called next. Any changes to the layout of

the UI components or special initializations outside of

those done in the build process can be done in this

user-defined method. Additionally, any keyboard

hooks (which trap keys before they are passed to lower-

level components) can be defined in this method.

The message postBuildWith: is followed by actually

opening the window itself (UIBuilder

openWithExtent:). This message sends the openWith-

Extent message to the window held by the UIBuilder,

which opens and schedules the window, Finally, the

user hook postOpenWith: is called and the openlnter-

face: method returns.

That just about does it. We’ve managed to trace

down from the spec built up by the UIPainter all the

way to the ObjectWorks window objects actually built

by the UIBuilder. In the next article of this series,

we’ll explore how to use some of the information

we’ve gained to build an OS/2-like notebook pane in

VisualWorks. ❑

References
1. Liebs, D., and K. Rubin. Reimplementing model-view-

controller, THE SMALLTALKREPORT(1)6 1–7, 1992.
-——. .— ..—.

Kyle Brown is a Senior Member of Technical Staff at

Knowledge Systems Cotp. He has been developing cus-
tom viewsfor Objectworks/Smalltalkfor over three

years. As part of his consultingpractice, he has developed
custom graphical inte~aces for applications in Enp”neer-

ing MIS, and sa”entificcomputing. Since joining KSC,

Kyle has enjoyed teaching the principles of reme and

good O-O design to a variety of clients through the KSC
Smalltalk Apprentice Program.
THE SMALLTALK REPORT

--- .—

Product hmouncements are not reviews,They are abstracted from press releasesprovided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our edltoriat ofic~

Prnduet Announcements Dept., 91 Second Ave., Ottawa, Ontario KIS 2H4 Cmada.

EASEL CORPORATION ANNOUNCES NEW VERSION

OF ENFIN APPLICATION DEVELOPMENT ENVIRONMENT

AND TEAMBUILDER

Easel Corporation announced an upgrade of its application de-

velopment environment, ENFIN Release 4.0, The company

also introduced TeamBuilder, a development tool that enables

groups of developers to simultaneously build applications.

Both are members of Easel’s Object Studio products family.

ENFIN Release 4.0 offers a new development workspace. All

object icons are now organized by functional group and are

color-coded to help developers visualize functions. It also in-

cludes a Main Desktop Apprentice feature that provides on-

line training so developers can become more comfortable with

the drag-and-drop environment, For both Windows and 0S/2

developers, ENFIN templates can be double-clicked on, as well

dragged and dropped.

Other features include a new SQL Editor that increases a

developer’s ability to build applications that access SQL

databases by supporting aliases and calculated columns and

providing a nonparsed “direct” mode feature. ENFIN Release

4,0 has added connectivity features, including Oracle support

of stored procedures and enhanced DDCS/2 support. A new

generic EHLLAPI interface that supports all 3270 emulators

that are fully EHLLAPI compliant, including DCA’S IRMA

Workstation, Wall Data’s Rumba, and Attachment’s Extra,

TeamBuilder enables a networked soi%vare development

team to jointly build object-oriented client/server applications.

The tool provides check-in/check-out capabilities of classes and

files and works within the ENFIN Class Browser. With Team-

Builder, a developer can group objects together as a project,

each having a separate revision level, date-stamp and label. This

easily allows a developer to reuse other developers’ objects

while still keeping their projects organized and maintainable.

TeamBuilder integrates with Intersolv’s PVCS product, provid-

ing additional functionality, including archiving older classes

and files, comparisons between revisions, and labeling,

Easel Corp,, 25 Corporate Drive, Burlington, MA O / 803,

617.221,2 /00 (V), 617,221,6899 (f)

Without

Synopsis

Coding Documentation

A A

Now! Automatic Documentation
For SmalltalklV Development Teams — With Synopsis

Development Time Savings
sJTIOpSk produces high quality class documentation

automatically, With the combination of Synopsis and

1

Smalltalk/V, you can eliminate the lag between the I
production of code and the availability of documentation.

Synopsis for Smalltalk/V

● Documents Classes Automaticallyy

● Provides Class Summaries and Source Code Listings

● Builds Class or Subsystem Encyclopedias

● Publishes Documentation on Word Processors

● Packages Encyclopedia Files for Distribution Products Supported:
● Supports Personalized Documentation and

Coding Conventions
Digitalk SmalltalldV Windows $295
Digitalk SmalltalldV 0S2 $395

(0S/2 version works with Team/V and Parts)

Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ SynopsisSoftware
close look at using Synopsis to make documentation 8609Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-847-2221 Fsx 919-S47-0650

stat Finish

Documentation

With
Coding

Synopsis
A A

start Finish

micado SoftwareConsult GmbH is one of the
leadlng system houses in Germany for object
oriented languages. It has an expert team with
wide experience in development and customer
support. Due to the astounding growth of the
object oriented market in Germany, we are cur-
rently seeking the following freelance 00 pro-
fessionals:

Smalltalk
Designers and

Developers
If you welcome new challenges and if you want
to explore your career opportunities please
send or fax your resume to

micado SoftwareConsult GmbH
Reutherstr. 1a-c D-53773 Hennef

Tel. (49)2242-87 1-450 FAX -455
Compu-Serve 100024,2444

In order to keep up wilh Lhc explosive growth in lhc
object technology markc[, Vcrsant Objccl Tcchncd -
ogy, lhe industry’s leading provider of objccl da[a-
basc managements yslems (ODB MS) for muhi-user,
distributed environments has immcdialc openings for
the following posilions.

Join the team lhal offers [hc induslry’s most complclc
product line including lhc VERSANT ODBMS,
application dcvelopmcnl and databtisc administralirm
1001s,multiple programming language intcrfxcs, and
a family of support scrv ices.

prOjGCt Lead(Job Code: eng 11)
Responsible for leading and driving lhc dcvclopmcn[
of lhc Smalltalk irnerfacc 10 lhc VERSANT ODBMS
in an aggressive and dynamic cnginccring rrrganiza-
tion.

You’ll need a minimum of 2 years cxpcricncc implc-
mcnling production Smidhalk applica[iorrs on either
UNIX or PC plal.forms. A working knowledge of C,
C++, and UNIX is also required. Expcricncc with
either object or relational databases is desirable. An
MS in compuler science or equivalent expcricncc is
requ ircd.

COfISUltaIIt (Job Code: tco 42)
You will be responsible [or ccmsulling wilh our
customers lhroughou 1lhcir soflwarc lifccycle
enabling them to Icvcragc Objccl Oriented Technol-
ogy, complemented by a sui[c of Vcrsam mols m
SOIVCcomplex application problems. Posilion also
requires you 10 inlcrfacc wilh Markcling and Engi-
neering to feed customer iIIPUl 10 Ihe produc[plan-
ning process. You will also provide [raining [o
customers, Required 10 mdvcl cxlcnsivcly within
the US and overseas.

A minimum of 5 years application dcvcloprncn[
experience wilh 2 years experience focused on
Smalhalk. A working knowledge of cilhcr objcc[or
relalirmal databases is required. UNIX cxpcricncc
mandalory, and PC cxpcricncc a plus. A BS dcgrcc
in engineering or compu[cr science required.

VERSANT offers an cxccllem cornpcnsalion and
benefits package including a s[ock oplion plan, 125K
and 401 (K) plan. Vcrsanl is an EEO/al_firmalivc
aclion employer. For immcdialc consideration please
mail or fax a cover lctlcr and a resume m:

Vcrsant Objecl Technology, Attn: Personnel (JOB
CODE:), 1380 Willow Road, Menlo Park, CA.
94025, or FAX: (415)-325-2380

VERSANT
The Database For Objects’”

GetPowerfulNewControlsforSmalltalk/V
Subpanes’”N is a libra~ of unique

controls for SmalltalkN. Place and edit
them interactively with WksdowBuilder’”
ProN. When you use the right controls,
your applications will be easier to use. And
you’ll save time because you won’t need to
fight controls that aren’t right for the job,

First M -u *
I&m! I19w Yial

1 la l%NJhnr4 nn~ .~OJDs Ill

?s Slmhar Dbpxafnn s@Fam 9

3W warm h~ Wstams lU
mI-Km Flmbr rn~ -*I-B 6

5 L= RQ>erts Ck$i&rc S@:ms a

6 Ind nsm Lkafla raw lU
7KU Cq- C8mpBl & I%- 11

A Table of Editable Cells

TablePrmeprovides a scrollable grid of
edhable cells. In addition to handling a
matrix of strings, it can manage a collection
of objects. Users edit cells in-line by
selecting them with the mouse or keyboard,

Hierarchical I
Iu[a., M

F1
—

-w

❑m=
❑ ..—1..

mu-
-.=4!
E U&i.

.ist Box
HierarchicalListBox
extends a normal Iistbox
to view a hierarchical
group of objects.
Collapse or expand the
hierarchy, use icons, use

~ indentation to show the

relationships. Display any objects that have
hierarchical relationships.

A List Box with Columns
ColumnarListBox displays multiple pieces
of information about each object of a
collection. You control headers, justifica-
tion, color*, multiple select* and more.

rm..*;, “-q

s. SIldhm LwrMlm Wf=-
P.9ben Y,mx ll+dsllwe S@Izas 1:
!31”. .ldl” Owcwl. - 8
tin when, Ualccknwe~
14 Rams Cwpw Lb,. 1:
Ku) c-p,, Cq” # Plan 11
Dam SW awr!bld&w.w-, 11

Hemb II

Bitmap Panes, 3D Frames, & More
Subpanes/V also includes BitmapPane, 3D
frames, ValueSet, Gauges, date, number,
and time editors, BitmapButton, and more.

No Runtime Fees
No runtime fees for applications developed
with SubpanesN. It includes complete
documentation, full source, free support to
registered users for the first 90 days, and a
30-day money-back guarantee.

NEW! For os/2$235 (v2.0)
For Win $129 (v].t))
For Win32$195 (V1.o)

“These features inversion 2.0 only. Version 2.0 for Wn and
Win32 will ship in 3094.

Subpanes~ raquires WindowBuilder Pro/V Subpanas /V is
compatible with Team/v and ENVY/Oeveloper. Subpanes is
implemented in Smalltalk. as subclasses in Digitalh’s Subpane
hierarshy. Support subscription available.

...AndCUA’91ControlsAreEasyToo!
WidgetKit’”/CUA’91 is a library of
CUA’91 controls for SmalltalkN. CUA’91
controls provide a dktinctive and powerful
user interface. WidgetKit/CUA’91 makes
them easy to use and portable. Place and
edit the controls interactively with
WindowBuilder’MProN. WidgetKitl
CUA’91’s specialized editors give you easy
access to all of the control’s attributes.

Notebooks, Cached for
Performance
CachedNotebooks provide the CUA’91
notebook control. Performance is dramati-
cally improved by dynamic page loading.
You get complete control of orientation,

w“Gzicijj3..——..—.—..—..—-—...—..—.
a ‘––-–-: 1

I — ,

tabs, align-
ment, color,
binding, and
caching.

Containers
CuaContainers
provide text or
icon representa-
tions of items they
contain. Items can
he dragged and
dropped between
containers. Supports icon, name, text, lree,
and detail views. CuaContainers can hold
objects of any type.

Value Set and More
CuaValueSet provides a way for users to
select from icon and text choices with a
mouse click. WidgetKit/CUA’91 also
provides full support for the rest of the
CUA’91 controls, including slider and
spin button.

For WindowBuilder ProN
WlndowBuilder ProN lets you build
SrnalltalkN user interfaces fast. Place the
controls and edit them interactively.
Increase consistency, ease maintenance.
Call for a free brochure.

No Runtime Fees
No runtime fees for applications developed
with WldgetKit/CUA’91. It includes
complete documentation, full source, free
support to registered users for the fwst 90
days, and a 30-day money-back guarantee.

NEW! For 0S/2$295
For Win $295 (3Q94)

For Win32 $295 (3Q94)

WidgetKit/CUA91 requires WindowBuilder Pro/V WdgetKit/
CUA’91 is compatible with Team/V and ENVY/Developer.
Includes DLLs. User interfaces built using WdgetKit/CUA’91 are
portable to supported platforms. Support subscription available.

SHARE

a6 3 Objectshare Systems, Inc.
5 Town& Country Village, Suite 735

w

E!

San Jose, CA 95128-2026
Call to order today(W) 970-7280

Fax 408-970-7282
~ CompuServe 76436,1063

9AM to 5 PM PST Monday through Friday
m 30 dav monev-back guarantae

INcm 0 ObjectshareSystems he. 1%4

Not long ago, clienVserver
development required massive
amounts of time, money and
expertise to combine different
and complex technologies.

. ~- Now Digitalk
PARTS: a rapid
application
development
tool set, lets you
easily integrate
your software
assets into

clienUserver applications.
PARTS is the only object-

oriented technology that lets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products let
you take existing code - written
in SmalltalkA4 COBOL, C, SQL
and other languages - and wrap
it into components or “parts:
Which can then be virtuallv

categor~ calling it “the defini-
tive visual development tool’:

And InfoWorld ranked
PARTS the #l component-
based tool for visual develop-
ment. Info World’s Stewart
Alsop adds: “There’s nothing
like it on the PC. ”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTS has a host
of graphical power tools to give
you all the power of objects-
without the learning curve.

And PARTS is from
Digits/k. The company that’s
been providing object-oriented
tools to the Fortune 500 /onger
than anyone else in the wor/d-
with over 125,000 users.

Call 800-531-23~ X 610

snapped together visually. “The result systems like CICS, COBOL, APPC
is smooth-running clienVserver and SOM. And PARTS lets you
applications in a fraction of the develop on both 0S/2 and Windows.
usual time. For a fraction of the
usual cost.

PARTS supports all popular Only months ago, PC WEEK
SQL databases like Sybase, Oracle awarded PARTS Workbench the
and DB2. Plus legacy or late model highest rating ever in the 0S/2

	By Article title
	A brief look at inheritance metrics
	Birds, bees, and browsers--obvious sources of objects
	Return values
	Still more frequently asked questions
	The VisualWorks UIBuilder
	VisualWorks List Components

	By Author Name
	Beck, Kent
	Brown, Kyle
	Ewing, Juanita
	Howard, Tim
	Knight, Alan
	Kohl, William
	Lorenz, Mark

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Smalltalk Idioms

