
..

January 1994 Volume 3 Number 4

CROSS=

Fest

1 Cr

ha

by

Colu

0 Sm
De
by

10 Ge

Te

in

by

15Wu
sh

by

22 In

Eu

by

here has been much discussion about exception handling for object-

oricnted languages in recent years. Unfortunately, the discussion
PURPOSE

EXCEPTION

HANDLING

(PART 1)

by Ken Al~er 6 Barry Oglesby

Contenb:

❑
both multi

Ofien,

sired funct

aware of e

up. Oficn,

to it. For e

process th

process ex

Most c

features” p

tremely us

multiple p

excellent s

dled, or th

and extra

Recentl

Srnalltalk’s

ures/Articles

oaa-purpose exception

ndling (~ 1)

Ken Am & Barry -y

mns

&lk idioms:
ath to case etatemente (pati 2)

Kent Sack

tting resl:

chniques for platform

dependence

Juanita Ew”ng & Stem k4essick

ct Review:
ootautat thetvlacd@2)

Jan SMrrnran & Ssrbsrs Yates

the user groups:

ropean Srnalltalk summer dool

Rob vans

ordination”

sign and d

work exten

exception

progress, o

These

niques. Th

from withi

other cont

thread of

serve the s

have no ef

This ar

Smalltalk’s

ble, and e

vide some

dor. We w

Finally, w

of its use.

adequate
has focused primarily on exception handling for a single thread of

control. Such exception handling can often cause compromises in

an object-oriented system architecture that has legitimate uses for

ple processes and exception handling.

multiple concurrently executing processes are necessary to provide de-

ionality. These processes usually operate independently and are un-

ach other. Only when a problem occurs must they cooperate to clean it

a problcm occurs in one process, but it is another which must respond

xample, in an equipment-supervisor application, a material transfer

at has a problem may cause an exception that should be handled by any

pecting that material to show up at a certain place.

ommercially available exception handling frameworksl-’ and language

rovide exception handling for only a single thread of control. While ex-

eful, such a Iimilati[)n can discourage or disallow the exploitation of

rocesses to accomplish tasks for which they would otherwise provide

OIU[ions. If multiple processes are used, excepti(ms are either not han-

ey are hfindled by adding excessive baggage such as instance variables

code to provide explicit communication between processes.

y, aficr running head-on into these problems, wc decided to extend

process and exception handling mechanisms to make the creation and co-

of processes much simpler, effective, and reliable. Through iterative de-

evelopment, we have implemented some fairly simple yet powerful frame-

sions. We have found that these extensions sufficiently handle cross-process

handling in a generic, non-intrusive manner. And, although this is work in

ur extensions have been successfully applied to a real-world project.

extensions are not meant [o be used as default exception handling tech-

ey were made exclusively for use in cross-process exception handling

n the context of the problems presented below. They maybe useful in

exts, but they certainly should not be used in contexts where single

control exception handling is desired. Great care has been taken to pre-

tandard approach to single thread exception handling. These extensions

fect on existing software.

ticle, divided into two parts, describes how we have extended

process and exception handling frameworks to allow a powerful, flexi-

legant solution” to cross-process exception handling. Part 1 will first pro-

background by describing the general frameworks provided by the ven-

ill then present one problem for which no adequate solution exists.

e will discuss our solution to this problem, along with simple examples

Part 1I of this article will first describe an additional problem with no

solution. We will present our solution, including some simple examples,

rolltinltet{ on pa~e 4...

The SmaUtatk Report
Editore
John Pugh and Paul White

Carleton University & The O~eci People

Sl= ~BLICATfONS

Adviso~ Board
Tom Atwood, Object Design

Grady Booth, Rational

George Boswodh, Digtslk

❑rad Con, Information Age Consulting

Adele Goldberg, ParcPlace Systems

Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systams

Sesha Pratap, Centerline Software

Clif Reeves, IBM

Bjarne Stroustrup, AT&T ❑ell Lsbs

Dave Thomas, Object Technology International

THE SMAUTALK RwcrRT
Editorial Board
Jim Anderson, Digitslk

Adele Goldberg, ParcPlace Systarns

Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Dlgilalk

Dave Thorme, Oijecl Technology Interraticml

Columnist
Kent Beck, First Class Software

Juanita Ewing, Digitslk

Greg Hendley, Knowledga Systems Corp.

Ed Klimss, Lnea Engineering Inc.

Alan Knight, The Object People

Eric Smith, Knowledge Systems Corp.

Rebesxa Wkfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder.4 Group Publisher

Art/Production
Kristina Joukhadar, Managing Edtor

susm Cullii, Hgrim Road, Ltd., Crm6ve Direcbon

Gwen !3mchirico, Production Coordinator

Andrea Cammarata, Production Systems Crnrdinalor

Circulation
Bruca Shriir, C)rculstkm Mansgar

KS. Hawkins, FuiiiHmentMansger

Marketing/Advertking
Thomas Tyre, AdvertisingMgr4%t CUA/Carada

Gabriila James, A&-Ask Mw—West CaaWEut-qE

Helen Nevding, Recruitnwnl * Mmsger

Wendy Plumb, AdvertisingAasistsnt

%ah I%_h’1, prm-dms Mamgar-Pdiiions

&.3f’l ~m, Prmmdma Gmpk wst

Administration
William Ryan, COO

Margherita R. Monck, General Mansger

David Chatterpaul, Accounting Manager

James Amenuvor, ❑ookkeeper

Margot Patrick, Assistsnt to the Publisher
EDITORS’
CORNER

John Pugh P(w[White

we are writing this as we head into the Christmas holidays, which started us thinking about
a“Smalltalk Christmas Wish List.” We originally thought about going to the mall to sit on

Santa’s knee with this one, but instead decided to write it here (since everybody knows
Santa reads THE SMALLTALKREPORT, anyway!).

We were careful to keep our list short. First, it’s time to improve the development en-

vironment itself. Both Digitalk and ParcPlace haven’t made significant changes to the way
people browse in years. While it was the best tool available at one time, numerous changes
could be made to improve productivity immensely and at a reasonable cost, Second on
our list is to make it easier to break into the Smalltalk community. Though the language
itself is simple to explain, Smalltalk is a difficult thing to learn and many changes could be
made to allow novices to understand how to use it. Third, could we have truly private
methods? Fourth, could we rethink the debugging environment? We must make it possi-
ble to debug complex interactions with tools other than the simple step/send and
hop/skip currently used.

The topic of exception handling has received, proportionally, a great deal of space

within this publication. We believe this to be appropriate for a number of reasons. One, it
is an interesting topic. Two, it is a difficult topic, and any advice that can be shared by
“experts” will help us all. Third, it illustrates the power of Smalltalk, and even if the ideas
presented don’t directly assist you, we’re sure you will be able to learn from them. To this
end, Ken Auer and Barry Oglesby of Knowledge Systems begin a discussion this month on
introducing exception handling mechanisms for dealing with “multiple concurrently exe-
cuting processes.” Their proposal takes exception handling beyond the level provided cur-
rently by Smalltalk vendors.

Ever have a desire to return to “Smalltalk School?” The description provided by Rob

Vens of last summer’s week-long immersion session sounds very enticing. Most of us are
so involved in our current projects that we don’t get to take time out to explore Smalltalk
in a manner described by him. It seems like an idea that would make sense for most of us,
and one our employers would see the benefits of. Plus, it would be a 10t of fun—which re-

mains Smalltalk’s biggest drawing card!
Kent Beck this month takes aim at two issues he has discussed in the past, namely the

shortcomings of automatically using accessor methods for accessing instance variables
and of case statements in the Smalltalk language. By presenting examples of each, he
makes a strong case against both. Also in this issue, Juanita Ewing is joined by Steve Mes-

sick in a discussion of how to achieve better platform independence in our applications.
They discuss ways in which we can factor the pieces of our applications that are depen-
dent on the environment and make them more portable.

Happy New Year!

—..!7L ----
THE SMALLTALK KE~ORT (ISSN#–1056 -7976) is ublished 9 times a ear, me
{“ d %ew York, N; 1001221.2.274.0640. CSCopyri INov/Oec combmcd mv+es. Published by SIGS Pu hcauons Inc., 588 roadway.

month exce t for the Mar/Apr,]ulylAug, and

F1994 b S[GS Publicatmms. All rights reserved, Re reduction “f this rnaIerml by electronic transmission, Xerox m any ot m
J“metho w1!I be weatmf as a willful violation of the U Co righ[Law md is tlstly prohibited. Material, maybe reproduced with cx-

%“”
~94; S&k copy~ice, $8.00, POSTMASTER Smd address changes aml subscription orders to THE SMALLTALE REPOFT, S“b-

rem ermts.mon from the pubhsher. Mmled First Class. ubwnptmm rates 1 year (9 issues): domcsnc, S7!Z Forrign and Cmmda,

.!cribm Setic% qt. SML, P.O. Box 30CKI,Denville, N] 07 L134.For service cm current mb~ri tians cdl MJ0.7B3.4903.
z“To submit articles, please wnd electronic film orI disk t“ the Editms at 509-Rt15 MeadowIan s Drive, O1tawa, Ontario K2C 3N2,

Canada, or via Internet to pugh@scs.mdemmc.a Preferred formats for figures am Mac or DOS EPS, TIF, m GIF formats. Always
send a paper copy of your rnmmcript, incl”di”g camera-ready copies of your fig”rm [laser output is fine),

Printed in the United States.

2

~SIGS
P1,HI I1:,HI1l N,

Publishers of JOURNALOF OWECT.OHIENTEIJ PRO.
GRAMMING, OWECT MAGAZINE, C++ REPORT, THE
SMSLLTALK REPOW, and THE X JOURNAL.

THE SMALLTALKREPORT

?

WINDOWBUILDER P~O”
!h_n2JlltMcN developers hdV12 come to rely on W]ncfowBuilcler Pro/V is av~ikrble un Windows for $295
WinclowBuik-fer m ‘an
essentfi~l tnol for devek)p-
ing sophistimted user inter-
faces, Teclirrus hmc! cocting
uf interfxe.s is repkdcwct by
interx-tive viswrl ccmrposi-
tion, Since its inithl rckdse,
Wincir_nvIluiklm has
become the inctusrry stm-
chrcl GL;I development tncd
for the Srndll~[lk/V environ-
ment. Now Objectske
hrirtgs ~OLI :1 whule new
level OFcapdhility with
Window BuiMerPro! F&w
fhnctiomlity ancl power
fihouncJ in this next gener~-
ticm uI’ WindowBuilcler.

Some of the exciting newfeatures ...

ancl 0S/2 for .$4)5. Our stm-
ctml Winclowllu ikler/V is
still tiv:l il;lt)le on Winckm+
fur $149.95 and 0S/2 for
$295. We offer full VdlLIL?

trm-k+in for our
Wincknvlhilder customers
wtinting m move up to Pro,
These products are :11s[)
fivtiikrbk in
IWVY ‘/Ilvvkqx7 ancl
Temn/vIv comfx~t ible k)r-
rnm. As w-id) :111of our
products, Winclowlluikler
Pro comes with :130 dtiy
money Imck guwmtcc, full
source code Imd no Run-
Tinw I&s.

● (1mlp()sil~,l);lnus: Crddte custom cwntrol.s m composites

T
Shet

of other controls, trrdteci :]s
a single ol>ject, tillmving the

-L,,edrep&atec,lyanc,
developer higher leverage
of reus;lble wiclgcm.
Composi[ekmes cxn he

13CCIJLISC they tire Class basrxt, they cdn be e;lsily sLlh-
dwsect; changes in o Compmsitekme arc reflected any-
where they we LIsd.

● i$dorl>l]ing: Allows the developer to quickly ch~ngc

D

malllalk from rrtw type uf cwnlrol ‘skill,
windti.llder ‘2
Other to another, alk)wing for

L_

@SmalHalk

powerful “whdt-i~ style 0 WlndawBullder

visual ctcwelopment. The c]o,h~,

Flexibility :dknved by
morphing will grwdtly enhance prnctuclivity.

. Srl-:lpll[x)!i: Another new Fpdture to levcr~g~, t,isml
component reuse, ScrdpBrmks provick 3 mechanism for

mm.pw,
,ti. -- “-””-”-IF==::::::::,store a ncl retrieve pre-
-,. SW.”.V,w.1s.,
--.5. .

H

c...., EEREl ,
nents. The Scmpfkmk

*. is a czdP~k)gof one’s
I favori[e in[erfwx ~Om

W= ‘“’~ ‘“ 1~-...!!? poncmts, orgmizecl
into chapters and pages,

● l{dpicl l]rol(]typin~ c.lp-
I)ili[ies: With the new link-

m

selerl. W,uw..wcl,..:

%’:=:. : B7

ing rdp~bilities, a ctevelcrp- fl;~m~
er rdn ra picfly prototype a
Functioma] interfwe without lE~’&

El

opt.,~C.Cl==+d
wlndnwa, , childcd

writing a single line of MOiSy,lem
MDIT,,”,c,IPI tie w,rwm timdaw. ,

crrcle. LinkIluttcms ancl
POhnnum
Pnzzl,l 5

LinkMenus prcwicle a puw- ‘mEQ

m ?$$:::::::)’

L’rful meclmnism for linking
~ winck)ws together ancl spe~i-

11 II IIAclionMenues provic!e :1

~dL--- -–-A
wEik#Am9J Uasdwi’i.l

mcchdnism for cleve]opers [0
atKdch. cru.lte, ‘ant! rc’u.w

xctions without Ixtving [o write cock. These features
grvdtly enhance proctuc[ivity cturing pro[otyping.

● ‘1’(x]Ilklr: Developers rdn Cretite sophisticdtcxl toollmrs

just like the ones in the WindowBuilder Pro tool itself.

. (Xhl, r ncwi- fu;l[llrcs inc.l~lclc: tmhmwecl cluplimtion mrcl
cut/paste functions, size ancl position inctimtnrs,
enhancecl framing specification. Parent-chilcl winclow
rehionship specification. enhanceci l%m-yFielcl with cl~m-
xcter tincl Fielcl level wlickdtion, tinct much more...

● Allcl-in ,\l;lnxyr: Alk)ws cfevek)pers to c?mily integmte
extensions into Wincknvfluilckr Pro’s open mchi[eclure,

C:l[ch [k cxgitenwnt, go PI-()!
C:Ill OI>jwlsh;lw for more information.”

(408) 727-3742

C)bjecktrsre Systems, Inc 5 Town& Country VWaW
Fax: (40Ei) 727-6324 Suite 735
CompuServe 76436,1063 SanJose, CA95126-2026

tWwkwBuildmr ❑d WindowBuilder Pro are hadmnwhs of ObjBckham Systems, Inc. All olher brand and product nam.s am registered Iradwnarhs ol their respecilve crmpanis

Coding Documentation

Without
Synopsis ~

~
A

.5wr Flnlsh

Now! Automatic Documentation
For SmalltalWVDevelopment Teams — With Synopsis

Development Time Savings
Synopsis produces high quality class documentation

automatically, With the combination of Synopsis and

Smalltrdk/V, you can eliminate the lag between ihe

production of code and the availabili~ ojdocumentation.

Synopsis for SmalltalldV

+ Documents Classes Automatically

Q Provides Class Summaries and Source Code Listings

GBuilds Class or Subsystem Encyclopedias

● Publishes Documentation on Word Processors

● Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and Digitalk Smrdltalk/V
Coding Conventions OH ENVY/Developer for Smalltalk/V

Windows: $295 0S/2: $395
Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-847-2221 Fax 919-847-0650

With
Synopsis

A A

sat Fhrnh

■ CROSS-PROCESS EXCEPTION HANDLING (PART 1)
. . .corztinucdfiom page J

will provide an extensive example that incorporates both types
of extensions.

BACKGROUND

The frameworks described here are based on Objectworks\Small-
talk and the concepts or details described mayor may not be

applicable to other versions of Smalltalk. Several implementa-
tion details are purposely lefl out since they have no impact on
the concepts that are the focus of this article.

Processes

A Smalltalk process is a non-preemptive, lightweight process.
A non-preemptive process will not be interrupted:

. By another, same-priority process against its will

“ Mid-instruction in any case (an instruction being defined
here as anything that causes a new context to be added to
the stack)

#my block of code can be the basis of a process. Once a new pro-
cess is created, the processor must be asked to schedule the pro-
cess. A process can explicitly be asked to suspend, resume, or
terminate. A process can also be implicitly suspended by waiting

on a semaphore. A non-terminated process that has not explic-
itly been suspended is either in a waiting or executable state,

The processor is constantly responsible for deciding which
instruction to execute next, II does this by giving control to
one of its scheduled, executable processes. The processor will
4

choose the process with the highest priority first. If there are
multiple executable processes at the same priority level, it

chooses them on a round-robin basis,
A process will continue to execute until interrupted in one

of two ways:

.

If a semaphore is signaled on which a higher priority process
is waiting, that process will be given control before the active
process’s next instruction is executed. This semaphore can

be signaled by the active processor by the Smalltalk virtual
machine (if it is a timing- or delay-related semaphore),

A urocess can also voluntarily give up control. This can be,
accomplished by explicitly waiting on a semaphore, by ask-

ing the processor to yield to another process at the same
priority, or by explicitly suspending itself.

Processes are typically created by sending the newProcess or
fork messages to a BlockClosure.Either message returns the
newly created process. However, the active process that created
the new process has no handle on it. AISO,the new process has

no handle on its parent process. Unless it is stored explicitly
once created, the new process cannot be controlled by its par-
ent process other than via manipulation of commonly accessi-

ble objects. The parent and child processes are separated at
birth, and all records of the family tree are destroyed.

Since each process is a single independent thread of control,
the life, deatlr, or injury of one has no implicit effect on another.
A process will execute its instructions as they are defined at cre-
THE SMALLTALKREPOI+T

Detector

oa.siwwIraise
.
■

.

anExceplion raise

Worker Process

Figure 1. Parallel proceaaes (current).

ation time. The processor has control over when a process is al-

lowed to continue, but does not affect the order of its instruction
execution. However, new instructions can be inserted before a
process’s next instruction explicitly via manipulation of its con-
text. The most common way for this to occur (outside of debug-
ging) is to send the interruptWith: message to a process, This mes-

sage takes as an argument a zero argument block- This block will
be executed before the process’s next intended instruction.

Exception Handling

Once the execution of a process has begun, various types of prob-
lems can occur. The method that detects a problem may not

know what to do about it. The proper way to handle the specific
problem may vary based upon some higher-level context. The
generic term for this class of problem is exception. SmaJltalk pro-
vides a fairly flexible exception handling framework,

This framework is based on signals that, when raised, cause
an exception to occur. The context stack of the process in which
the signal is raised is searched until one that can handle the ex-

ception is found. The handler then acts on the exception. If no
handler is found in the context stack, several procedures are
tried, with the final one being to run the emergency handler.

Signals have a generalization/specialization hierarchy. Ex-
ception handlers will handle exceptions raised by the named

signal, or any more specific signal in its lineage. For example,
an exception handler for object errorSignal will handle excep-
tions created by raising object errorSignal or arithmetimalue di-

visionByZeroSignal.An exception handler for ArithmeticValue
divisionByZeroSignal will handle integer divisionByZeroSignal,
but not object errorSignaL A partial hierarchy of predefine sig-
nals is as follows:

ObjecterrorSignal
ObjectnotFoundSignal

ObjectsubscriptOutOfBoundsSignal
ObjectnonIntegerlndexSignal
DictionarykeyNotFoundSignal

ObjectmessageNotUnderstoodSignal
ArithmeticVahceerrofiigml

ArithmeticValuedivisionByZeroSigml
Stream positionOutOfBoundsSignal

An exception handler is simply a one-argument block that takes
an instance of exception as its argument. A handler is created
by sending the handledo: message to a signal as follows
JANUARY1994
Worker Process 1

Detector
e

A==N ‘0rkerpr0cess2

Figure 2. Parallel procesaea (desired).

aSignal
handle: [:ertception I “handling code”]
do: ~code for which the abovehandler appties”]

If aSignal or a more specific version of aSignal is raised during
the execution of the do: block, the execution of the do: block is
interrupted and an exception that is sent as an argument to the

handle block is created.
A handler block can redirect the flow of control in one of

four ways

“ Refuse to handle (reject) the exception

● Exit from the handler block and the method in which it is
located with some value

“ Proceed from the point at which the error occurred (only
for certain signals raised in a certain way)

● Restart the do: block.

This article will only expand on the first option, reject. When
an exception is rejected, the search for another handler will
continue up the context stack. Note that the handler block can
do anything before it rejects the exception, For example, it can
actually provide some of its own handling prior to passing it

on to some other object.
Exceptions contain certain information that may be useful

to the handler. For example, the exception can be asked which
signal was raised in order to create the exception. It is also the

exception that directs the search up the context stack for an
appropriate handler. Therefore, the exception must know at
which context the search should start. By default, it is the con-

text in which the signal was raised.
Since processes are independent once created, exceptions

search only a single context stack for a handler. This causes
problems in several realistic scenarios when multiple, concur-
rently executing processes are operating within a single system.
When mutliple, concurrently executing processes exist in one
system, they fall into two categories:

- Processes that are parallel to each other or siblings. For ex-

amPle, one process maybe looking for problems detected
by sensors in a robot, another may be operating the robot.

“ One process is a subordinate, or child, of another. For ex-
ample, a process to operate a robot is created by, and re-
ports to, a factory supervisor process.
5

■ CROSS-PROCESS EXCEPTION HANDLING (PART 1)
These categories ofien are be combined to create a working
system, For instance, the robot-operating process is parallel to

the problem-detection process and subordinate to the factory
supervisor process. Processes have no handles on their parents
or siblings. If problems occur in one, no obvious path of com-

munication exists to another.
In Part 1 of this article, we will discuss the problem of ex-

ception handling between parallel, concurrent processes and
our solution. In Part 2, we will discuss the problem of excep-
tion handling between subordinate processes and our solution.

PARALLEL PROCESSES

It is very possible, especially in the context of machine-control

sotlware, that the process that detects a problem is not the pro-
cess that needs to respond to the problem. For example, a pro-
cess (known as a detector) may exist whose sole function is to

monitor an actual physical device. Several additional processes
(known as workers) that depend on this device to work as ex-
pected may also exist. Currently, if the detector process discov-
ers a problem and raises a signal, only it can respond to that

signal. An exception will be raised only within the context of
the detector process, The worker processes are unaware that a

problem has occurred, This scenario is illustrated in Figure 1.

What is necessary is to also have the worker processes re-
spond to that raised signal. If the detector process detects a

problem in its device and raises a signal, an exception should

be raised not only within itself, but within any worker pro-
cesses that depend on that device. Each process can then re-
spond appropriately. This scenario is illustrated in Figure 2.

Without modifications to the current framework, a scenario
like this would require the detector processes to know all pro-

cesses that depend on their devices, In keeping with the principles
of encapsulation and proper distribution of behavior, it is not wise
to have either the detector processes explicitly know enough
about worker procewes or the worker processes explicitly know

the detector processes. In either case, changing the implementa-
tion of the detector or worker processes may affect the other. For
example, if an additional worker process were necessary, the de-
tector process would have to be modified to know about it.

PROBLEM SOLUTION

To provide the mechanism for many device-dependent pro-
cesses to be interested in the raising of one signal from an inde-
pendent detector process, a new handler method, as well as a
new instance variable, was added in signal. The new method is
called onException:do:, and it employs this new instance vari-
able (called dependentprocesses) to keep track of all interested
processes, The invocation of this method is similar to that of

Signal>>handle:do: and is described as follows:
aSigml

onExce@on:[:exceplion I “handling code”]
do: [“codefor which the abovehandler applies”]

The implementation of onExceptiomdo: differs from handle:do: in
that onException:do:simply adds the active process as a depen-
dentprocess of the receiver signal, then invokes handle:do: to exe-
6

cute the do: block Upon returning from this execution, the ac-

tive process is removed from the signal’s dependentRocesses, The
implementation of Signal>>onExceptiondo: is described below

onException:exceptionBlockdo: doBlock
“Executethe codein the doBlock.If the receiver
is rsised in any process, it wll also be raised in
the dependent processes.”
Iresuk currentprocess I
[self addDependentProcess:
(currentProcess := ProcessoractiveProcess).result:=

selfhandle:exceptionBlockdo: doBlock]
vahreNowOrOnUnwindDo:

[selfremoveDependentProcess:currentprocess].‘result

To make use of the processes captured by Signal>>onException:do:
as dependents, a new kind of exception class was created called

MultiprocessExceplion.In addition to providing normal exception
behavior, this new exception subclass caches a collection of pro-
cesses in an instance variable called intermpthocesses. These pro-
cesses are all those on which the raising of the signal depends.

Now, if the specific signal is raised during the execution of
the above do: block, the execution of the do: block is inter-

rupted. Depending upon the existence of dependent processes,
either an exception or a MultiprocessException is created by the
signal, If handle: do: was originally employed as the handler,
then a normal exception will be created upon raising the signal.
If onException:do: was employed, then a MuliiprocessException
will be created. In either case, the new exception is then raised,

Raising a MultiprocessExceptionmuses each of its interruptPro-
cesses to handle a new exception, This is accomplished simply
by setting the interrupffrocesses of the new Mukiprocess?brception
to the signal’s dependent processes at creation time. When the

MultiprocessExceptionis raised, it interrupts all of its interruptPro-
cesses with a block raising a new exception (based on the param-
eters set before the raise). As soon as each process is interrupted
with this exception-raising block, it stops normal execution and
begins executing its own exception handling block.

To accomplish this process-interrupting behavior, several
exception methods had to be overridden in MultiprocessExcep-

tion, most notably raise. Its implementation is described below

raise
‘Raisethe receiver by raising a new Exceptionbased upon
the receiver in each of its interrupt processes.”
self interruptprocesses do:

[:eachprocess I I interruptBlock I
“Createthe block to be sent to eachProcess.”

interruptElock := Processorativeprocess == eachprocess iffrue:
[[setfnewException raise]]

iffalse:
[[self newException

searchFrormeachprocesssuspendedContext; raise]].
“Interrupt eachprocesswith the intecruptBlock.”

[eachProcessintemrptWith: interruptBlock] fork]. super raise

The explanation of this method is divided into three parts:

- Creation of the interrupt block for each interruptProcess. A
block of code must be created with which to interrupt each-
Process. The code in this block must first create a new ex-
ception, then it must verify that the exception starts its
THE SMALLTALKREPOIIT

ODBMS

x . . .-

- /,“=””-Now Buppoti \\
,./ Digitallds PARTS
~l=UCPl=+S Stnalltalk.ao//;

‘“-$+- ““‘-”

ODBMS
The Objectoriented Database

~ Persistent Object Storage for Smalltalk
0 Handles Complex Data Types
❑ object Ownership, Versioning, Security,

and Object Distribution
o pro~er and Enduser Versions
m Stand Alone or Network Configuration
~ Database Classes licensed for

OEM Distribution
m Support for PamPlace Smalldlc-80

Add-on Applications
n DSSDe SourceCode Management
❑ In&rface ~ so~]~~s
u SUppOfi for Digitalk’s PARTS

ODBMS
ObjectOriented Technology by
VC Software

JSA VC SoFtwarc Inc., ‘The Christina Came., 201 N.Walnut SrreeL Suire
000, WOmingtnn, DE 19S01 c> Orher Cam-mkx VC Software Consrrucrion
imbH, Peuimnvall 2S, 3S11 B Braunschwei& Germany, Tel: +49-531-24 2400,
k +49-53 I-24240-24
search from the correct initial context, and, finally, it must
raise the exception. The only difficulty was to decide what
was the correct initial context. If eachRocess is the active

process, then the exception created by newException is auto-
matically initialized with the correct initialContext. If each-

Process is not the active process, then its suspendedContext is
the correct initialContext and must be set (via searchFrom).

. Interruption of each interruptProcess. Once the correct inter-
ruptBlock is created, then it is a simple matter to interrupt
eachProcess (via interruptWith:) with the block.

. Invocation of super raise. The implementation of raise in
exception must be invoked in case the active process is in
normal exception handling mode (via handle: do:). If this is
the case, then the normal method of finding the handler
and raising the exception must be preserved.

A simple example illustrating this enhancement follows:

[ObjecterrorSigmlortxception:
[:ex I Tramcriptcc show:‘Handlingexception’]

do:
[Transcriptcr; show ‘Detaystarted’.
(Delayfck$econds:5) wait.

Transcriptcr; show ‘Delayended’]]fork

Execution of this block of code will result in a process being
created, This process will show ‘Delaystarted’ in the transcript
window, followed by ‘Delayended’ after five seconds. If object
errorSignal is raised (via ‘ObjecterrorSignal raise’) in any running
process (including this one) during the five second delay, then
normal processing would be interrupted in this process and its
exception handling block would be invoked, thus producing
‘Delaystarted’ in the transcript window, followed by ‘Handbg

exception’ after a delay of under five seconds.
At this point, we have discussed some general background

on the process and exception handling frameworks as provided

by the vendor, as well as a problem that arises when multiple
concurrently executing processes are necessary and our solu-
tion. In part 2 of this article, we will describe an additional
problem and our solution, including some simple examples.

Also, we will provide an extensive example that incorporates
both types of extensions. H

References
1. ParcPlace Systems, Inc. Objectworks\Smalhalk User’s Guide,

Chapter 8, 1992.
2. Hirdde, B., and R.E. Johnson, Taking exception to Smalltalk,

part 1. THE SMALLTALKREPORT, 2(3),1992.
3. Hinkle, B., and R.E. Johnson, Taking exception to Smalltalk,

part 2. THE SMALLTALKREPORT, 2(4),1993.
4. Pyle, LC. THE ADA PROGRAMMINGLANGUAGE.Prentice Hall,

Englewood Cliffs, NJ, 1981.

Ken Auer is the Director of Development Services at Knowledge

Systems Corporation, Cary, NC. He can be reached at
919.481.4000 or kauer(l?ksccatycom. Barry Oglesby is a member

of the technical staff of Knowledge Systems Corporation. He can

be reached at 919.481 .4(Ioo or boglesby@ksccary.corn.
JANuARY1994 7

Kent Beck

Death to case statements, ~ti2
H
oldona sec....

Before I finish bashing case statements, I’d like to
return to the scene of an earlier crime, my perfidious

assault on that bastion of Smalkalk orthodoxy, the ubiquitous
accessor method. (Whew! That’s a ten-buck sentence if I ever
seen one.) I argued that the violation of encapsulation provided
by accessor methods more than offset any benefit of inheritance
reuse. I talked to several readers at 00PSLA who were offended
by that column, although no one wrote me directly. Well folks,
none of those beer-soaked conversations convinced me differ-
ently in Washington, and a couple of recent events leave me
even more sure that insisting all variable access go through a
message is a bad idea.

Here’s the basic problem: Beginners don’t get the message
that accessor methods should be private by default. They hear
the rule, accessvariables only through a message, and they think,
“Great, here’s one thing I can do to make sure I’m not messing
up.” They’re using their new object and they say, “Hey, if I just
had that variable over there I could solve my problem.” Next
thing you know, representation decisions have Ieaked all over,
none of the objects have grown the behavior they need, and
progress slows to a crawl.

I was at a client recently where they had misused accessor
methods all over the place. The biggest problem was in chang-

ing collections behind the owning object’s back. They wrote

code like this:

Schedule>>initialiae
tasks :=OrderedCollectionnew

Schedule>Xasks
“tasks

Thenin user interface codethey wouldwrite:
ScheduleVie*>addTaskButton

,..
modeltasks add: newTask

The problem with this code is that it assumes that tasks returns
an object that responds to add. If they changed the representa-
tion in Schedule to store tasks as a Dictionrqr instead of an Or-
deredColletion, the ScheduleViewcode breaks. The implementa-
tion of Schedule has leaked out, and that’s exactly the kind of
problem objects are supposed to help us avoid.

Later on in this same assignment, the horror that accessing
methods are there to avoid happened to me—I changed an in-
-. ——.

8

stance variable so that it was lazily initialized. I had to change all
those methods that directly accessed the variable so they sent a
message instead. It took me all of three minutes and I was done.

The point here is not that accessor methods are useless.

There are definitely cases where judicious use of accessors can
improve code. However, teaching beginners always to use ac-
cessors before they are able to understand the need to keep
some methods private avoids reuse problems far down the road
at the cost of encouraging them to violate encapsulation.

Enough about accessors. If you don’t agree, let me know. I’d
love to see a reasoned discussion of this issue, since accessors

are accepted as an article of faith by so many people, and I see
lots of bad code being written while adhering to the letter of the
“accessor law.”

The real purpose of this article is to complete my thoughts
about case statements from last issue. QKS’ SmalhalkAgents has
introduced a case construct. I’m making the argument that case
statements in an object language are superfluous, and they pre-
vents discovering important new objects. Rather than just com-

plaining about case statements, though, I’ll show you how to
turn a situation that uses case logic into a richer use of objects,
(This is typical of patterns: They don’t just describe a good or

bad situation, they tell you how to get from bad to good.)

PATITERN:OBJECTS FROM STATES

Problem

Parallel case statements are a maintenance nightmare. Chang-
ing one instance of the case without changing the others can
lead to subtle bugs. How can you use objects to eliminate case
statements?

Constrain

One of the goals of any programming activity is not to intro-
duce any more complexity than necessary. Creating methods
and classes that don’t have any payoff is a common program-
ming mistake. The solution to the case statement problem
should create only new classes and methods that pay for their
existence with reduced maintenance, improved readability, and
increased flexibility.

The solution must eliminate the case logic that causes main-
tenance problems. Why are case statements a problem? Essen-
tially, multiple case statements with the same cases introduce ~
multiple update problem. You can’ t correctly change one state-
—..——.—_—

THE SMALLTALKR~Po~r

ment without changing all the others, and this relationship is
entirely implicit. While you might be able to keep track of
where all the cases are today, a year from now you (or worse,
someone else) will have to know to look for them all, and know
where to look.

Finally, the solution should set the stage for further growth
of our objects. Some of the most valuable objects you cars find
are the ones that are not obvious from the user’s view of the
world. These are the objects that structure not the world, but
our computational model of the world. (Other patterns like this
are Objects tlom Collections, Objects from Instance Variables,

and Objects from Methods). Taking advantage of the appear-
ance of case logic should make programs more explicit and
more flexible.

Solution

Make an object for each state. Make a variable in the original
object to hold the current state. Move the logic in each case
into the corresponding state object. Delegate to the current
state instead of executing in the original object. Make the state
changing methods assign a different state object to the state
variable.

Example: Consider a visuaJ object that carsbe in one of three

states: enabled, disabled, or invisible. The state is represented by
storing a Symbolin the variable state. A couple of the methods
might be:

Visuab>display
state = #embled ifhre: [...display embled... .
state = #disabled W1’rue:[...display disabled... .
state = #invisible iffrue: [...do nothing ...

VisuaP+wtent
state = #enabled I (state = #disabled) ifhue: [A40r@40.
state = #invisible ifhue: [“O@O.

Visuab-enable
state := #embled

Viiual>>disable
state:= #disabled

Visuab>disappear
state := #invisible

Applying Objects from States, we first make an object for each
state:

EnabledVkual,DisabledVisual,InvisibleVisual,subclassesof Object.

we can use the variable state to hold an instance of one of
these. Moving the logic into the state objects yields:

EnabledVkual>>display
...display enabled...

EnabledVisuab>errtent
“40@40

DisabledVisual>>display
...disptay d~abled...
JANUARY1994
DisabledVisual>>errtent
“40@40

InvisibleVisuabM.splay
“Donothing”

InvisibleVisual>>estent
“o@o

Then Visual has to change to invoke the state:

VisuaB+diaplay
state display

Visuak+extent
‘state extent

Finally, the state-changing methods have to change.

Visual>>enable
state:= EnabledVisualnew

Visuabxlisable
state:= DisabledVisualnew

VisuaE+iisappear
state:= InvisibleVisualnew

Other patterns

After you’ve applied Objects from States, you may have to use
Delegate or Call Back to fully move each state’s logic into the
state object. You may be able to use Factor a Superclass to sim-
plify the implementation of the states and prevent multiple up-
date problems.

CONCLUSION

This and the previous column have shown how to eliminate
most uses of case-type logic, The remaining examples of case
statements don’t appear frequently enough to justify a new lan-
guage construct. The power of Smalltalk lies primarily in its
simplicity, out of which richness can grow without undue com-
plexity. Every new feature must pay for itself by solving a prob-
lem affecting a large part of the community, On this grounds,
case statements just don’ t cut it.

What’s next? In this pattern, I referred to several others that
created new objects. I think I’ll spend at least a couple more
months exploring this theme. See you in the next issue with the
second installment of “Daddy, where do objects come from?” ❑

Kent Beck hm been discove;ng Smalltalk idioms for eight years at

Tektronix, Apple Computer, and MasPar Computer. He is also

the founder of First Class Software, which develops and distrib-

utes reengi”neeringproducts for Smalltalk. He can be reached at

First Class So@vare, P.0. Box 226, Boulder Creek, CA 95006-
0226,408.338,4649 (voice), 408.338.3666 (fax), or 70761,1216

on CompuServe.
9

v“””-’ ““--“‘-”‘-”“-””””’““-”Juanita Em-ng 6 Steve Messick

Techniquesfor platform independence
T
his article discusses techniques for writing platform-

independent applications and class libraries. The tech-

niques we discuss are useful for modeling environmen-
tal changes that affect your application. For example: operating
system facilities that vary from platform to platform, window-
ing libraries for Windows and 0S/2 Presentation Manager, a
database connection that varies depending on the network
configuration, archiving libraries that use either PVCS or Ora-
cle for storage, a color model that depends on the current out-

put device and even Smalltalk platforms such as Smalhalk/V
and Objectworks\Smalltalk. These techniques could also be

useful as part of a system that models user-experience level.
One way or another, ill the techniques in this article are

based on polymorphism. They rely on client objects sending

messages to platform-dependent objects. The client always
sends the same messages, which is where polymorphism comes
into play Every platform-dependent object must understand
those messages. Thus, during both the design and implementa-
tion phases, it is important to think about the set of public mes-
sages for objects and the requirement for polymorphism.

This article will refer to classes providing platform services
as library classes,and the client classes that use these classes as
application clmses.

INTERCHANGEABLE CUSSES

Two library classes with the same set of public messages can be
used to interface to two different platforms. Because they have
the same set of public messages, they are interchangeable.

Often, it is convenient to arrange these classes as subclasses of a
common superclass because inheritance supports common be-
havior. The superclass contains common messages, and docu-
ments requirements for creating additional subclasses. Otlen,
the superclass is abstract, meaning there are no instances of it.
For a discussion on creating abstract classes that are based on
similar concrete classes, (see “Abstract classes,” THE SMALLTALK

REPORT,Vol. 3, No. 2),

The currently appropriate platform-dependent class is

known as the current class.This is usually a concrete class, a
class that can have instances. Because the current class changes,
it must not be directly referenced by clients. Let’s look at several
alternatives for indirectly referencing the current class.

How do application classes reference the current class? Be-
cause the class may change, depending on the environment, ap-
10
plication classes cannotreference the current class by name

(Figure 1). At compile-time the current class is not known. In-
stead, application classes must reference an indirection to the
current class, so that the current class can be replaced.

Some class libraries use a global variable to refer to the current

class (Figure 2). Application code indirectly references the current
class with expressions like CurrentDatabaseInterfacecancelConnec-
tion, which cancels the connection to the current database. In
most cases, a variable that is global in scope is not necessary.

An alternate solution is to ask the abstract class for the cur-

rent subclass (Figure 3). A class instance variable or class vari-
able can be used to hold the actual reference. This solution pro-
duces expressions like DatabaseInterface current

cancelConnecdon. A message to the abstract class to retrieve the
current class is better than a global variable because

- The functionality is clearly related to the class.

. The abstract class is already in the global namescope.

“ The abstract class is usually named so that its purpose is ob-
vious to clients.

“ The use of a class message keeps all related functionality in a
nice neat bundle that is easier to share and maintain.

Using interchangeable classes, we discuss three approaches to
portability, each appropriate for a different set of assump-
tions. The approach you select will be based on the specifics of
your situation.

MICRO-IAYERING

In the micro-layer approach to portability, we recognize that
the developer must make a portable version of a library class,
without changing its public interface. One of our goals is to
make the library class itself as portable as possible. The require-
ment is to extend an existing class to accommodate multiple
platforms. We cannot make a new class to replace the existing
class without affecting clients of the existing class.

Assumptions for the micro-layer approach are:

■ The library class must be made portable.

. Clients must not be affected.

We can, however, introduce a new, non-portable class that iso-

lates the platform dependencies of our library class. Then we
rewrite the library class methods to use the non-portable class to
THE SMALLTALKREPORT

perform host-dependent operations. By moving platform-
dependent code into a non-portable class we’ve done two things

. Eliminated the need to change any public protocol under-

stood by the library class

* Provided ourselves an easy way to port the non-portable code

The new class is completely under our control and can be
ported by using interchangeable classes, as described above.

ASan example, let’s assume we’re creating a portable Point
class that can work with the host’s coordinate system, and that it
must work on a variety of platforms includhg Macintosh and
0S/2. We immediately see that coordinate system is platform de-
pendent the x coordinate increases as we move from left to right
on both platforms, but they coordinate increases downward on
Macintosh and upward on 0S/2. To test whether one point is
above and to the left of another one, we can write for Macintosh:

Pointmethods
isLeftAndAbove:aPoint

“Returnhue if the receiveris left and above @oinb”
“self x < aPoint x and: [setfy -Point y]

And for 0S/2 it becomes:

Point methods
isLeftAndAbove:aPoint
“Return&ue if the receiveris left and above<aPoin@.”
“selfx < apointx and [selfy > apointy]

The different interpretation of y coordinates occurs throughout
the class and also affects other classes such as Number and Rec-
tangle. These two methods satisfy our second assumption
(clients must not be affected), but not the first, that separate
implementations are required for different platforms. Note that
most of the methods are identica~ only the test of y coordinates
differs. Isolating the platform-dependent behavior in a new
class will make Point (and Number and Rectangle) portable.

Let’s introduce a class for coordinate system dependencies,
called CoordinateSystem. Using interchangeable classes, we can
design a Coordinate System micro layer for Macintosh and 0S/2.
We’ll call the classes MacCoordinateSystemand 0S2CoordinateSys-
tem. Both are subclasses of CoordirrateSystem(Figure 4).

Since the interpretation of x coordinates is the same, we will
define the x axis protocol in CoordinateSystem. MacCoordi-
natesystem will interpret increasing y coordinates downward
and 0S2CoordinateSystem upward, Rewriting the Point method,
we have:

Point methods
isLeftAndAbovaaPoint

‘Returntrue if the receiveris left and above<aPoint>.”
“(selfcoordinate$retemis: selfx leftOEaPointx)

and [selfco.ordnatesyetemis: selfy above:aPointy]

This method is portable, assuming the method coordirtateSystem
answers an instance of the correct subclass of CoordirtateSystem.
Additionally, if Point needed to be ported to a platform that in-
terpreted x coordinates increasing from left to right, it is still

portable providing a new subclass of CoordinateSystemis created.
JANUARY1994
I [I
I Abstraci I

T&$
?class

Client

? Concrete
subclass

?

? Concrete
subclass

?

Figure 1. How are library classes referenced?

(Global)
vIariable Concrete

subclass I
I 1

Figure 2. Application code sends messages to a global variable.

1 1 t

&i_clEble

I I I

Figure 3. Application wde aenda messages to the abstract chss,

Now let’s look at CoordinateSystem and its subclasses. We
need to define is:leftOfi and is:above:.

CoordinateSysternmethods
is: firsti leftOfisecondX

“Returnhue if <firsUB-is to the left of <secondX>.”
“firs~ > secondX

is: firstYabove secondY
“Returntrue if <first~ is above<secondW>.”
self implementedBySubclass

MacCoordinateSystemmethods
is: firetYabove: secondY

“Returntrue if <first~ is above <secondY>.”
“firstY<secondY

0S2CoordinateSystemmethods
11

■ G~ING REAL
\

Figure 4. The major objects required 10represent one standard window and one
floatingwindow on s Macintosh.

Portsble
E

Non-Potiable

“n

Platlbrm

Layer Layer
Dependent

Layer

L

Figure 5. A portable layer that depends upon a rmn-pnrteble kyer for

c.mnmunication wkh the host platform.

is: firstYabove secondY
“Returnhue iF<first~ is above <. SecondW.”
‘firstY > secondY

MACRO-LAYERING

The micro-layer approach illustrated the use of interchangeable
classes in a microcosm. The next variation applies the same prin-

ciple on a bigger sale, as the architectural basis of entire systems.
In the macro-layer approach, we must make an entire sub-

system portable. The assumptions, as in the micro-layer ap-
proach, are

. The library must be made portable.

I Clients must not be affected.

This is a good approach to use when developing a portable
user-interface framework. Digitalk’s Smalltalk/V version 2.0 for
Macintosh uses it. A different form of it also shows up in Parc-
Place>sObjectworks\Smalltalk.

The general idea is simple Develop a portable layer that de-
pends upon a non-portable layer for communication with the
host platform (Figure 5).

The platform-dependent layer is the service provided by the
platform that we need access to in Srnalltalk. It may be a user in-
terface like Windows 3.1, a communications toolbox such as Ap-
ple’s AOCE or even a third-party product. The only requirement
is that it have a well-defined API that can be used by Smalltalk.

The portable layer implements the classes used by client ap-
plications. This is the layer most commonly used by Smalltalk
programmers. A good example is a user interface frameworlc
The portable classes that implement the framework can be used
by application-specific classes to define windows. The applica-
tion code is protected from platform dependencies, as long as it

uses only the portable layer, and is therefore portable.
12
Interfacing between the portable layer and the platform-

dependent layer is the responsibility of the non-portable layer.
This layer must do whatever is necessary to transform portable
requests, such as creating new windows, into the platform
specific requests that actually create the window, This often re-
quires transformation of data from a portable representation
into the representation used by the platform, and calling the
correct subroutines defined by the platform’s API.

To make the system run on another platform with that plat-

form’s implementation of the service, the middle non-portable
layer is ported to the new platform. If the portable layer was

implemented without relying on any non-portable assumptions
then it will work as is. Practically speakkg, there maybe some
code in the portable layer that will not work on the new plat-
form without modification. To ensure portability of client ap-
plications the public protocol defined by the portable layer may
not change. But applications will work just fine if the public
protocol preserves its semantics across platforms, no matter

how it is implemented.
This brings us to the issue of specifying the portable layer.

This is actually the most difficult part of creating a portable li-
brary. Since the underlying service we want to use is itself not
portable, we cannot simply look at its API and define our

portable protocol in terms of it. We have to create a framework
that can be implemented on all potential platforms. The syntax

and semantics of the framework has to be specified so that
client applications can be defined. The specification must also
detlne the protocol that fiture extensions to the framework

may and or not modify. AIso, any methods that have a non-
portable implementation must be indicated. To learn more
about current research issues in object specification, see the

00PSLA papers by Klczales and Lamping.1.2
Let’s consider an example. Suppose we are creating the user-

interface framework for a family of applications for 0S/2 and

Macintosh that need to use the host’s windowing system. These

applications need some “non-standard” windows that alWYs
display on top of “standard” windows. These are sometimes

called jloating windows or palettes. Looking through the 0S/2
manuals, we see that this won’t be very difficult. 0S/2 provides
the capability we need. However, an extremely careful reading

of lNSIDE MACINTOSH reveals that we may be able to get one
window of this sort, but if we need more than one—and we
do—we’re out of luck. It turns out that we have to reimplement

a portion of the Macintosh window manager class to solve this
problem. By applying the principle of interchangeable classes to
the problem description, we can design and specify a Window-
Manager class that has implementations for 0S/2 and Macin-
tosh. In our portable user-interface library we define the classes
StandardWindow and FloatigWindow to implement the two vari-
eties of window we need. These classes use WindowMamger to
create and destroy windows and to make windows visible or in-
visible. We’ll also have non-portable classes, OS2Windowand
MacWindow,to implement the platform-specific window func-
tions like setting window title and size. The result is a user-
interface framework for building portable applications, and a
THE SMALLTALKREPORT

framework that is itself largely portable. The design includes no
inherent performance penalty for either platform.

If, on the other hand, we had tried to design the framework
based only on the 0S/2 API, we probably would have arrived at
a much less portable version of the t%amework. It is quite likely
that our design would not have included either WindowManager
or FloatigWindow. Afier roll,why should it? 0S/2 takes care of
all the bookkeeping required. We would, of course, have Stan-
dardWindowand OS2Windowbecause we’re using the layering
method to isolate platform dependencies. But that alone is not
enough to ensure portability. If missing functionality must be
implemented for some platform, then the design must allow for
that. If the functionality is not part of the design, client applica-
tions will be based on a sub-optimal design, and we will be

faced with enormous backward-compatibility problems. Rather
than designing a system based on the functionality available on
a platform, we design the system to meet our requirements.

An interesting variation on the layering theme is found in
Objectworks\Smslltalk The non-portable layer is implemented
in the virtuaJ machine. The portable layer is implemented in
SmaUt~ it is entirely portable because all platform dependen-
cies are hidden in the virtual machine. Using this approach,
ObjectWorks ensures portability of the applications defined in
Objectworks\SmaJltalk and also of their image file.

PLATFORM SERVER

The last variation is a pragmatic approach that is often used to
extend the set of platforms an existing application can support.
In thk approach, a platform server class is used to contain alJ
platform specific code that the application relies on. There is
JANUARY1994
one platform server class for each platform, providing a consis-
tent interface to platform functionality.

This can be used when an application relies on two platform
libraries that do not have an identical public interface. Our ad-
vice is to use this technique only if you do not have control of
library classes, or as a stopgap measure if you can rewrite li-
brary classes. If possible, you should refactor and expand the set
of library classes, resulting in many interchangeable classes.

Assumptions for the platform server approach are:

mMany small variations in library classes

■ The developer annot rewrite library classes

For this technique, let’s discuss an escampleinvolving the platforms
SmalltalkAgents for Macintosh, and Objectworks\Smalltalk,
Suppose we have an application that must run on both. This

application requires streams and a collection that holds its ele-
ments in order. We also want the ability to do some rudimen-
tary performance analysis, and therefore need an operation that
can be used to time the execution of a block.

The way we access the required functionality is different
with each Smalltalk platform. To isolate the bulk of our appli-
cation from platform dependencies, we compartmentalize the
variations for each platform into a platform-semer class. The
class ObjectWorksServer is a mapping to functionality on the
Objectworka\Smalltalk platform, and the class Smalkalk-
AgentsServer is a mapping to functionality on the Smalltalk-
Agents platform.

Let’s examine a sample of methods from the server classes.
Methods that identify an appropriate class, such as the method
orderedListClass,are useful when two platforms have similar
1, . ..- ,,

ObjectworksServermethods SmaUtaUAgentsServermethods

orderedI&Claas orderedListCkm

“Return a classthat holds its elements in order.” “Return a classthat holds its elements in order.”

“OrderedCdecbon “List

readFrorn aStxeamthrough anObject readFrom astream through: anObject

“Return a coUecbonof elements read from <aStream>,starhg “Return a coUe&on of elements read from<aSinam>, starbrcg

fromthe current stream position up to and including <anObje&-” fromthe current .sheamposition up to and inchdng <anObject>.”

‘aStream through anObject I throughCollection I
throughCoUection:=a.%eam upTo anObject,

tinreToExecute:aBlock thmughCoUectionadd astream nerrt.

“Returnthe number of millisecondsto execute <aBlock>.” “throughColletion

“TimemiiliaecondsToRunaBlock tieToExecute: aBlock
“Return the number of millisecondsrequired to evaluate <aBlocb,

rounded to the neareat ms. Thecomputation is at best approximate
because the basic unit providedby Appleis a tick (1/60 s).”

I tier startTimeI
tier:= ClockDevicenew.
stwtTime:= timer ticks.
tilock value.
%nerticks - startTiroe * 100+3//6
13

■ GEITING REAL
classes with different names. It can also be useful to help iden-
tify dependencies and collaborations.

Ordinarily, when operating on an object, we send messages di-
rectly to the object- When we provide a mapping to that function-
ahty in a platform server class, we must send a mes~ge to the
server class. The original object becomes an argument. Themes-
sage readFromthrough provides an operation on a stream, but it is
a message sent to the server class with the stream as art argument.

66
One way or another, all the

techniques in this article are based

on polymorphism. 99

Sometimes the server class will end up implementing func-
tionality that is simply not present on one of the platforms. The
message timeToExecute: is a mapping to existing functionality
for Objectworks\Smalltalk, but it is new functionary for
SmalltalkAgents.

DYNAMIC VS. STATIC
There is another issue, orthogonal to variations on interchange-
able classes, that deserves discussion. This is the issue of how

applications can be configured.
If an application runs on one platform at a time, developers

can use configuration management tools to build applications
with the appropriate platform-dependent classes. The result is
several versions of an application, one for each platform. We
call this situation a static configuration, and do not discuss it in
detail. There are several commercially available tools for
configuration management of Smalltalk applications such as
Team/V and ENVY Developer.

If the application must run on multiple platforms, develop-
ers can design their application to dynamically support the ap-
propriate one. In this situation, called a dynamic configuration,

the result is one version of the application that includes all plat-
form-dependent classes.

SElllNG THE CURRENT CLASS
There are several different ways of installing the current platform-
dependent class.The exact mechanism depends on how often the
environment changes. Does the current class potentially change
every time it is accmsed, or does the default change less frequently?

Some classes are installed when Smalltalk is started. In
Smalltalk/V for Macintosh, any object can register for
notification when Smalltalk starts with an expression like this:

SessionModelcurrent
when: #startup
send: #setCurrent
to: Platfomdntefice
14
The setCurrent method includes an expression to set the current
class. We use the class ServiceRegisby to identify the current

platform. The method setCurrent is implemented by the class
F’latfonrdnterface.

setCurrent
“setthe currentplatforminterfaceclassbasedonthecurrentplatfmn.”

I platfonnllameI
platfosmllame:=SerwiceRegishyglobalftegistcy

serviceNamed:#PlatfomName
ifNone:[Asetfinstallstub].

pta&mnName= ‘Macintosh’
itTme: [“self currenh MaePlatiormInterfacenew].

platformName= ‘0S/2’
ifhue: [“setf cusrenk 0S2PlatfonnInterfacenew].

platfonrd$lame= ‘Windows’
Ml’rue:[Asetfcurrent: WindowsPlatfonnInterfacenew]

Another strategy is to wait until a current class is requested and

then determine the current class if necessa~

current
‘Answerthe interface used by the current plationn:

Current==nil
itTme:[selFsetcmrent].

“Current

Even with this strategy, the old current class must be flushed at
some appropriate time, such as image start-up, so that the cur-
rent class will be installed when the class is accessed. This expres-
sion should be executed sometime during application start-up:

PtatforrolnterfaceflushCurrent

CONCLUSION
Developing platform independent applications means more
than writing code for different hardware platforms such as
Macintosh and IBM PCs. Different software platforms can also
be addressed with the same techniques.

Carefully consider all possibilities for extension of your ap-
plication while choosing design and implementation tech-
niques. If you follow the approaches laid out in the article, it
will be much easier to move your application from one plat-
form to another. There are, no doubt, other interesting tech-
niques that can be used to ease the task of porting between plat-
forms. We’d like to hear about them. Send descriptions of your
own practices to juanita@digitalk. corn. El

Juanita Ewing and Steve Messick are senior staff members at Dig-

italk ProfessionalServices, 921 SW Washington, Suite 312, Port-

land, OR 97205,503,242.0725.

Reference

1. G. Kiczales and J. Lamping. Issues in the Design and Specification
of ClaS Libraries, 00PSLA ’92, Vancouver. pg.435–451.

2.], Larnping. Typing the Specialization Interface, 00PSLA ’93,
Washington, pg. 201.
THE SMALLTALKREPORT

Jan Steinman & Barbara Yates

Shoot-out at the Mac corral, wti2
A
bout ten years ago, a Smalltalk product called Methods
was introduced for IBM PCs and compatibles. This
product grew into the SmaUtalk/V product family that

now largely dominates the IBM-compatible Smalltalk market.
Along the way, a specific need for a Macintosh product

arose, and the first Smalltalk/V-Mac, built largely from ac-

quired technology, shipped in November 1988.
As corporate MIS departments discovered SmalltaJk, and

IBM itself endorsed it, more and more effort went into en-
hancing and refining Digitalk’s IBM-compatible line, while
the Mac version went through only two minor “bug-fix” up-

date cycles, culminating in June 1991 with version 1.2, which

sold for $199.95.
In 1992, Digitalk acquired Instantiations, a Smalltalk con-

sulting company largely derived from the remains of the dis-
banded Tektronix SmaJltalk product group. This Portland,
OR-based group brought extensive knowledge of both 680x0
Smalltalk virtual machine implementation and Smaltalk-80 vir-
tual image internals.

It is not surprising that this flow of history should lead up
to August 1993 and the first major upgrade of SmaUtalkW-
Mac since its introduction. Version 2.o, while overdue, is im-
pressive: it boasts about three times as many classes and meth-
ods as were in 1.2. Although the price has increased by a
similar factor to $495, it is probably still the least expensive
commercial SmalltaJk available today—especially if it is still
available at the upgrade price of $195 that was in effect at the
time this was written.

Part 1 of this series (THE SMALLTALKREPORT, Vol. 3, No. 3)

described a new and originaJ Smalltalk implementation,

SmalltalkAgents, from Quasar Knowledge Systems. (A brief up-
date on their progress appears in this article.) Also available for
the Mac is Visualworks\Smalhalk-80 from ParcPlaceSystems.

(For convenience, the three dialects will be referred to as

STA, ST-80, and ST/V, respectively. Unless otherwise noted,
use of “ST/V” refers only to the Mac 2.0 version, not the other
products in the Digitalk stable,)

HIGHLIGHTS AND CHANGES
Unfortunately, we must begin the feature list with an omission.
There are no release notes and no concise description of the
differences between version 1.2 and 2.o. Those already familiar
with ST/V will quickly spot major additions, but many small
JANUARY 1994
improvements—and incompatibilities with version 1.2—await
discovery. This makes it difficult to plan a por~ it would be nice
to know concisely what had changed, so that one could scope
the porting effort.

Among a long list of long-awaited features claimed by Dig-

itdk for version 2.0 are: DAL/DAM SQL, 32-bit color Quick-
Draw, QuickTime, Balloon Help, and AppleEvents. We’ll look
at just a few new things in detaiL

WINDOW INSPECTOR
A new specialized Inspector for windows is available on the

Window menu. This is a useful tool that many people end up
building themselves—we’d like to see in all dialects of
Smalltalk. It eliminates the need to open many levels of Inspec-
tor to figure out what is going on in the application window
you are developing (Figure 1).

CLASS HIERARCHY BROWSER
The Class Hierarchy Browser has a different arrangement of
panes and buttons, but otherwise it appears to be similar to the
one in 1.2. One pane lists the local and inherited instance and
class variables of the class. Selecting in this pane filters the
methods list to accessors and setters of the variable. Clicking
again on a list selection does not deselect it, so it is not obvious
how to unfdter the methods list.

Find Class in the Classes pane now works with wildcards,
but it is fussy. When searching for window classes, ●wind*,
%vindo*, *window*, *window,and *Windowwere all rejected with
the same message Please enter a more specific pattern. This was

frustrating, and not very useful!
The access to the senders or implementors of a message in

a selected method requires more menu actions in 2.o than in
1.2. We found the extra steps annoying, and we disliked hav-
ing to have an extra window open to get to the information
we wanted. Developers with small screens will really notice
this difference, although ST/V is still more screen-efficient
than STA.

Text automatically word-wraps in code panes. This feature
is replaced by horizontal scroll bars for any window in which
the user turns auto-wrapping off. ST/V’s non-word-mapped
heritage is irritatingly apparent—method comments are for-
matted wider than the default window width, which makes for
difficult reading.
15

■ PRODUCT REVIEW
WORKSPACES
Temporary variables are automatically

generated for code written and exe-
cuted in workspaces, (This is obvi-
ously part of the new Tektronix her-
itage—wherever two or more former
Tek Smalltalkers gather, they bemoan
the lack of workspace variables!) An-

other improvement is that workspaces
saved to a file and later reopened re-
tain their text fonts and emphasis,
Unfortunately, rdong with the im-
provements come a large increase in
the amount of time it takes to open a
workspace from a file. This exceeds a
10:1 performance decrease in certain
situations we encountered.

EVENTS-A ROADMAP
The classic Smrdltalk)dependents
changed/updatei mechanism of user
interaction is showing its age, and
Smalltalk developers are clamoring for

event-driven operation. ST/V-Mac 2.0
uses a strategy for change initiation
and propagation that may be simpler
to program than the classic depen-
dency mechanism.

Stream...

TypeRegisty

IIi ct i onary

]=~~

A superclass of Code

ua I ues
Radio

ListPan

The advantage of true event handling is that polling of user
interface components is hidden, ideally by direct use of operat-
ing system services. Rather than polling the state of input de-

vices and locations in Smalltalk code, user actions and other
system happenings spontaneously result in the evaluation of
Smalltalk expressions,

Apparently, this is not quite the way ST/V operates—it still

has a single bottleneck Smalltalk Process that gathers and dis-
patches operating system events, so the differences tend to be
syntactic rather than semantic.

Perhaps the worst way to try to attempt to understand the
ST/V event dispatching is the way we initially tried. Merely
browsing the code of Application and related classes does not
quickly reveal how to use ST/V event dispatching effectively.
This is the approach of those who are unused to having in-
depth documentation!

Those who are used to ichanged/updatei event dispatching

may want to start with the tutorial in Chapter 9, even if they
normally do not do tutorials. The tutorial in Chapter 10 also

looks at building your application window and setting up
events. Next, an examination of the Application class in the EN-

CYCLOPEDIAOF CLASSES,combined with a reading of the pro-

gramming reference chapters (6 and 7), will rapidly add to

your understanding of setting up, triggering, and responding

to events.

At this point, browsing the code of existing Application sub-
classes is fruitful, Eventually, the serious Smalltalker will want
All classes have comments as a

o activ

@

variables; selection fifters the selector:
list to setters and getters.

mapping went names to

Window Inspector ~DS

Pane; ❑ Invisible ❑ Invisible parent
Inactive ❑ Inactive parant

med ❑ Dimmed parent

Button ~ ldentityDict iona a

e

f m
\ I

/nspector on the Externa/DataStruclure tl
is the CodePane’s connection to the OS.

-. .
I-lgure 1.
to memorize Appendix C, or at least make up a icheat sheeti
from it, --

To maintain one paradigm between user-initiated object
change and other abject changes, ST/V ‘events’ replace the
generic update sent to all dependents of the object receiving
changed, This somehow feels less object oriented-previously,
an object’s dependents decided whether they were interested in
that object’s happenings at runtime; now the object must regis-
ter for specific happenings, thus weakening the traditional
model/UI division of responsibilities. ST/V makes this differ-
ence a bit less onerous for pre-2.f) applications by configuring
an event and action when an application receives the addDepen-
denk message, providing some compatibility for many cases.

Are events, as implemented in STW, a good thing? They are
undoubtedly valuable for capturing user actions, but they can
certainly be abused. We can’t say that the result is easier to un-

derstand, debug, or maintain than the classic “changed/update”
mechanism, and it may prove less flexible in complicated situa-
tions, but it is probably simpler to program in most cases.

Either way, developers porting to 2.o will not be able to ig-
nore events, since they are firmly embedded in the application
architecture. Perhaps some third-party user interface builder

will come to the rescue and provide more support for putting
events in place.

BEllER DOCUMENTATION
The package includes three manuals: TUTOIUAL, PROGRAMMING

REFERENCE, and ENCYCLOPEDIA OF CLASSES,—abOUt 2-1/2
THE SMALLTALKREPORT

— .—— .

3hO18fd I we sfnalltalwmc 2.0?

plattorm comparability ~ :fl:;:::~:::;-$~j
isimmediateconcern

well. Consider using ST-8(3.

❑
Dgitdk is becoming itrcreasingfyattenfive to portability issues.
Expect dialects 01S77V to grow closer, buf it will take time.

porlabili~withother ~ ST/Vbase c/assesare /airfy

Smalitalksrequired portable wilh ST-80, but anylhing
non+”vial will rewire some effort.
0S dependenf cf&ses may lake

❑ considerable eflod and UI cfasses

Consider using ST/V. may require are-write, even
among ST/V dialects.

pe~orrna,~ is ~ STNfinisfresalfhebotlomonlow-fevel

majorconcern benchmarks. However, Digifalk now has
arnuired 680x0 Smal/falk VM experience;

❑ future releases shoufdimprove, and
Iow-fevel fesLs may nof reflecf your use.

Consider using STIV.

wOfking witha team ❑ Consider STV. lts singk+ser
facilities aregenera/fygc@d.

m

There is no credibfe groupware available for ST/V-Lfac at fhis
lime. Although fhere will undoubkdfy be a Team/VfM the
presenf lack of fools means rigorous procedures and conventions
wiil be rrecessaty10use ST7V-Mac in a team environmerrl.

robustenvironment❑ COnSiders~. ft will UndOUbfSLW

is immediatebctor improve with subsequerrl versions.

We and ofhers we communicated wifh experienced numerous bugs and
crashes. Afthough if is called “2.0,” fhis refease is a major re-wrile, and
we feel if is of similar stability 10Sma//fa/kAgents,a brad-new pmducf.

Consider using S77V. Ifs toolsel isrich toolsetrequired ❑ much~wr,hansTm+ac,,2

m
ST/V cannof yef compete with other Sma//ta/kSIOOIS.If lacks a GUf
builder, programming fools lack Ieafures found in ofher Sma//la/ks,and
fhere are no (bird-parly tools availabfeyef. This will change, bul ir will take
time.

Just touch a button to

$!!!I

put a chars
w“ew in your

:h,,l” window!

Add chafts to your Visua/Workspalette
~~dtiC Add or chwgc cbla poinls, will] mininxd smccn rqminling.

Add or rwnovc dala .SCriL% to/t’rom ttlc chin-t.

/llfPrddfVe SAxt &IILI points with the mou.w-EC—Ctmts inliwrns
your apfdidion.

Uses semen 512atx effetzfvefy
$.*,

0 Imlmxo) aa

.%roll (hc chwt view in onc or holh

r IlllEkU

,,!!

dirwtions. Mark WIUWot’.summmy 1m4

timctions in the I985

““”-1

.....s ., ~,, ,;, ,,; ,, . ,, -
axis wctis. Show 1986

(

;:”: ::! < ;“:”LL %1: “in’ ;;

,1

.
..; ““r ,-. ~:

j .-q m. I ,
1330

NEWha STti l=f . .

@“-$350 I MToi.qltwd@ A Ttiaidtc

No runtime license lee

Kafl for a technfcal paper # [. fit (lilt \)[l\i ‘II,

on EC-Chatis (408) 462-0641WumwOlkmatiticdPamw=wm,kc. 21137 Easi Clift’ Dr. Smtia Cruz CA 95062
—

times more material tan found in the 1.2 manual. We found the

encycopedia’s methods index useful as a reference for standard-

izing selector names. The reference book is well-written, and its

appendix on events is a valuable condensation of events infor-
mation. Another nice section, especially for beginners, is the
glossary, which defines most of the terms used throughout the
documentation.

Finally (and perhaps most importantly), all of the methods
we looked at had comments. A method on the class side called
COMMENTis used to provide class comments. Although using a
special method for class commentary is somewhat of a hack,
the fact that there is commentary is an area in which ST/V beats
both STA and more recent additions to ST-80.
-..-.. —

JANuARY 1994
EXCEPTION HANDLING
One reason some choose ST-80 is its flexible exception han-

dling mechanism, since ST/V had none. Digitalk now has
something similar to the PPS context-unwind/marked-method
exception mechanism, but they made it somewhat easier to use,
at the expense of being somewhat more difficult to crate spe-
cial cases. For example, both exception systems have a special-
purpose do-this-thing, -and-then-whatever-happens,-make-

sure-to-do-this-other-thing mechanism, since that is a useful
way of releasing external resources such as files. In ST-80, the
mechanism involved leaks through into the method selectov
you need to use the rather unwieldy method:

[statementwith possible error] vahreNowOrOnUnwindDo:
[statement that alwaysexecutes]

ST/V uses the simpler, more intuitive:

[statement with possible error] ensure:
[statement that alwaysexecutes]

Likewise, a block that is only executed when some other state-
ment has a problem is invoked using valueOnUnwinclDo:in ST-

80, and iftlutailed: in STIV.

Like ST-80, ST/V also has a more general exception mecha-
nism, using a block-centered, class-based approach, rather than
the Signal-centered, instance-based approach pioneered in ST-
80. For example, in ST-80
—. ..——..

17

■ PRODUCT REVIEW

P(itillli”())4’,K’r

— (I trill ,6’cIIM1dIJ(wtnctll(tlimi 1001”,jiw .YNMIIIIIIIL

Elimin;!le the need 10 bring up multiple windt)w~ 10 ~OllOW

tin exccu(ion poIh. By using Ihc PwhllrowI.wI you can

quickly browse [he messnge I1OWml cvcm creillcs wxoss

multiple classes, from J single window. Selcc((he classes

10 be tmced, or have lhc P(rIhBI”W3.WJ- outomfi(icdly gen-
erate the elms Iis[btiscclon a primary claw. Then you
need rrrdy emrble the Imce. menle the event. & voilti!

Elk Edn zmalllaik P@ects TasL!s Irate

*PI

RepmtGmemlor —
bamLhe
G-m@.?
Inreflem
,eleclzxecutl ..Table-,etColumnx

=ku;. 1 select

‘J

.Table class>>crealeTable:colm
.== ..T411e C]~SS>~CW

P

.,
(race alf

...Table> >lolUallzc
,...cdmmnoicnmnm CIS5G-WW

...cduuolcdmary>mddvmrh-m
1

I
,,rd treble Mind

i

. ,:
(CmlalaBIncludesKey taWeName)

KTnie: [Catdq mmoveKey: tmblah-mne].
umme := tmbleName,
Cahlag * MleNune PUCAS

Browseh Software
PuI/16’mmw’ for Oigimlk (Win 0S? Win321 S99 Tel: (303) 730- 0H06

PdIWTnwrr t’or ParcPlacc Vkual Wnrks S 149 Fax: (303) 730- OH12

Sile licenses & educa[iorrd discounts. Mrmey back 30 day gumnlcc
NumberdivideByZeroSignal
handle: [exception I exception returm O]

do: [x/y]

returns zero if y is zero, whereas in ST/V

[x/y]
on: ZeroDivide
do: [exception I exception exit: O]

does the same thing, using analagous components. ST/V is sim-

pler to use in simple cases, but requires more work to set up
new exceptions, since they must be coded as complete classes.
In ST-80, new exceptions are very simply coded in the class

protocol of objects that will be generating them, but are there-

fore not global, making the user of them work a bit more to
protect a block of code.

STA uses a completely different approach, which requires
exceptions to be coded as compiler directives. This maybe the
easiest of all to use, but the STA exception mechanism was un-
documented at the time of this review this opinion is based on
browsing examples in the STA image.

SUPPORT
Digitalk provides well-regarded suport through their Com -

puServe forum. They announce all patches and bug fixes, and
allow downloading to registered 1icensees. This again shows
Digitalk’s strong PC/clone bias—Mac users are more likely to
18
be on America Online, AppleLink, or Usenet than Com-

puServe. We’ve seen grumbling in the Usenet Smalltalk news-

group about CompuServe users getting more attention than In-

ternet users.

For example, until we asked about the availability of
patches, we had no way to kno-w they existed. We were fortu-
nate to have personal contacts among the team responsible for
ST/V (special thanks to Pat Caudill, the ST/V-Mac project
leader), so we got good response when we inquired about bug
fixes. However, we can’t write from firsthand experience
about general responsiveness of technical support for ordinary

customers. We also do not know how the typical customer
finds out about the availability of bug fixes, other than via
CompuServe-we have been licensed for ST/V-Mac since
1990, and were only notified of major upgrades available for
an additional fee.

PROBLEMS

Aller installation, we carefully write-protected the image, so
that we would not inadvertently change something that
would affect a measurement. We then experienced repeated

application crashes upon launching. This was extremelY frus-
trating, until we discovered that you cannot run a write-pro-
tected image.

In ST/V version 1.2, a notifier tells you this and lets you

exit; in 2.0, it simply crashes into Macsbug. ST-t10 happily
runs a write-protected image, allowing you to save to an al-
ternative file name upon save; STA cryptically opens a stan-
dard file dialog, and when you choose the write-protected
image, it gracefully exits without ever telling you why. We
much prefer the ST-8O tactic, and wish other vendors would
adopt it.

Other than the write-protect incident, we experienced only
one unexplained application crash. On attempting to Tesizea
window on a 28K file, ST/V died with error #25 (dsMemFullErr,
out of memory). On the other hand, we experienced numerous
walk-backs (with version 2.o) when trying things as reasonable
as installing Digitalk-supplied bugfix patches.

PATCHES, PATCHES

At the time this was written, there were two files of bug fixes
and a new application and image, together known as version
2.0.2, available from Digitalk. Together, they correct over 70
bugs, classifying about 25~o as serious problems (e.g., walk-

backs, methods silently misperformed, crashed application).

However, we could not get the patch installer to work by
following the supplied READMEfile. Bypassing the installer and
manually filing in the patch files worked somewhat, but we also
had to update the image’s idea of which patches were installed,
so that other files (such as the newly patched Compatibility.st)
would file in, It took over an hour to install the patches, which
seems unreasonable—upgraders should get the new image and

application, and not bother with the patches.
Later, we looked more closely at the installer problem. Direc-

tory current, ussed by the installer, answered the top-level direc-
THE SMALLTALKREPORT

E
he 405 El Camino Real, #106

Menlo Park, CA 94025
voice: 41 5-X54-5535

malltalk ju.r:415-854-2557
enr(lil: info @small talk.com

tore compu.wn,e: 75046,3 16(I
Ask to be put on our mailing list.

Digitalk List TSS Price
SmalltalkN Windows, 16 bit API 5495 $269
SmalltalkN Windows, 32 bit API .S995 $899
SmalltalkN 0S/2 S995 $859
SmalltalkN Macintosh $495 $269
SmalltalkN DOS 286 S125 $69
Parts Workbench, 0S12 $1995 $1729
Parts Workbench, Wh32 $ I995 $1899

Objectshsre
WindowBuilder Pro, ST/V Wk 16 .S295 $269
WindowBuilder Pro, STN 0S/2 S495 $459
W1ndowBuilder, ST/V Wlnl 6 $149.95 $139
W1ndowBuilder, ST/V 0S/2 $295 $269
WidgetKit/CUA’91, STN 0S/2 $295 .$269

LogicArts
vOSS collection, any STN $150 $139
VOSS DLL, STN 0S12 or Win32 $595 $549
VOSS source, STN 0S/2 or Win16 $1950 $1779
VOSS source, STN 286 $950 $869

GSof[
MathPack 3.0, PPST $395 $369
MathPack 2. 1,STN W[n,OS/2 or Mac $125 $119
B usinessGraph 1.2, STN Wh,osn m Mac $95 $89

—

tory, not the actual directory from which STN started. We

moved our directory to the top-level folder, and the patch in-
staller worked. Incidentally, one of the patches corrected this
problem—Digitalk’s QA department must be using their pre-

scient version of the patch installer!
Fortunately, version 2.0.2 is much more stable, and all the

problems we recorded in 2.0 (except for the write-protect
crashes) appear to be solved.

COPY PROTECTION

Unlike STA, ST/V is not copy protected, and it can be moved
between machines as allowed under the U.S. copyright fair use
doctrine. (Our review copy did not come with a license, so we
cannot say that this would fall within a strict reading of the
Digitalk license, but at least it is possible.)

However, like STA (and other ST/V dialects), certain
classes (such as the compiler) are protected, and they cannot
be viewed, modified, or debugged. This is lamentable—
changing the compiler isn’t something one should do every
day, but having the option to do so may make some prob-
lems simpler. Those who are attracted by Smalltalk’s reputa-

tion as an open system have ST-80 as their only alternative at
this time.

PORTING FROM 1.2 TO 2.0
DigitaJk describes 2.o as a top to bottom rewrite of SmalltalkN
for Macintosh. Like rdl things in life, this is both good news and
bad news. We’ve tried to give an impression of the depth and

breadth of the good news.
The news is not entirely happy for users who have to port

their applications from 1.2 to 2.0. The lack of release notes
means that the user has no first line of approach to discovering
puzzles like removed or changed classes. (In comparison, Ob-
ject Technology International lists each changed method in
their release notes, greatly easing the porting task.)

Several developers we surveyed said the port of their 1.2
code was not simple. “I thought I knew STN-Mac really well,”

said a developer who had been with ST/V-Mac for three years,
“but now I’m having to relearn a lot.” The many new features

are strongly desired in the developer community, but many
were bewildered by the magnitude of the changes. A section on

porting in Digitalk’s othewise fine documentation would go a
long way to redress the lack of release notes.

Aso, 1.2 contained a popular goodie called Application
Browser that aided users in creating file-out packages to rebuild
their applications in another image. Not only is this goodie
missing in 2.o, but the global name Application is taken for an
entirely different purpose, so all files made with the 1.2 Appli-
cation Browser require editing before installing them in 2.0.
Digitalk is experiencing customer pressure, and will probably

replace the Application Browser in some form.

MEASUREMENTS

Table 1, which originated in last issue’s STA article, compares
available Macintosh Smalltalk implementations. Readers
JANUARY 1994
should refer to that article for additional information on how
we got our numbers. Changes since that article are underlined.

Since last issue’s article, we’ve added two measurements. In
an attempt to include some indication of high-level perfor-
mance, we added a simple timing of how long it takes to open a
window on a 28K styled-text file. (Only STA and ST/V 2.0 dis-
played the text appropriately styled.) While this is not a particu-
larly rigorous test, it tends to parallel the slopstone and smop -
stone benchmarks against STA and ST/V 1.2, although it
counters to some extent the results against ST-8O,which has
sluggish linear-read file performance due to multiple buffering.

We also added a line for the application (vs. image only)
disk file size.

As we mentioned last month, low-level benchmarks do not
necessarily predict the performance you’ll get. To paraphrase
Mark Twain, there are lies, damn lies, and benchmarks. In par-
ticular, ST/V (and STA) is much closer to the Mac than is ST-
80, so windows open faster and menus drop more quickly than
they do in ST-80’SMac emulation.

Most of the measurements of 2.0.2 are within 6V0 of those of

2.0, There are 503 new methods, which add 118K to the image
size. This seems like quite a bit for two minor revision cycles
and indicates the youthfulness of the product.

The number of classes can be misleading and does not nec-
essarily correlate with quantity of functionality. Recall that
STN has a class per exception type, while ST-80 has a method
per exception type. Also, 181 classes—nearly a third of the to-
19

SMALLTALK

DESIGNERSAND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of the Country,

mA
●m

Salient Corporation ...
Smalltalk Professionals Specializing in the

Placement of Smalltalk Professionals

For more information, please send or FAX yaur resumes to:

Saliint Corporation
316 S. Omar Ave., Suite B.

Los Angeles, California ml 3,

Voicm (213) 680-~1 FAX Q13) 630-4030

SMALLTALK PROFESSIONALS
IBS has multiple consultingopportunities
availabteinDallee,LoeArtgales,andFlodda.
Requirementsinclude1+yearsexperience
in Ihe following:

oSMALLTALK @w
~ObjectOrientedDesign cC
00S12

Noantrvlevelmdtbns.
tal—have names that begin with Mac, indicating functionality

may be distributed among more classes in ST/V than in other

Smalltalk dialects.

The first column for each implementation (the percentages)

lists that implementation’s measurement relative to the greatest

in the group. In general, lower is better, although items such as
inumber of classesi are better the higher the number.

SmalltalkAgents UPDATE
As the deadline for this article arrived, we had just received

STA version 1,lb15, Although it is a beta version, QKS assured

us that short of crucial bug fixes, what we received is identical

to what is shipped in late November as version 1,1. We’ve up-

dated the measurements table with data from the new version,

The new measurements show that QKS has not been on va-

cation these two months. Essentially every measurement has

improved in that time. The smopstones doubled in perfor-

mance, whale the preferred memory size was reduced 17% and

the image ph.Is application size went down 5%. Keep in mind

that the removal of internal debugging code probably accounts

for much of the size reduction, and possibly some of the speed

improvement as well.
More important than the measurements is that STA 1.lb15

feels much more stable than the version 1.0.1 previously re-
20
viewed. We experienced no application crashes or debuggers
while evaluating version 1. lbl 5.

Only speed and quality appear to have changed since we last
described STA. The biggest omissions of version 1.0.1 still exis~

no manual, no GUI builder, no crash recovery strategy, par-
tially implemented inspector and debugger, nonstandard com-

mand key map, etc. STA remains a product with exciting po-
tential, suitable for early adopters and pilot projects, but don’t

bet your business on it just yet.

SUMMARY
Digitalk’s Smalltalk/V-Mac version 2,0 is an ambitious upgrade
to version 1.2, and is a bargain, even at the full list price. Those
with ongoing ST/V-Mac projects should not hesitate to port to
it, although such a port may not be trivial. Three times the

quantity of code and eased access to the toolbox alone make it
worth switching for ongoing development, and the addition of
exception handling alone may be enough to justify a port of on-
going work.

However, three times the code potentially means three
times the resource consumption, Those with completed ST/V

applications may not want to port to 2.0 if RAM usage, disk
size, and performance are utmost issues. Those who are sup-

porting an existing application that must work nicely on an old
THE SMALLTALK REPORT

Tabfe 1. Compariin of availnbls Macinic6h Smalltalh im@mmmtations.

STA I.lbls STN 1.2 SItY2Q2 ENVYI

VisualWorks
——

Srarr-up times 3.,?% M I 5% 7.3 Bl% 32 I 00% 40.

Image save times 24% M 1.9x 3.3 lQ4!Z 17 “.94?.4 16

S!apstone (no FPU)b I 00% Q&l m 0.054 m CK!!t5 m‘- “---’ ““”””;o.037d
+

Slopxane (FPIJ)C S-726 CL2Q 3fE4 0.070 m !LQ52 I00% 0.23

Smopstone (no FpU)b I 00% L!? S 0.046 M SLw u o.ond

Smopstone (FW)C Mr6% m 22% 0.060 w m ‘U 0.22

28k file windov# 35% u 3.5% M[EH?4 a lQQ% U’

Required memory (K) ‘ ES% 3,500 3s% 1,465 6S% 2.654 I00% 4,096
—— > —j -—-

Preferred memory (K) 55!Z 5,gQQ 20% I ,9s3 36% 3,ss4 I00% I0,003
.. ..—. .-—-

Image size (K) X% *f ““16% 669 5X:2J?!L I 00% 4,121

Appfica,ion size (K) M mf m M 43% 222 4.QQ% 5!2

Number of classesi 4.2% ~h 20% 16S m m 100% , el Ig

Number of method~ m w, 20% 3,490 62% KL4?3 1- 17,26SS

a Time in seconds, measured with a hand-held stop watch, using a fast 11 ms. dkk.

b Mac powerBoOk D“. 21025 MHz 6s030, 12 MB MM, so MB disk, 1-bit LC.D, System 7.1, nO wstem efiensiOns

or power ~ving.

c Mac 1 lci: 25 MHz 6S0S0, 20 MB RAM, 32 KB mche, 80 MB and 1.2 GB disks, l-bit internal video, System 7.1, no

system extensions.

d The -r ~~uh is miblv due to ~emow ~tawatim. We cOuld not obfain ‘~r~erred” memory and had to settle for a,–––.
mere 9,560K. This result was disturbing, w we repeated h+nd gave up after two hours!

e Strongly correlated wfih file sizes, ST-SO was actually as fast as STN 1.2 for very small files.

f STA U~e.S ~“e fiIe, image size is data fork size, application size is resource fork size.

9 Imludes ENVY, which adds 126 Asses and S,213 methods.

h FWer cl=e8 than previous “=r~on. A number ~ demo cl~s~ ,gppea~10be “unbundle& in files, rather than be

delivered in the image, although the methcd count is actually higher in this version.

1 Obtained via Metdl.w dfh.kances size, which may include classes wfih hidden source code.

1 Obtained via C.mpild14ethod.llhst~.essize,which may include methods with hidden smurce code.
Provides objective 6 authorttattve coverage on language
advancss, usage tips, proJect management advice, A6D

techniques, and insightful appkztions.

D Yea, I would Mlseto subscribe to THE SMALLTALK REPOSIT.

D lyear(9tSMse6):

~ Lkbm61ic: Q [ndividual $~.oo D Institutional $119.00
D overseas: ~ Individual $94.00 ~ Institutional $IM.00

El 2 yeas’s(10iasuea):
D ~mestic f3 Individual $148.00 Q Institutional $zztl.oo
O 0versea5 ~ Individual $178.00 Q Instinrtional $z#.oo

Medmd of Payment
Cl Check enclosed (payable to THESMALLTALKREPOSIT)

~ Bill me

Ct Charge my C) Visa Q MasterCard ~ AmEx

CardNo.
Exp.Date
Signature

Flame

Address
Title Company
City State
Country Zip

Phone
To order, return this form with payment to

The Smalltalk Reportr 588 Broadway, Ste. 604, NY, NY IOOIZ.
Fax 212.274.0646 Phone: 212.274.0640.
Plus or Classic might consider stay-

ing with 1.2.

Those considering new develop-

ment need to ask a number of ques-

tions before settling on ST/V. Are

you willing to watch CompuServe for

the inevitable patches and bug fixes

that come with a young product? Do

you need the utmost performance?

Are you already comfortable with an-

other vendor’s product? Will you be

working with a team? Do you need to

work on multiple platforms? None of
these questions alone may rule out
ST/V, but if many of them are issues,
a different vendor’s Smalltalk maybe

appropriate for you. ❑

Jan Steinman isa partner in Byte-

smiths, a consultingcompany that spe-

a“alizesin heiping organizationsstart

new Smalltalkprojects.Jan has over 1I

years of objectexperience in embedded

systems,instrumentation, sa”entfficvi-
sualization,finance, and telecommuni-

cations Prior toforming Bytesmiths,he

wasproject leaderfor Tektroni’s

monochrome Smalltalkw“rtual
image. He can be reached atjan.-

bytesmithsri?acm.org.

N THE USER GROUPS

— ..

Rob Vens

European Smalltalk Summer School
One of the most .wtistjing things to do as a Smalltalk pro-
grammer is to be immersed in Smalltalk for five days and
nights. And the perfect venue for such an activity was the

first Sma.lhdk Summer School, organized by the European
Smalkdk User Group (ESUG), At a beautiful location in BresL on
the campus of Telecom Bretagne on the French coast of the At-
lantic Ocean, 23 students from five European countries attended
five days of intermediate-to-advanced-level tutelage and pure fun.
About half ame from universities and half from industry.

ESUG was fortunate in acquiring tutors like Trevor Hop-
kins, Mario Wolczko (both of Manchester University, the latter
well-known as maintainer of the Manchester Smalltalk
archives) and Patrick Barril from University Pierre-et-Marie

Curie in Paris, The courses were not committed to any
Smalltalk dialect, with emphasis on the two major dialects.

I would like to share with you some of my experiences of this
Summer School, and give some impression of how Smallta.lk is
faring in Europe, The three major parts of the program were tu-
torials, workshop, and demos. Three days were devoted to tuto-
rials, On the first day, we were thoroughly informed about the
SmaUtalk\Objectworks imaging model and windowing inter-
faces by Mario Wolczko. Using a wealth of examples from the
Manchester archives, we passed the evening experimenting on
the excellent computer facilities that were provided.

Patrick Barril provided remarkably deep insight into the in-
ner workings of the Smalltalk/V virtual machine, It appeared
that much is possible on this normally avoided level of
Smalltalk, and he in fact gave many the impression that there is
no reason at all to leave the virtual machine untouched,

On the second day, Mario treated us to an assortment of ad-
vanced programming techniques, like the effective use of blocks,
exception hartdliig, metaclasses, weak references, and binary stor-
age. He also informed us of much-needed techniques to measure

and improve performance. The general attitude of the attendees,
most of whom were working on industrial-level proje~ was the
need to produce industial-quality applications. Mario’s tutorial
gave all of us better instruments to achieve this goal.

The third day was devoted to demos. ASwell as showing in-
teresting applications, these demos were good opportunities for
discussions with vendors. In the context of a summer school

session, much more fruitful interaction with vendors is possible
than at large conferences. They certainly could not get away

with cheap sales pitches, but were confronted with critical and
knowledgeable customers!
22
As was to be expected, there were demos of applications to link

Smalkdk with the rest of the world. Patrick Bard showed Dig-

italk’s PARTS, provided courtesy of the French distributor Tau

Ceti S.A., as well as Smalltalk/V for several platforms. Clearly Dig-

italk is moving toward instance-based programming which re-

sulted in heated discussions about the difference between their

approach md ParcPlace’s MVC parad@n, Georg Heeg Co., a dis-
tributor and vendor from Germany, showed an implementation
of distributed processing in Objectworks-Visualworks Smalltalk
called Remote Objects. Servio demonstrated their database man-
agement system, GemStone. A small company from the Nether-
lands showed a tool for project management in SmaUtalk/V,
called SmallTool-something much needed by teams working on
Smalltalk applications. In the same vein, Georg Heeg Co. demon-
strated a new tool called Application Management,

On the fourth day, Trevor Hopkins gave a presentation on
Smalltalk’s contribution to the hot issue of client-sewer com-
puting. Providing us with advanced techniques, we felt very in-
spired to apply these techniques in our own work. Those of us
working in the field were better equipped to deliver higher-
quality applications. Mario continued his tutorial on interface-
construction and MVC in the aflernoon, We certainly did not
have enough time on the computers to try out all his examples!

On the last day, two parallel workshops addressed the issues
of industrial problems like project management, fast develop-
ment under heavy time constraints, and research issues like
parallel programming, constraints, and simulation techniques,
In these workshops, we were able to share our own experiences
in these areas. It became clear during the resulting discussions
that the Smalltalk world is moving rapidly into commercial ar-
eas like banking and consulting. This creates specific problems
and demands for Smalltalk vendors. For this, a Smalltalk users
group is very important.

Ending a week of activity with this rate and intensity of in-
teraction is always difficult and somewhat painful. But all atten-
dees and tutors agreed that a new summer school next year will
definitely be organized. Cork, Ireland is a likely location. I cer-
tainly hope to see some of this year’s attendants there, as well as
many more new ones! ❑

-—
Rob Ven;is secretary ofUSUG, He is a researcher on the Fucul~--

of Management of the Universi~ of Groningen in The Nether-

lands and can be reached by ernail at R.W.Vens@bdk.rug.nl.
ESUG, can be reached via e-mailat esug@ibp.fi.
THE SMALLTALK REPORT

_...- ,.:-p: ,,;,.,:,. , -

i=

FORCE-FIT RELATIONAL TECHNOLOGY

AND YOU COULD REALLY HIT IT BIG.

Maybe you’re beating your head against the relational you can store Smalltalk objects directly in the

database wall - trying to integrate your Smalltalk database. We make your development time more

applications with an RDBMS, Maybe you’re spending productive and your object applications more efficient.

all your time debugging SQL calls instead OFbuilding Learn for yourself by calling us today for a

great applications. Or maybe you’ve hit the relational copy of “Object or Relational? A Guida for

performance wall because you’re wasting too much Selecting Database Technology: After all, the

processing time on object decomposition and decomposition. best way to daal

Servio’” has a bettar way. With our high-performance with an obstacle SERUO
GemStone@ object database management system, is to avoid it in

OBJECT TECHNOLOGY

the first place. FOH THE ~EAL WO~LO

Call 1000-243-9369for a free copy of “Object or Relational? II Guide for Selecting Database Technology?
Sewio is a trademark and GemStnne is a registered trademark of Sewio Corporation.

Congratulations to
Bank of America on their
new n-state wide area net-
work.A system they call “the
most sophisticated distributed
network in the wor/d.”

With good reason.
Their network configuration
tools have already won the
Comcwterwor/d 1993A ward
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment.

Of course, thatk what
happens when a company
like Bank of America turns
to a powetiul technology like
Digitalk’s Smallta/kN

SmalltalkYV?
Smalltalk7V lets
you show proto-
types of enterprike-
wide systems in
weeks instead of
months. /n fact,
systems as ambi-
tious as Bank of
America’s can be
Corndeted in as

In addition, our Team/V Group
Development TwI /ets large teams of
programmers use version control to
easily coordinate their work. Plus
you’ll be surprised at how quickly your
in-house staff becomes productive
with Smal/talkW

The bottom line is Smallta/k/V
helps a company get more done in
/ess time. Which can save very large
amounts of corporate cash.

On behalf of CommItetwor/dr
Steve lobs presented the award to
Bank of America. But industry

luminaries and Fortune 500
managers aren ‘t the only
ones who have recognized
the value of SmalltalkA/
Users have discovered that
SmalltalWV is the only
object-oriented technology
that k 100% pure objects.
With hundreds of reusab/e
classes of objects, thousands
of methods and 80 object
classes specifically designed
to build GUIS fast. Which
means no more time spent
writing code from scratch.

doing award-wi;ning work with
Sm~ltalklV /ncide~tal~ Smalltalk/V
applications can be easily ported
between Windows, 0S/2 and
Macintosh. And you can distribute
100% roya/tyfree.

For information on how Digitalkk
Smalltalk/V can save you time and
mone$ call 1-800-531-2344
department 310 for our special White
l%psKAnd&sure to ask about Digitalkk
Consulting and Training Services.

Call right now and see how
SmalltaM/V can yield a maximum
return on your investment.

	By Article Title
	Cross purpose exception handling (part 1)
	Death to case statement (part 2)
	European Smalltalk summer school
	Shoot-out at the Mac corral (part 2)
	Techniques for platform independence

	By Author Name
	Auer, Ken
	Beck, Kent
	Ewing, Juanita
	Messick, Steve
	Oglesby, Barry
	Steinman, Jan
	Yates, Barbara
	Vens, Rob

	By Topic
	Getting Real
	In the user groups
	Product Review
	Smalltalk Idioms

