
...+=.,,,..,..=..-,.- ,..,

February 1993 Volume 2 Number 5

:

K

MODULES
ENCAPSULATIN

BEHAVIORIN—
SMALLTAL

By Nik Boyd
Contents:

Feature

1 Modules: Encapsulating
behavior in Smalltalk
by Nik Boyd

Columns

7 Putting it in perspective:
Characterizing your objects
by Rebecca Wirfs-Brock

10 The Best of
comp.lang.smalftalk: Copying
by A/an Knight

13 Getting Real: Constants,
defaults, and reusability
by Juanita Ewing

15 GU/s: A quick look at two
interface builders
by Greg Hendley & Eric Smitt

17 Smalltalk Idioms: A short intro-
duction to pattern language
by Kent Beck

Departments

22 Product News and Highlights
G❑
his article proposes a new view of modules and how they maybe

added to the Smalltalk programming system. Modules provide a

way to control the visibility of shared names. Modules also provide

a way to hide the detailed collaborations among a group of

Smalltalk classes organized as a subsystem. The organizing princi-

ples of classes and modules are orthogonal. Thus, modules also can be used to

safely extend existing baseline classes.

The concept of a module and modular software development has existed for

many years. A variety of programming systems has provided support for using

separate name spaces to control the visibility of names used in a program. Erram-

ples include Modula-21 and Ada.z

Smalltalk systems use classes to encapsulate the structure and state of objects.

Because Smalltalk classes can hide their internal state and serve as centers around

which program behavior may be organized, they also maybe considered modular. ,.

But while Smalltalk classes can encapsulate the state of their instances, they do not

encapsulate their instances’ behavior,

By convention, some messages are designated as “private” for the private use

of the class and its instances, However, the Smalltalk system does not enforce des-

ignated message privacy and it is not always clear what such privacy means. For

example, should subclasses be restricted from using private messages they inherit

from their superclasses?

Because classes are globals in the Smalltalk system dictionary, they are all visi-”

ble to all other classes. This visibility is excessive and it can contribute to informa-

tion overload for novice Smalltalk programmers. It also can cause class naming

conflicts when a team of developers integrate their separately developed compo-

nents.

This article attempts to deal with these issues in a relatively nonintrusive man-

ner that does not sacrifice any of the flexibility and power offered by existing

Smalltalk systems.

MODULES

In their work on Modular Smalltalk,3 Allen Wirfs-Brock and Brian Wilkerson de-

scribe the essential features of modules:

Modules are program units that manage the visibility and accessibility of

names. . . .

A module typically groups a set of class definitions and objects to im-

plement some service or abstraction, A module will frequently be the unit

of division of responsibility within a programming team. . . .

A module provides an independent naming environment that is separate

from other modules within the program. . . .

Modules support team engineering by providing isolated name spaces. . .
mt,rinmd m pflgt’4.,,

I
The Smalltatk Repo~t
Editors
John Pugh and Paul White

Carlaton University& The Objact Paople

SIGS ptJBUCATONS
EDITORS’
CORNER

John Pugh pad White
 Advisoty Board
Tom Atwmd, Object Technology Intmnationd

Grady Booth, Rational

George Bosworth, Digitalk

Brad Con, Information Age Consulting

Chuck DuFf, Symantac

Adele Goldberg, Parci%ce Syztems

Tom Love, Consuhani

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems

Sasha Pratap, CenterLine %dtwara

P. Michael Seashols, Versani

Bjarne Stroustrup, AT&T ❑ell Laba

Dave Thomaa, Objact Technology International

THE SMLLTAW REPORT
Editorial Board
Jim Anderson, Oigitalk

Adele Goldberg, ParcPlaca Systems

Reed Phillips, Knowledge Systams Corp.

Mike Taylor, Digitalh

Dava Thomaa, ObjeaztTedmdngy Intarndiona

Columnists
Kent Beck, First Cl- Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Corp

Ed Klimaa, L.-a Engineering Inc.

Alan Knight, Cadaton University

Eric Smilh, Knowledge Systems Crop,

Rabecca Wrfa-Brock, Oigitdk

SIGS Publications Group, Inc.
Richard P. Friedman

Foundm & Group Publisher

Art/Production
Kriatina Joukhadar, Managing Edfior

Swan Culligan, Pilgrim Road, Ltd., Craaiiw Diracdon

Karen Tongiah, Produtiion Edflor

Robert Stewart, Desktop System Coordinator

Circulation
Stephan W.tiule, Ckculaiion Managar

Ken Mercado, FuhlllmeniManager

John Schraiber, Circulation Assiztant

Marketing/Advertising
Jaaon Weiakopf, Advertising Mgr-East Coast/Canada

HoNy Mrnnizer, Advertising Mgr—Wast G#JEurope

Helen Newding, ExhbAuitrmmt .%k Manager

Sarah Hamilton, Pmma!ims M.ager4uMcatbns

f_una Lyle, PmmckcmsManager-Gmfarancas

Cam Polner, PmmobonsGraphc Ms!

Administration
Osaama Tomoum, ❑usiness Managw

David ChatterPaul, Accounting

Claira Johnston, Ccmfmance Mmagar

Chdy Baird, Conference Technical Manager

Amy Friedman, Projects Manager
Most of you are probably satisfied with Smalltalk as a development tool. In fact, many of us

feel even a bit arrogant about promoting Smalltalk as the “best” tool for developing

soflware systems. Nevertheless, most would have to agree that we still lack an integrated

process, and tools to match that process, for the entire software development lifecycle.

Whether we’re using CRC, Booth’s notation, OMT, or something else, there still exists a

“leap” from the design process to the construction of the software. Many of the tools on

the market today offer little in the way of matching designs with the corresponding code.

Even more important, though, is the fact that we still don’t have proper tools to allow

us to go back and update the design to reflect changes in the construction. If we are to

reap the benefits of the new “object-oriented lifecycle” many of us are advocating, where

the design and development phases can be better integrated, we’re going to need such

tools. As Sam Adams and Steve Burbeck pointed out in the November/December 1992

issue of Object Magazine, “design is a continual process of discovering, evaluating, and

deciding between alternatives.” This can only be achieved if the costs of doing so are

manageable.

One issue that has been addressed over the months in this newsletter is how best to

manage visibility of objects within Smalltalk. On large development projects where teams

work on subsystems to be integrated, managing the name space always proves to be a

difficult task. In our feature article this month, Nik Boyd takes a new look at using mod-

ules as a vehicle for managing class library name spaces. He states that modules can be

used to hide the details of the implementation of a sofiware component consisting of a

number of cooperating classes and he discusses means for implementing them.

In her column this month, Rebecca Wirfs-Brock calls for sotlware development teams

to characterize their objects. She states that such characterizations will help ensure that all

team members are “in sync” and working toward a common system architecture.

Through her experience, she proposes a number of terms for characterizing objects that

could be adopted by your team.

Kent Beck offers two columns in one this month. As an aside, he describes a short id-

iom for testing nil values in an expression. The main column calls for software developers

to “describe the intent behind a piece of code” for those who will later need to understand

it to reuse it. Kent suggests that what is needed is a “pattern language” capable of describ-

ing these intentions at a variety of levels.

Juanita Ewing’s “Getting Real” column addresses the problem common to all com-

puting languages—how best to deal with defining and using both constants and default

values. As she points out, to develop a code that will be reusable, default values must be

defined in a consistent fashion and a mechanism must be provided for overriding them.

In the “GUI” column this month, Greg Hendley and Eric Smith comment on the simi-

larities and differences between Cooper and Peters’ WindowBuilder and ParcPlace’s new

VisualWorks. The issues involved in copying Smalltalk objects arise regularly on

USENET, and Alan Knight tackles some of these issues in his regular

“comp.lang.smalltalk” column this month.
. .-

T.E $MAI.I.I AI t. 1+ I,URI [1.UN. 1056.79761 i, puhlkhed Y Iinm a year, ever) rmmlh txccpl [or Iht Mml+r, l.ly/t\.L and No.ll)cc um)bm.d mum Pub-

li,bed hy SIGS l].hli..!iom (lrnup. 5W Br,,.dw,y, Sm. Y.rk, XY 11UU2(2121274-06111 0 Copyrighl 1993 by 51Gs P.hlicalions, In.. All righk r.wrvcd. Re-

pmd.clioll 0[lbk mmrid by .I.drunic Irml.mlis$ ion, Xerox or my other ,,,mhuI will bt trcmd m a willhd vi.l~lion o[lhc L’S Cnpyri$r law am{ i.<flatly

pruhihikd. t.lmml Imy he reprod.md wh mprcw pmmissim (mm Ihc puhlishm. Wailed Fml (1,s>. Suhxnplion EIIC$ I year. (9 iwcs) dmmalic. S65,
Fureign ,,td I_Jnd&), SW), sing,, ,,BPv pri,c, <s,()(,, p05TMA,WEH Scl)d ~Jdrcs. chmgc.+ md mhsw,ptio. order> l,. THF SbnAII rq I K. !+I..M 1, <ulx$crihm

Qrvice>, llqm SW. 11.[). lhm 1(100, Dmvilk, N] 078.!4, Suhmil .midm 10 #he Fdil.ra .II 91 Scmnd Awn.., Omva Ontario KM 2H4, Canada.

Margherita R, Monck
General Managar

❑SIGS
P(’Hll(’.\llt)hs

Publishers of JOUnNAL OF OBJECT-ORIENTED PRO.
GWMMING, OBJECT MAGAZINE, HOTLINE ON OBJECT.
ORIENTED TECHNOLOGY, THE C++ REPORT, THE
SMALLTALK REPORT, THE INTERNATIOWL 00P DImEC.
TORY, and THE X JOURNAL,

2 THE SMALLTALKREPORT

.—. —— !—- - ““------------- . . ,.— --- .. ”..., .

ENVY/DevelopecThe
An Architecture You Can Buiid On
ENVYDeveloper is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVYA9eveloper provides a
flexible fmrnework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ElNVY/Developer
the industry’s standard Smalltalk development
environment

Aiiowa Concurrent Deveiepera
Multiple developers access a shared
repository to concummtly develop
applications. Changes and enhancemen~s are
immediately available to all members of the
development team, This enables constant unit
and system integration and test - removing
the requirement for costly error-prone
load builds.

.

Proven Standard For Smalltalk Development
Enabias Corperate Soflware Reuse
ENVYiDeveloper’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offare A Compiate Version Controi And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a

project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Devefoper ideal
for multi-stsmm development.

Providae ‘Real’
Mrriti-Piatform Dweiepment
With ENVY/Det’ek)per, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Oifferent Smaiitaik Vendors
ENVY/Developer supports both
Objectworks’Wmalltalk and SmalltallW.
And thatmeansyou can enjoy thebenefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using E~~et’ekJper to deliver
Smalltrdk applications. For more information.
call eirher Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

@

ObjeotTechnology Oltawaoffice PhtmnixOffice

IS”

Knowlerlm 114 MacKenan Drive. Suite 100
IntamatlonalInc Phone: (613) 820-1200 Phone: (602) 222-9519 Cary, North Carolina 27511
2670 CWnsview Drive Fax (613) 620-1202 Fax (602) 222-8503 CorporationPhone (919) 4E11-4CO0
Ottawa,Onlario KZB8K1 E-mail: info@di,on.ca Fax (919) 46C-9044

HWWM?@aris a @arad Iradmark c1ObiadTxhnolwyIntamalionam Allo?Mb’andandp,oducnarmsarerwsleredmdmaw o?Iiwr fespzJwmmpanis.

...

H MODULES continucdfim pg~ 1
While providing many potential improvements to

Smalltalk, the Modular Smalltalk system does not implement

modules as first-class objects. Like many other programming

systems, the Modular Smalltalk system uses modules only for

organizational purposes. This article proposes a different view

of modules as a special kind of Smalltalk class.

MODULES FOR SMALLTALK

The definition of a normal Smalltalk class includes a reference

to a superclass, the name of the new subclass, and the names of

any new instance and class variables added by the new sub-

class. Class variables are shared by all the instances of a class

and are visible to all its methods and subclasses, if any,

In addition, the new subclass can provide its methods with

access to named objects that are shared on a subscription basis.

Certain names in the Smalltalk system dictionary are bound to

global pool dictionaries that contain these sharable named ob-

jects. The new subclass can subscribe to these objects by in-

cluding seIected global names in its list of pool dictionaries.

For example, a File class might be defined using the following

message

Objectsubclass: #File
instanceVariableNames:

‘directoryfileId name’
clas#VanableNames:

‘PageSise’
pooiDictionaries:

‘Characteflomtants ‘!

Modules may be added to Smalitalk in a relatively straight-

forward manner. Details of how this can be done are presented

in a later section. For now, we can say that each module is a

class containing a name space, called its domain, instead of

simply a pool of class variables.

There are several new messages for defining modules and

the private classes contained in their domains. The definition

of a module for managing an inventory might use the follow-

ing message:

ObjectmoduleSubclass:#InventoryManager
instanceVariableNames:”
classVariableNames:‘‘
poollliciionaries: ‘‘!

A new private class can be added to the domain of the In-

ventoryManager class using the message:

Objectsubclass: #InventoryItem
ir. InventoryManager
instanceVariableName~

‘partNumberpart?konequanti~’
classVariableNames:‘‘
pooLOictionaries:‘ ‘!

In order to add a new private subclass of InventoryItem, we

send the name of the private class (#InventoryItem) as a mes-

sage to the InventoryManager module:

InventoryManager
InventoryItem subcla,w #FloorItem

instanceVaciableNames:
4

‘storeLocation’
classVariableNames:”
pooUlictionarie5 ‘‘!

The issues involved in this breaking of the module encapsu-

lation will be considered further in a later section.

Modules can be used to create nested subsystems. The fol-

lowing message creates a nested module for managing ac-

counts in the InventoryManager module class:

ObjectmoduleSubclass:#AccountManager
in: InventoyManager
instimceVaciableNames:‘‘
classVariableNames:”
poolDictionariex”!

Figure I depicts the structural relationships between classes

in the InventoryManager module. Note that the graphic design

notation of OMT4 has been extended slightly to show what

classes are encapsulated inside a module class. The rounded

rectangles represent module domains. Note that the Smalltalk

system dictionary also is considered to be the system domain.

ENCAPSULATING PRIVATE BEHAVIOR

Modules provide three ways of encapsulating private behavior,

all of which are based on their ability to encapsulate private

classes:

I class groups (systems)

“ baseline class extensions

“ private methods

Each of these options will be discussed in the following

sections.

PACKAGING OBJECT SYSTEM DESIGNS

One advantage of modules is that they provide a way for devel-

opers to package systems of components. During the design of

a system of objects, groups of classes oflen know of each other

Smalltalk
\

I Object I

Inventory
Manager I I I

I FloorItem I

Figure 1. Structural relationships between classee.
THE SMALLTALKFbPORT

explicitly and collaborate closely to produce some complex be-

havior. Such subsystems are described informally in DESIGN-

ING OBJECT-ORIENTED SOFTWAREI

Subsystems are groups of classes, or groups of classes

and other subsystems, that collaborate among them-

selves to support a set of contracts. From outside the

subsystem, the group of classes can be viewed as work-

ing closely together to provide a clearly delimited unit

of functionality. From inside, subsystems reverd them-

selves to have complex structure. They consist of classes

and subsystems that collaborate with each other to sup-

port distinct contracts that contribute to the overall be-

havior of the system. . . .

Subsystems are identified by finding a group of classes,

each of which fdills different responsibilities such that

each collaborates closely with other classes in the group in

order to cusmdatively fidllll a greater responsibility. . . .

There is no conceptual difference between the re-

sponsibilities of a class, a subsystem of classes, and even

an entire application; it is simply a matter of scale, and

the amount of richness and detail in your model . . .

This article goes beyond the conceptual to assert that there

is no practical difference between the responsibilities of a class

and a subsystem of classes when the subsystem is implemented

as a module. The module class acts as a capsule around the

subsystem of classes enclosed within the module domain,

Such packaging supports some of the practices of good

sofhvare engineering. Implementation details can be localized,

encapsulated, and scoped. Just as good object designs organize

state and behavior into classes, systems of objects that are

closely coupled, or that cooperate to provide some overall set

of services, can be organized into modules.
 ~

~

EXAMPLE SYSTEMS

DESIGNING OBJECT-OIIIENTED SOFTWARE gives

several examples of object system design based on

responsibilities, two of which are described in

this article with just their class definitions. The

first example already has been presented. The In-

ventoryManager depicted in Figure 1 was derived

fi-om the Inventory subsystem described on pages

146-148 of the above book. Pages 15 1–152 de-

scribe the organization of a subsystem for manag-

ing transactions against financial accounts, Figure

2 shows how this subsystem might be organized

as a module. The classes for this system could be

defined using the following messages:

ObjectmoduleSubclass:#FinanciaU4anager
instanceVaciableNames:‘‘
classVariableNames:‘‘
poolDictionaries:‘ ‘!

Objectsubclass: #Account
im FinanciaJ14anager
instmceVariableNames:

‘accountIDbalance’
FEBRUARY1993
classVariableNames:‘‘
poolDictionaries:‘‘!

Objectsubclass: #Transaction
irc FinanciaJ-Manager
instanceVariableNames:

‘account’
classVariableNames:‘‘
pooJDictionaries:‘ ‘!

FinancialManager
Transafion subclass: #BalanceInquiry

instanceVariableNames:‘‘
classVaciableNames:”
poolDictionaries:‘ ‘!

Financidltanager
Transactionsubclass: #FundsDeposit

instarrceVariableNanres:
‘amount’

ck@.%riableNames:‘‘
pooJDictionaries:‘‘!

FinanciaLManager
Transacbon subclass: #FundsWlthdrawal

instanceVariableNames:
‘amount’

classVariableNames:‘‘
poolDictionaries:‘ ‘!

FinanciaLManager
Transactionsubclass: #FundsTransfer

instanceVariableNames:
‘amounttargetAccount’

classVariableNames:‘‘
poolDitionaries: ‘ ‘!
EXTENDING BASELINE SMALLTALK CLASSES

Modules provide a safe way to extend and package changes to

baseline classes in the Smalltalk system domain. Figure 3 shows

how a private version of the String class can transparently sub-

class its baseline version so as to extend it.
Smalltalk

FinancialManager I I
1 I

, >

Transaction Account
I

AI I I 1

--

. ...
Figure 2. Subsystem orgsnized ss a module.
5

■ MODULES
ModukA is a moduleSubclass of class Object and SubclassB is

a private class inside the domain of ModuleA. The private String

class inside the domain of ModuleA is a private subclass of the

baseline String clas~

ObjectmoduleSubclass:#Modu14
instanceVariableNames:‘‘
classVariableNsrnes:”
poollliclionties ‘‘!

Objeetsubclass #SubclassB
in: ModuleA
instanceVanableNames:‘ ‘
classVariableNames:‘‘
poolOietionaries:”!

Wing variable Byte Subclass:#String
in: ModuleA
instanceVariableNames:‘ ‘
classViuiableNames:‘‘
poolDictionaries:”!

The private Wing class extensions are visible to methods in

both ModuleA and SubclassB but not to classes outside of Mod-

uleA in the Smalltalk system domain, such as SubclassC.

One drawback exists in the above example. The compiler

creates constants for literals using the baseline classes: Small-

Integer, Float, String, Symbol, and Array. Unlike Object-

works\ Smalhalk, Smalltalk/V presently does not include the

source code for its compiler. Because the Smalltalk/V compiler

has not been extended to use the privatized versions of baseline

classes it uses for Iiterals, the private String class needs to create

instances by copying baseline strings. For example, if we want

SubclassB to use a private String for some operation, it will need

to create it using

“prhte” Wing capyFrom.
‘aconstant shirtg’

The compiler creates a constant string that is an instance of

the baseIine Strirtg class. The private String class creates an in-

stance of itself that is a copy of this string constant. Given an
6

instance of the private Wing class, the extended private string

operations may be performed on it.

Given access to the source for the compiler, this small de-

fect could be rectified. Then all the baseline classes, including

those that the compiler uses for literals, could be extended

transparently by private subclasses.

ENCAPSULATING PRIVATE METHODS

Modules can be used to hide the private methods of a class. To

do this, a pair of classes is used to divide the public methods

from the private ones. The public class is a module whose

methods provide its public interface, The private methods are

hidden in a private class inside the module domain. The pri-

vate class can have the same name as the module class.

Figure 4 depicts an example of how this principle can be ap-

plied. Because of its simplicity, the full code for this example

can be found in Listing 1. The module class ClassFiler is derived

from the standard Smalltalk class ClassReader. This class is used

to file Smalltalk source code in and out of the system, usually

using an instance of class FileStream.

The ClassFiler module class has a single instance variable:

privateSelf. When an instance of the module class is created,

privateSelf is set to reference an instance of the private ClassFiler

class. All the public methods of the module delegate private

messages to privateSelf. Instances of the module class serve as

proxies that hide the private behavior of the module class.

To maintain encapsulation, public methods in the module

class can check the answers that come back from privateSelf.

Any answer that is identical to privateSelf should be answered

as self (the module instance) instead.

This technique provides true encapsulation of private

methods of the class with a small amount of overhead in time

(the delegation and answer checking) and space (the extra in-

stance privateSelf).
Smalltalk

rTaa-

I

Figure 3. Estending a baseline class by transparently subclasaing it.
Smalltalk
e \

T
Object

——

ClassFiler
I

Figure 4. Using a module to hide the private methods ofs class.
THE SMALLTALKREPORT

UTTING IT IN PERSPECTIVE

Characterizing
your objects

Rebecca Wirjis-Brock
I
n this column I’ll describe some vocabulary I find useful to

characterize objects. Building an application involves

teamwork and cooperation. Melding classes designed by

individuals into a consistent system of cooperating objects re-

quires that team members work toward a common system ar-

chitecture. Team members need to share an understanding of

what constitutes well-designed classes and subsystems, and

what are acceptable patterns of object interactions.

Choices between perfectly acceptable alternatives must be

made consistently across classes designed by different people.

Achieving a consistent pattern of object communication first

requires team members to use a commoir vocabulary for de-

scribing objects and their communication patterns. Once team

members are talking the same language, they can have mean-

ingful discussions about desirable interaction styles, Decisions

then can be made based on sound engineering practices that

meet business requirements,

STEREOTYPING OBJECT ROLES

Objects in our design can be either involved, active partici-

pants in many conversations, or by design play a more docile

role, responding only when asked and taking a supporting role.

Between these two extremes are many shades of behavior. I

find it useful to classify objects according to their primary pur-

pose as well as their modus operandi,

Here are two ways to characterize object roles:

- Business Objects. Objects whose primary purpose is to

model necessary aspects of a concept that would be familiar

to a user of the software we design. If we were designing an

Automated Teller Machine for a bank, we might have Bank

Customer, Bank Account, and Financial Transaction ob-

jects. If we were designing an oscilloscope we might model

Triggers, Waveforms, or Timebases. These types of objects

are also commonly referred to as domain objects because

they correlate directly with concepts in the users’ domain.

. Utility Objects. These are generally useful, non-applica-

tion-specific objects. Smalltalk programming environ-

ments come with many generically useful classes, Classes

for structuring other objects, such as Set, Array, Dictionary,

and classes representing numbers or strings fall into this

category.

There are compelling reasons for application developers to
FEBRUARY1993
create additional utility objects. For several projects I’ve

worked on, specific individuals were assigned direct responsi-

bility for creating, publishing, and ensuring that utility objects

were appropriate to the task and properly used. It is possible to

create and effectively incorporate utility objects into the appli-

cation throughout development and software construction.

It is extremely useful to design new utility objects that ex-

plicitly support system policies or common application pro-

gramming practices. For example, we have created classes that

stylize error handling and sequencing of processing steps;

classes that model ranges of set table values, increments, and

units of measuremen~ and classes that monitor detectable ex-

ternal conditions, Once designed, these objects can be used in

many places within an application.

STEREOTYPING OBJECT BEHAVIORS

A number of researchers and design methodologists have

coined terms for describing objects according to the way they

operate. My list of useful terms isn’t merely a composite of all

common terms in the current literature. I continue to make

finer distinctions after reflecting on past experiences and tack-

ling new design projects. Periodic updating is needed to reflect

new ways of constructing software that accomplishes new tasks.

Following are useful ways to classify object behavior.

Controlling objects

Controlling objects are responsible for controlling a cycle of

action. This cycle can be either repetitive, with conditional

branching logic, or initiated and executed once on detection of

a certain set of events or circumstances. Controlling objects

can initiate and control ongoing systemwide activity or iterate

over a minor application task.

The original Smalltalk-80 user interface presented a styliz-

ed three-way collaboration between Model, View, and Con-

troller objects. Controller objects were responsible for re-

sponding to user directives, such as mouse clicks or

keystrokes, and initiating appropriate responses, Views dis-

played the current state of the application and model objects

were application-specific objects.

I use a broader definition than that implied by Smalltalk-80

Controller objects. Controlling objects need not be spurred to

action only on behalf of user directives. Controlling objects can

be found and created for many parts of an application where a
7

■ PWTING IT INPERSPECTIVE
cycle of activity is initiated, sequenced, and, sometime later,

possibly completed.

For example, in the design of an Automated Teller Ma-

chine, an ATM object can have responsibility for initializing

and sequencing system interactions with a bank customer. A

further design refinement can add the concept of a Session-

Controller object, which controls the sequence of activities by a

single bank customer wishing to carry out one or more trans-

actions with the bank. At a lower level, there maybe network

controller objects responsible for handling network traffic be-

tween the application and the communication network.

Coordinating objects

Coordinating objects are the traffic cops and managers within

a system. Coordinators often pair client requests with desired

services (or, rather, objects performing a requested service). In

my early object design experience, I would append Manager to

the names of these objects. FontManager and StyleManager are

two example class names. I used to feel uncomfortable creating

objects whose primary behavior was being idle until someone

needed something, then helping to establish the connection

between two other objects that would collaborate to actually

perform some useful function, I now realize that these coordi-

nators proved their worth simply by eliminating the need to

hard-wire direct references between objects.

In another common design pattern, a coordinating object

may respond to a request by briefly establishing an appropriate

context, then delegating a request to one or more objects

within its sphere of influence, For example, in the ATM design,

the Session Manager first would determine which transaction

the bank customer wished to perform, then create the appro-

priate transaction object for delegating the responsibility to

gather additional information from the bank customer (such

as amount to withdraw if it were a Withdraw Transaction),

and then perform the transaction.

A coordinating object also may control a sequence of ac-

tions. It is often logical to blend coordinating and controlling

functions in the same objects. A reasonable design for the Ses-

sion Manager object is to give it the responsibility for creating

and handling a series of bank customer transactions. A bank

customer typically can perform transactions until indicating a

desire to terminate the session, causing our application to print

a receipt of all transactions and return the customer’s card.

Structuring objecte

Objects with structuring duties primarily maintain the relation-

ships between application objects. In many applications, busi-

ness objects have very complex structural relationships. Let’s

take a simplistic real-world example of a file cabinet containing

folders that hold documents. A file cabinet simply holds folders

that may be tabbed and labeled, and the folders merely contain

their contents. The documents themselves are of interest.

In an object design, I add more or less behavior to objects

to meet business requirements and to suit my personal tastes. I

can design File Cabinets to do more than organize their con-
8

tents. A File Cabinet could know when any folder was last ref-

erenced, or how much room is leR in the cabinet. When I clas-

sifi an object as primarily a structuring object, I think first and

foremost about what relationships it should maintain between

other objects and how it should do so, and secondarily what (if

any) additional behavior might be appropriate and useful for it

to have.

Informational objecte

Sometimes objects are created to hold values that can be re-

quested by many different kinds of application objects. I don’t

want to get into an in-depth discussion of design and pro-

gramming techniques to eliminate globals or minimize depen-

dencies on hard-wired values in code. However, at times it can

be useful to create objects that are responsible for yielding in-

formation. In procedural programming languages, we have the

ability to declare constant values. In object designs, informa-

tional objects are an equivalent concept.

Service objects

A service object typically is designed to perform a single opera-

tion or activity on demand. A well-designed service object pro-

vides a simple interface to a clearly defined operation; it should

be easy to set up and use. Pure service objects ofien are the

products of a highly factored design. Such a design consists of

many classes of objects having highly specialized behaviors.

One reason to create service objects is to facilitate optional

or configurable sofiware features. The argument for this design

strategy goes something like this: It is easier to configure a

product’s features by adding or removing entire classes of ob-

jects than it is to add or remove class behaviors.

As more behavior is added to a class, it can become com-

plex to integrate new features with existing code. Optional

fimctionality needs to be implemented in a way that guarantees

pre-existing code doesn’t break. Test suites and internal con-

sistency checks become important.

When services are placed in specialized service classes, the

design task shifts to creating an appropriate role and interface

to the service object, which must balance the client’s control

over the service’s performance with simplicity and ease of use.

An operation maybe so complex to perform that it war-

rants creating many objects. A single object can be designed to

provide the public interface to this service, hiding most of the

details from the rest of the application.

Useful services can be packaged into distinct objects. These

service objects might be designed so as to be useful in a variety

of contexts, perhaps by being easy to extend or customize. We

could design our ATM transaction objects to know precisely

how to print information about the transaction on a receipt,

Alternatively, we could design a Report object that provides

printing and formatting services for the transaction object,

Interface objacts

Interface objects are found at the boundaries of an object-ori-

ented application, They can be designed to support communi-
THE SMALLTALKREPORT

fie Srnalltalk/Vusers: the tool
~ for maximum productivity p I

“ Put related classes and methods into a single task-
oriented object called application.

0 Browse what the application sees, yet easily move code
between it and external environment.

“Automatically document code via modifiable templates
0 Keep a history of previous versions; restore them with

a few keystrokes.
0 View class hierarchy as graph or list.
0 Print applications, classes, and methods in a formatted

report, pagimted and commented.
a File code into applications and merge them together.
0Applications are unaffected by compress log change

and manY other features..
...................................1/-s-<::-<::::::!:Appiicati-iq
.....................................!

\

nager history — [Code recovery]

Utilities.. - ~-”-~pfication-~-fii-g~ and more..

CodeIMAGERw V2S6, VMac $129.95
VWindow & VPM *249.95
ShIppins&handling:S13 mail, $20 U , permpy

Disketk ❑ 31n D 53/4

❑
SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.
2035C6te& Liessq suite 201

$1+ ~fl~tiY~;;;$Z~$~56.~032
CnkU4AGERidnRS.uabinrk.fS,u
‘~m Eu.,.sm&umwisll$T&”-*~.,.
cations with users, other programs, or externally available ser-

vices. Interface objects come in many sizes, shapes, and flavors,

and at many conceptual levels.

Interface objects can be designed to support an ongoing two-

way communication between some external entity, For example,

in the ATM application we have a number of physical devices

such as Receipt Printer, Cash Dispenser, and Card Reader. In

our design, all these devices would have interface objects that

define a high-level interface to the services they provide. A Cash

Dispenser object might define as message to dispense cash, re-

turn the cash balance, or adjust the balance (as a result of dis-

pensing cash or adding more money to the machine].

Interface objects can be designed to translate external events

or requests into messages fielded by interested application ob-

jects. For ercample, many external events need to be handled by

the ATM system. To name a few jamming of cash in the Cash

Dispenser, failure of the door to close, the Receipt Printer run-

ning out of paper, etc. The list isn’t endless, although responsi-

ble objects (the most likely candidates are appropriate interface

objects) need to field those events and respond appropriately.

Or they can be designed to provide a narrow interface. For

example, a menu presents a number of options and returns a

user’s preference. User interface objects typically support a

highly stylized dialogue between the user and the system.

Interface objects are responsible for bridging the non-ob-

ject world and the object world of messages and objects.

When I think about interface object design, I focus first on

those objects considered by the remaining applications to

define the interface to the outside world. I realize that a great

many details can and should be encapsulated by these inter-

face objects. The key is to hide these details and provide a

sufficiently abstract interface.

MOVING OBJECT DESIGNS ALONG THE BEHAVIORAL

CONTINUUM

Given that we have a sufficiently rich vocabulary for describing

object roles and behavioral patterns, we need to establish a con-

text for applying these terms. Once we have done so, we need to

evaluate our emerging design and select among alternatives.

First it is useful to distinguish at what conceptual design level

an object should belong (as opposed to where it is currently

placed). Is it a high-level object or does it provide low-level ser-

vices? Does it a play a significant or relatively insignificant role?

Once we determine this conceptual level, we can easily

characterize an object’s role as business or utility. Examining

behaviors and building cleanly defined objects takes more

time. Objects don’t always fall into a single behavioral cate-

gory, nor do I expect them to. For instance, objects ofien blend

behaviors of controlling and coordinating. Another common

pattern is to blend behaviors for structuring and providing ser-

vices into the same object.

I do find it useful to ask whether an object is assuming too

much responsibility, and whether it would be more appropri-

ate to create new classes of objects to share the load. I also note

whether a design choice causes an object’s behavior to shift one
FEBRUARY 1993
way or the other on a behavioral continuum. Has an object be-

come too active or passive? IS it perhaps taking on too many

behaviors by assuming both a coordinating role as well as per-

forming a useful service? Would it simplifi the design to sub-

divide an object’s responsibilities into smaller, simpler con-

cepts? What would be an appropriate pattern of collaboration

between that object and newly defined service objects?

When I look at rebalancing behaviors, I tend to consider

the current behavior definitions for a group of collaborating

objects belonging to roughly the same conceptual level. My

goal is to understand and develop an appropriate distribution

of control logic and responsibility among collaborators. De-

sign creativity and individual preferences needn’t be sacrificed

during this assessment process, However, readjusting object

behaviors needs to be purposefully done. In my next column I

will discuss some object interaction styles as well as strategies

and reasons for choosing between them. ❑

Rebecca Wi@-Brock is Director of Object Technology Services at Dig-
italk and co-author IJfDESIGNING OBJECT-ORIENTED SOFWARE. She
has 17year~’ experience designing, implementing, and managing
sof~are products, m’th the last eight years focused on object-oriented
software. She managed the development of Tektronix Color Smalltalk
and has been immersed in developing, teaching, and lecturing on ob-
ject-oriented software. Comments, further insights or m“ld specula-
tions are greatly appreciated by the author. She can be reached via
email at rebecca@digitalk. corn. Her U.S. mail address is Digitalk,
7585 S.W. Mohawk, Tualatin, OR, 97062.
9

Alan KnightHE BEST OF comp.lang.smalltalk

Copying
copting objects ou@ to be easy. Afier all, objects are
just bits in the machine and those are easy enough to

copy. Besides, objects are encapsulated, so copying

shouldn’t have to worry about anything outside the current

object. Unfortunately, it’s not always that simple. Complica-

tions can arise from details of Smalltalk’s implementation and

the object structure and from interactions with inheritance.

OBJECT IDENTITY

In Smalltalk, each object has a unique identity independent

of the value it represents. In other words, Smalltalk variables

don’t hold objects but references to objects. Several different

variables can refer to the same object; if a change is made to

that object, the changed value is visible through all those

variables.

This is also known as “aliasing” because the same object can

have several different names, or “reference semantics” because

the variables refer to the objects. This is in contrast to “copying

semantics” where each variable has (or at least appears to have)

its own copy of the object.

In pure functional languages, aliasing is eliminated. The

values of instance variables in existing objects cannot be

changed and new objects with different values must be created

instead. Functional programmers would say that this is a good

thing because it eliminates many confusing errors associated

with aliasing. Non-functional programmers might say that re-

moving aliasing entirely also eliminates many useful program-

ming techniques but few would deny that copying semantics

can be useful sometimes.

Some Smalltalk classes have copying semantics, including

numbers, characters, booleans, and symbols. Operations on

these types of objects do not modify the internal values of the

instance but create anew instance as their result. Even though

numbers can be aliased (as almost all Smalltalk objects can),

there are no operations that can change the internal state and

reveal the aliasing. The need to allocate new numbers for each

operation results in poorer performance for numerically inten-

sive applications but makes the behavior of numbers much

more simple and predictable.

Complications

The previous section contains a number of half-truths. It’s not

really true that no operations modify classes with copying se-
10
mantics. Meta-operations like become: and instVarAt: can get

around these restrictions and it’s possible to add methods that

modify the internal state of some of these classes. In addition

to seriously messing up your image, these facilities can expose

significant differences in the behavior of these classes.

The most important difference, for copying purposes, is

between SmalUntegers and all other objects. SmalUntegers are

the most primitive entities in Smalltalk and really do have

copying semantics, which the other classes just pretend to

have.

The trick is that Smalltalk variables actually hold a 32-bit

quantity, one bit of which is a flag. If the flag is set, the ob-

ject referred to is a SmallInteger and the remaining31 bits are

its value. If the flag is not set, then it is some other kind of

object and the remaining 31 bits are the machine address of

that object.

If you copy the bits stored in a variable holding a SmalUnte-

ger, you actually get a copy of the SmallInteger. If the variable

holds an object, then you get a copy of a reference to the ob-

ject. This is the kind of implementation detail that you nor-

mally shouldn’t have to think about, but it does explain a

number of otherwise confusing things. For example, if you’ve

ever wondered why become: doesn’t work on SmaUIntegers but

does work on LargeIntegers, or why:

10== 10

evaluates to true, but:

10 ktorial == 10 kxtorial

comes out false, here is the explanation:

Become: can’t work on SmalUntegers because it works by

changing object references. SmallIntegers don’t have object ref-

erences, so there’s nothing to be interchanged. In fact, since

the parameter passing mechanism in Smalltalk is to copy these

32-bit fields described above, the become: operation doesn’t

even get the original SmalUntegers to change but only a copy of

their values on the stack.

The == operation compares these same 32-bit quantities for

equality. For SmallInteger 10, the bit patterns are exactly the

same, so == is true. 10 factorial is a LargePositiveInteg er, and

since both sides of the expression are evaluated separately, we

get two separate instances of LargePositiveInteger, which are

equal (=) but not identical (==).
THE SMALLTALKREPOIiT

Shallow copy

How does this affect copying? The default copy implementa-

tion in Smalltalk is the “shallow copy,” which just creates a

new instance with exactly the same bits as in the old instance.

This means we get a genuine copy of SmalUntegers and a shared

reference to all other objects. Sometimes this is what you want

but it also can be very confusing. For example, Richard Bentley

(dik@comp.lanes.ac.uk) poses the frequently asked question:

Could somebody please exphin to me how copy is sup-

posed to work To me, if I take a copy of (say) a

Diction~, the copy should not just have pointers to the

original Dietiomuy’s instance variables, so that if I change

a value in my copy, the original is also changed.

Is this how copy is supposed to work? If I want a deepCopy

of a composite object (one that references other objeets

using instance variables), how should I go about it ?

Deep copy

In many cases, a deep copy is more intuitive than the one-level

shallow copy. Deep copying has its own complications,

though, and it’s not possible to provide a single implementa-

tion that makes sense for all classes.

Digitalk provides an implementation of deepCopy that makes

a copy of an object with shallow copies of all its instance vari-

ables. This is deeper than shallow copy but it just pushes the

problem down one level. This wouldn’t work properly in the dic-

tionary example either because the instance variables of a dictio-

nary are not the keys and vahres but the associations that hold

them. They also provide an implementation of deepCopy specific

to Ditionary, which does “the right thing.” Such special imple-

mentations are required for quite a few classes, and still leave

open questions like “How do I copy a dictionary of dictionaries?”

ParcPlace used to provide a recursive implementation of

deepCopy, which would copy an object and make deep copies of

all its instance variables, recursing until it reached primitive

objects. This also has problems, as Bruce Samuelson

(bruce@Iing.uta.edu) points OUE

ParcPlace has been phasing out support for deepCopy

because of theoretical problems such as infinite recur-

sion for circular structures.

Jan Steinman (steinman@hasler.ascom.ch) adds:

That’s not good enough! #deepCopyhas practical prob-

lems, such as chewing up memory when you least ex-

pect it. (Try to deepCopy a SortedColleetion, for instance,

which holds a BloekClosure, which holds a CompiledLo-

calBlock, which holds a metaclass, which links in the en-

tire class tree. ., .)
There are numerous solutions for avoiding infinite re-

cursion, the simplest of whkh (context query) does not

even require any additional state.

I find #deepCopy so useful that I’ve implemented #deep-

Size, a “better BOSS: and lots of other deep things.
FEBRUARY1993
They can be slow memory hogs, but if you use such

things within their practical limitations, what’s the

problem? When #deepCopy goes away, 1’11put it back!

The phrase “context query” hides a very clever trick that

takes advantage of Smalltalk’s reflective capabilities to avoid

infinite recursion. Using the tbisContext pseudo-variable in

ParcPlace Smalltalk, it is possible to examine the stack of the

currently executing process. This information can be used to

determine whether an object already has been visited (and

abort the recursion if it has). Jan Steinman has promised to

write an article for THE SMALLTALKREPORT describing these

tricks in detail. Similar tricks should be possible in Digitalk im-

plementations but the interface to the process stack is not as

well-documented, so it would take a bit more investigation.

Do it yourself

In general, if you want a copy routine that does “the right

thing” for a particular class, you have little choice but to write

it yourself. There isn’t a universal definition of what the right

thing is, and it may even vary for the same class from applica-

tion to application. The problem of copying complex objects

with circular references (e.g. a Graph) is equivalent to the

problem of storing and retrieving an object from disk. In fact,

if I have objects that can be written to a file, it’s sometimes eas-

iest to write them to a stream and retrieve them as a way of

making a copy. There will be a big performance hit but some-

times that doesn’t matter.

It’s also worth noting that ParcPlace has changed default

implementation of copy. Hans-Martin Mosner

(hmm@heeg.de) writes:

In R4.1, the only copy method besides #shallowCopy is

#copy itself. It is implemented as ‘self shallowCopy post-

Copy. The pos@ry method is the one that should do the

dirty work. It can copy instance variables, leave others

alone, update backpointers, and so on. Since it executes

in the already copied object, it has access to everything

it needs. To make copies which don’t share instance

variables, the poatCopy methods should copy all such

variables.

This is a nice implementation, since postCopy doesn’t need

to do anything for variables that only require a shallow copy.

Thus, adding instance variables doesn’t necessarily require

changing the copy method. My only complaint is that this

change was not very well advertised; I only discovered it by

stumbling across the code while doing something else.

INHERITANCE

As if there weren’t already enough problems with copying,

there also can be problems inheriting from a class that defines

its own copying methods. For example, Ralf Grohman

(ralf@ubka.uni-karlsruhe,de) writes:

I want to extend the Dictionary Class in some way. So I

generated a new class (Test) which is a subclass of Dietio-
11

E THE BEST OF COMP.LANG.SMALLTALK
nary and added an instance variable ‘temp’.

The sole method of this class is:

Sddiere
tamp := ‘ok’.
ltw5do:[:Ml

Transcriptshow ‘temp=’;show temp printShing; m.
self ak x PUVTest’.].

When I call it via ‘Test new adsi.iere.’ I get the following

Transcript:

temp= ‘ok’
temp= ‘ok’
tamp= NI
temp= nil
tamp= nil

Hey! Why is the instance variable overwritten after the

second iteration?

This problem is ParcPlace-specific and is described by Rick

Klement (rick@rick.infosen~.tom):

It was not overwritten. It just wasn’t moved to the new

object created when the Dieiionmy had to grow to ac-

commodate three entries. Welcome to one of

Smalltalk’s more subtle bugs. . . . I’ll bet this bug exists

in 10VOof the large programs that add instance vari-

ables to variable classes.
12
ParcPlace Smalltalk implements

classes such as Dictionary, Set and Or-

deredCollections as variable classes

(classes with indexed instance vari-

ables). When instances need to grow, a

new, larger instance is created, and be-

come: is used to replace the old collec-

tion with the new. Unfortunately, the

grow method only copies the indexed

instance variables. If non-indexed in-

stance variables are present they must

be copied explicitly, and user classes

must override the grow method to do

this, Jan Steinman (steinman@hasler. as-

com.ch) writes:

There have been many debates

about how to best handle this.

One might bean off-line

“checker” method that wos.dd look

for SaqueneeableColIetion sub-

classes that add instance variables

but do not implement #grow.

I once reimplemented #grow so

that it copied all instance vari-

ables, rather than specific ones (1

to: self class instsize do: [:i I . ..]).

But this gets you into trouble in

some cases where the new Collec-
tion requires different values, such as ‘firstIndex’ and

‘lastIndex’ in OrderedColltion. . . . For the time being, the

answer is to make sure people understand what is happen-

ing, but I’ve been Smalltalking for eight years, and it still

bites me now and then!

Another possible solution is to implement collections differ-

ently. In Digitalk’s version, these are normal classes that have an

array as an instance variable. If the collection needs to grow,

then a larger array is created, its contents are copied, and the in-

stance variable replaced. It requires an extra layer of indirection

for collection access, but become: is not necessary and the in-

stance variables don’t need to be copied. Digitalk’s reason for

doing this is probably that become: is a very expensive operation

in their dialects, but Ralph Johnson (johnson@cs.uiuc. edu) ar-

gues that this is a cleaner implementation. In fact, he has code

to change SmalItalk-80 to operate this way

I have a fileIn that will do this to 2.3, but haven’t got

around to doing it to any of the later images. You can’t

change classes like MethodDietionaay, of course, but you

can eliminate most of the old-style collections.

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, KIS
5B6. He currently works in ParcPlace Smalltalk on problems relating
tojirsite element analysis and has worked in most Smalltalk dialects
at one time or another. He can be reached at +1.613.788.2600 x5783.
THE SMALLTALKREPORT

Juanita Ewing

Constants, defaults
and reusability
T
his column focuses on two aspects of reusability-sub-

classing and client usage—and how they relate to con-

stants and defaults. Many classes have constants and de-

faults to represent commonly used values. Some of the values

represented as constants may not really be constants, such as

heuristically determined values, which are ofien hard-coded and

embedded into methods. Though expedient in the prototyping

stage, most constants should evolve into defaults as classes are

refined. Developers of reusable software need to create reason-

able defaults and include a mechanism to override them.

This column will show you how to use constants and de-

faults and still maintain a high level of reusability. We will ex-

amine several classes and methods from the Windows and

0S/2 versions of Smalltalk/V that contain defaults. We will

also revise some existing image code that has embedded con-

stants and improve its reusability.

CONSTANTS

Many initialization methods contain constants and their values

are oflen Smalltalk literals. In the class En@Field, the initialize

method contains four constants: a string, an integer, a point,

and a boolean. An initialization method is an appropriate place

for constants. Subclasses typically override the initialize

method to customize initial values:

iniiidize
‘Private- Initialize the receiver. ”

value := “.

maxsize := 32.
selefion := l@l.
modfied := false.
‘super initialize

A less appropriate location for constants is embedded in arbitrary

methods. A method should have one purpose to define a default

or perform some computation, but not both. With an embedded

constant, reusability is impacted because it is difficult to:

u find and modifj the constant

“ override the constant in a subclass

The method file: in DiskBrowser has a constant that controls

file contents display based on the file size. This constant is a

size limit used to determine whether to display the entire file or

a portion of it. If the file size exceeds this limit, it takes an extra

action to see the entire contents. The main purpose of the file
FEBRUARY1993
method is to display the file contents. It should not contain the

definition of the size limit:.

file: filePane
“Private - Setthe selectedj7/e to the selected one rhfilePane. Display

the file contents in the textpane. ”
I aFileStieam I
CursorManagerexecute change.
seLfchanged: #directosySorh.
selectedFile := filePane selectedItem,
self switchToFilePane.
aFileStieam := selectedDirectoryfileReadOnlyselectedFile.
wholeFileRequest:= aFileSbeam size <10000.
aFileStreamclose.
wholeFileRequest

ifkue: [self fileContents: contentsPane]
ifFalse: [self showPariialIile]

Another DiskBrowser method, showPariialFile, also contains this

constant. Having the same embedded constant in two methods

can lead to maintenance problems:

showParWFile
“Private - IJirplay the head and tail o~the selectedjile in the text

pane. ”

I aFileStreemfileHeadfileTailstsrtMessage endMessageCTI
CursorManagerexecute change.
contentsPane modified:false.
aFileStreanr:= selectedDirectoryfileReadOnLyselectedFile.
cr:= Wing with: Crwith: Lf.
stzwtMessage:= ‘Filesize is greater tharr 10000bytes, ‘,cr,

‘fist 1000bytes are ...’. cr.
endMessage:= cr, ‘***********************’,cr,

‘last 9000 bytes are...’, cr.
fileHead := aFileStieamcopyFrorn 1 to: 1000.
fileTail:= aFileSbeam

copyFrom:aFileStieamsize -9000
to: aFileStieamsize.

aFileStrearnclose.
contentsPane

fileInFrorn (ReadStreanron: (startMessage,
fileHead,endMessage,fileTail));

forceSelectionOntoDisplay.
(seffmenuWindowmenulltled: ‘&Files’)enableItem:

#loadEntireFile.
(self menuWlndowmenulltled ‘&File’)disableItem: #accept.
CursorManagernormal charrge

DEFAULTS

Developers should not embed constants in arbitrary methods.
13

■ GHTING RaL
Instead, each constant should be defined in a separate method,

allowing it to be easily identified and overridden. Once isolated,

we call these values defaults because subclasses easily can over-

ride the defining method, increasing the reusability of the class.

The method initWfndowSize, from the class WindowDialog,

specifies the initial size of a dialo~ Because this value is iso-

lated in a method, we consider it a default—subclasses easily

can override the default initial window size:

initW&sdowSise
Trivate-Answerthe default window stie. ”

“150 @ 100

Another example from the image involves the application

framework class ViewMassager. The class ViewManager has a

method that specifies the class of the top pane in the view

structure. Subclasses easily can override this method to specify

another top pane class, giving subclasses the critical ability to

override the creation of collaborators

topPaneClass
Trivat*Answerthe default top pane c105s.”
‘TopPane

EVOLVING CONSTANTS INTO DEFAULTS

In the section above, we saw two DiskBrowser methods corrtain-

ing an embedded constant, 10000. Next we see the two original

methods rewritten, plus one other method that isolates the file

size limit for automatic reading. The isolated constant is now a

default because it easily can be overridden by subclasses. With

a default, maintainers can locate the limit more easily and are

less likely to create inconsistent methods caused by modifying

one but not the other reference to the constan~

arstoReadLisnit
“Return thefife sire limitthat determines whether the entire contents

of ajle wr”llbe automotical~ displayed.”
Yoooo

file: filePane
%rvate - Set the selectedfile to the selected one infilePane. Dkploy

thejile contents in the textpane. ”
I aFileStrearn I
CursorManagerexecute change.
self changed: #directorySorL.
selectedFile:= filePisneselectedItern.
seLfswitchToFllePane.
aFileStreanr:= selectedDirectoryfileReadOnlyselectedFile.
wholeFileRequest:= aFileStreamsize < self autoReadL.imit.
sFileStreronclose.
wholeFileRequest

ifkue: [self fileContents:contentsPrme]
Wake: [seIfshowPartialFiIe]

showPartialPile
“tivate - Displaythe head and tailof the selectedfife in the text

pane. ”

I aFileStreamfileHeadfileTailstartMessageendMessagecrlimit

initial final I
CursorManagerexecute change.
limit:= seLfautoReadLirrrit.
14
initial:= limit// 10 roundTo:1000.
final:= limit - initial.
contentsParremodified:false.
aFileSbeam := selectedDirecto~ fileReadOnly:selectedFile.
cr:= String with: Crwith: Lf.
startMessage:=

‘Filesize is greater than’, knit printString, ‘bytes, ‘,cr,
‘first’, initial printString,’ bytes are .,.’, cr.

endMessage:=
cr, ‘***********************’,cr,
‘last’, final prirrtSbing, ‘bytes are .,.’, cr.

fileHead := aFileStreamcopyFrom:1 to: initial,
fileTail:= aFileStream

copyFrom:aFileStreamsize - final
to: aFileStreamsise.

tiilestream close.
contentsPene

fileInFrorm(ReadStreamon: (startMessage,fdeHead,
endMessage,fileTail));
forceSelectionOntoDisplay.

(self menuWindowmenuTitled: ‘&Files’)
enableItern #LoadEntieFile.
(self menuWindowmenulltled: ‘&File’)disableItem: #accept.
CursorManagernormal change

INSTANCES MODIFY DEFAULTS

In addition to allowing subclasses to override defaults, devel-

opers can structure code so that instances can modify the de-

fault, improving client reuse. In this scenario, the class

provides:

* storage for the default value, usually an instance variable

“ accessing method for setting the default

. accessing method for retrieving the default (optional)

The class EntryField has a default for the maximum number

of characters in an instance of EntryField, In addition to the

initialize method we saw above and an instance variable to

hold the value, one other method accesses the default maxSize.

The accessing method marrSize: allows instances to customize

the maximum number of characters that can be typed in an

En@Field.

maxSim: anInteger
“Setthe mm”mum number of characters in the receiver to an Integer. ”

maxSize:= anInteger.
hamdle= NullHandle

ifFalse [self setTextLimit]

There are several ways to provide an initial value for a de-

fault. In the initialize method for En@Field, maxsize is set to 32.

An alternative design, shown below, has an accessing method

that provides a default. The initialize method no longer sets the

value of maxSize. In this case, the initial default value is only

used if the default has not been otherwise set:

Srlaxsise

W.4um the maximumnumber of characters that can be entered in

the receiver. If no other value has been set, use the initial mas sue

value and remember it. ”

maxSize==nil
ifhre [maxSize:= self initialMa.sSize].

continued on pqe 16
THE SMALLTALKREPORT

Greg Hendley and Eric Smith

A quick look at two
interface builders
I
n this installment of GUI Smalltalk, we will look at

Smalltalk’s two main interface builders: Cooper& Peters’

WindowBuilder for different dialects of Smalltalk/V and

ParcPlace’s VisualWorks in R4.

While most people would not choose their Smalltalk dialect

based on the interface builders available for it, it is interesting

as a user and creator of graphical user interfaces (GUIS) to

compare tools and see how two providers make use of GUIS

themselves.

APPLES VS. APPLES OR ORANGES

The first question in comparing WindowBuilder and Visual-

Works is “Are we comparing apples and apples or apples and

oranges?” The answer is apples and apples, First, both are in-

terface builders, not application builders; as such, their power

is in graphically laying out the subpanes (if you are from V),

controls (if you are from PM), or visualComponents (if you

are from R4) of a window. This eliminates the need for you to

calculate and write framing blocks.

COMPATIBILITY WITH THE ICM FRAMEWORK
Both WindowBuilder and VisualWorks output one class per

window that can be used as the interface layer of the ICM

framework. (The ICM framework was described in two previ-

ous installments of this column.) In WindowBuilder the de-

fauh superclass of the output class is ViewManager, In Visual-

Works the default superclass is ApplicationModel.

CAPABILITIES FOR CREATING USER INTERFACES

Similar capabilities
The capabilities of the two interface builders are more similar

than different, Both have various versions of buttons, lists,

static text, text editors, graphics, etc., and both help you build

and test menus.

Sizing, positioning, and resizing of the window and its ele-

ments (subcomponents or subpanes) are supported in both.

Elements of the user interface can be told to initially have the

same width or height. They can be aligned like texti justified

lefi, right, top, or bottom; centered horizontally or centered

vertically with respect to each other, Each element can be re-

sized by absolute position or by ratios.

Both interface builders provide support for specifying each

element’s response to user input; both provide direct access to
FEBRUARY1993
elements through the use of identifiers; both support tabbin~

and, most important, both allow for the use of custom sub-

panes and visual components.

Differences in cepebilitias

Four capability differences between the two interface builders

are noted below. Some are differences in degree while others

appear in one but not the othe~ these include keyboard shott-
cuts, reuse, specifying response to user input, and specifying

dependencies between components,

WindowBuilder provides direct support for keyboard

shortcuts for menu items. VisualWorks does not provide such

support from their tools.

VisualWorks provides support for three levels of user inter-

face reuse. A user interface can be parametrized to work with

any of a number of models. Inheritance can be used to let a

subclass add visual components to its superclass. One interface

can be used as a component in another interface. Window-

Builder only supports parameterization to use any number of

models.

WindowBuilder provides support for specifyhg response

to many types of user input. WindowBuilder tells you the

events that may occur, lets you type the name of the method

to invoke, and writes a stub for the method. For example,

you can specifi how to get the list for a list pane and what to

do when a selection is made in the list pane. VisualWorks

provides direct support only for specifying how to get the

list. Responding to selection has to be explicitly coded in Vi-

sualWorks.

VisualWorks directly supports dependencies between

different visual components in the same window. By making

more than one component interested in a single aspect, all

components respond when that aspect changes. Such depen-

dencies have to be explicitly coded in WindowBuilder.

THEIR OWN USE OF USER INTERFACE TECHNIQUES

It is always interesting to see how the creators of an interface

builder choose to use their tool, Let’s start with their similarities.

Similarities
Both interface builders:

. operate in build-only mode
15

■ GUIS
■ GISI?INGREALront;nticdfiomwe 14

“maxSize

initialMaxSize
‘?letrsmthe initial mm”mum sizeJor text entry. ”

’32

Mtilize

“private - Initiafi= the receiver.”
value := “.
selefion:= l@l.
motied:= false.
“super initiabe

DEFAULTS REPLACE ARGUMENTS

Defaults also can be used to diminish interaction complexity.

Commonly used values do not need to be passed as parameters;

they can become defaults instead. Developers need to provide a

way to override default vahres and still provide for the most

common situations in which defaults are an applicable value.

The typical way for developers to provide default arguments

is with additional methods that leave out key words. The

method fihde:, from GraphicsTool, calls fill:rule:color: with

the fill color set to the foreground color, which is a default. To

override the default, the message filkcolorxule: can be senk
16
filh aReetengIerule: aFtopConstant
Till e Rectanglein the receiver medium withforeColor using
altopConstant.”
self filh ailectangle rule: aRopConstantcolor foreColor

CONCLUSION

The important difference between constants and defaults is

their effect on reusability. Defaults, isolated in a method, are

easily overridden by subclasses, Default values can be modified

by instances if developers add enough support or can be used

to eliminate arguments and reduce interaction complexity. De-

velopers should always strive to evolve constants into defaults

to make their classes more reusable. ❑

Juanita Ewhg is a senior stafimember of Digitalk Professional Ser-
vices. She has been a project leader for several commera”al O-O sofi-
ware projects and is an expert in the design and implementation of
O-O applications, frameworks, and systems, In a previous position at
Tektronix Inc., she was responsible for the development of clan li-
braries for the first commercial-quality SmalltaIk-80 system. She can
be reached at 503.242.0725.
“ provide buttons for committing the interface to code and

for launching the interface

- use palettes that allow you to lay out panes or components

as if you were using a drawing tool

. will open a browser on the generated code

One vs. many windows
The most obvious user interface difference between the two in-

terface builders is the windows they use. WindowBuilder uses a

single window with dialogs as needed. When a dialog is open

the main window may not be used until that dialog is dis-

missed. VisualWorks makes use of a multitude of windows si-

multaneously, which some people call outboard windows. The

window being built (the canvas) is in one window. and the

outboard windows all operate on the canvas. Most, but not all,

outboards operate on the most recently selected canvas.

Both techniques (outboards and dialogs) address the issue

of clutter, The outboards allow users to decide how much in-

formation they want to see at once. However, this comes at a

price. The canvas and the outboards are not visually tied to-

gethe~ it is not always clear which windows go together in Vi-

sualWorks, or even which windows are part of VisualWorks.

Resizing control

In both interface builders, the window being built responds to
changes in the framing parameters of its panes or compo-

nents. If a pane or component is given ratios instead of abso-

lute positions, that pane changes shape as you change the ini-

tial size of the main window. WindowBuilder goes a step

further and provides before and afler silhouettes of your pane.

As you change the framing parameters for a pane, it shows

you a silhouette of your pane in the current window dimen-

sions and also shows you the dimensions of your pane in a

larger, resized window. This way WindowBuilder gives you

immediate feedback.

SUMMARY
The two interface builders are more similar than different. The

most important similarity is that they both fit nicely into the

Interface part of the ICM framework, which lets you reuse de-

sign between dialects. Afler all, reuse of design is more power-

ful than reuse of code. E

Greg Hendley u a member of the technical staff at Knowledge Sys-
tems Corporation. His specialty is custom graphical user interfaces
using various dialects of Srrtalltalk and various image generators.
Eric Smith is also a member of the technical staff at Knowledge Sys-
tems Corporation. His special!y is custom graphical user interfaces
using Smalltalk (various dialects) and C. The authors may be con-
tacted at Knowledge Systems Corporation, 114 MacKenan Drive,
Caqt NC 27511, or by phone, 919.481.4000.
THE SMALLTALKREPORT

MALLTALK IDIOMS

A short introduction
to pattern language

Kent Beck
T
his will be a departure from my code-oriented columns.

For the last six months I’ve been surreptitiously pre-

senting my material using a technique that I’ve been

working with for the past six years or so. This technique was

derived from work done in architecture (buildings, not chips)

to help people design comfortable spaces for themselves. The

time has come to tell you what I’ve been leading up to, so that I

can directly refer to these concepts in the future,

First, though, I have to tell you about the most thoroughly

useful little idiom I have seen in a long time. Ward Cunning-

ham and I recently got to code together on a nifi-y spreadsheet

project and he showed me a simple idiom for dealing with nil

values. It saves me a line in many methods and, since most

methods are three or four lines long, that’s a significant sav-

ings. Here is the implementation:

Object>>ifNibaBloek
‘seM

UndefmedObjectXfNiL aBlock
“aBlockvalue

Simple, huh? Here what happens when you use it, though.

You can transform code that looks like:

foo isNilifhue: [foo :=self computeFoo].
Afoo

into:

‘%o ifNiL[foo := self computeFoo]

The savings comes because itTrue: and ifFaLse: return nil if

the receiver is false or true, respectively. IfNib returns the re-

ceiver, which can be any object, instead. I have found ifNik use-

ful in many more situations than the one listed above. Try it! If

you find a clever use, send it to me and I’ll write it up.

The one complaint about ifhlik is that it is slower than “isNil

iffrue:” (or its grosser cousin “== nil it’llue:”), I claim that if you

are focused on anything but achieving the most readable code

possible in the middle 80’% of a development, you’re doing the

wrong thing. Besides, it wouldn’t be that hard to implement

~il: as an inline message, just like the other conditionals. If it’s

not that hard, maybe I should write it up some time. Or maybe

YOUshould!

Now back to our regularly scheduled column...

The problem to be solved is describing the intent behind a

piece of code to someone who needs to use it. There are plenty

of methods for describing how code works (even though most

programmers aren’t disciplined in using them), but describing

how code is supposed to be used is a black art. As the emphasis

on programming shifts from just running programs to refining

and reusing them, this is a problem of increasing importance.
FEBStUARY1993
As objects are supposed to be about reuse, describing intent is

of critical importance to us.

Donald Knuth has attacked the problem with what he calls

“Literate Programming.” He shares the insight that program-

mers ought to write programs for other programmers, not just

the computer. His solution is to make programs read like

books. When you read a literate program you are reading a

combination of prose and code. You can filter out the non-

program elements and run the result through a compiler to get

an executable program.

There are a couple of problems with literate programming

as Knuth conceives it. First, his literate programming g system is

implemented as a 1970s–style textual language. To write a lit-

erate program you have to know the programming language,

the typesetting language, and the extensions required by the

literate programming system. More importantly, the structure

of a literate program is fundamentally linear. It is intended to

be read from beginning to end. While this maybe appropriate

for a monolithic program like TeX, it does not address the

problem of describing the intent of an object library, which is

intended to be used piecemeal—sometimes just by instantiat-

ing objects, sometimes by plugging new objects into existing

frameworks, and sometimes by refinement.

What we need is a structure for intention-oriented infor-

mation that is flexible enough to convey a variety of informa-

tion at different levels, but structured enough to provide a pre-

dictable experience for readers. It has to be able to convey

process-oriented information but also describe programs

piecemeal. It has to describe both how a program is intended

to be used and how it works,

The solution I have been pursuing derives from the work of

architect Christopher Alexander, who has spent many years

seeking a way for architects to describe generic solutions to ar-

chitectural problems so that individuals can adapt these solu-

tions to their situations. The solution he found, called pattern

language, solves all of the problems listed above: It is piece-

meal, but also has large-scale structure; its essence describes

the application of a solution, but also relates how the solution

works; and it describes solutions at all scales, from urban plan-

ning to the size and color of trim in a house. His approach is

presented in a pair of books from Oxford Press: THE TIMELESS

WAY OF BUILDING and A PATTERN LANGLAGE.

PAllERNS

The unit of knowledge in a pattern language is a pattern. A

pattern encodes an adequate solution to a problem known to

arise in the process of building a system. A person should be
17

■ SMALLTALKIDIOMS
able to read a pattern and know:

● what problems need to be solved before this one can be

solved

“ what problem the pattern solves

I what constrains the solution to the problem

. what to do to the system to satisfy the pattern

“ what problems to solve once this one has been solved

Patterns have a consistent structure. Each has the following

sections:

. a name evoking the problem and its solution

“ a prologue summarizing what other patterns have to be

considered before this one is appropriate

“ a one-paragraph preamble describing the crux of the prob-

lem solved by the pattern

. a diagram illustrating the problem

● a short essay exploring constraints on the solution

“ one or two paragraphs describing how to solve the problem

. an illustration of the solution

“ an epilogue summarizing patterns that can be considered

once this one is satisfied

Several valuable traits are common to all patterns:

“ They always call for concrete actions, even if they are at very

high levels. For instance, a design-level pattern might call

for splitting one object into two to improve flexibility. A

coding pattern might help you give names to arguments.

. They include a complete description of the considerations

influencing the solution. Almost no documentation de-

scribes the forces acting on a decision, but it is precisely this

information that allows you to evaluate an object for useful-

ness in a particular context.

- They are illustrated with a simple diagram Alexander’s pat-

terns are remarkable for the degree to which their essence can

be distilled into a simple line drawing. The effective computer

patterns I have discovered also boil down to a little picture.

The word “pattern” takes several meanings in this context.

First, each solution represents a pattern of elements. The object

that uses an OrderedColletion has a specitic relationship with the

objects it references. Second, the constraints acting on the solu-

tion form a pattern. The need to conserve space tugs this way, the

desire for greater speed that way. Finally, and most curiously, are

common patterns of human behavior. The act of choosing an Or-

deredCollec+ion recurs many times and in many places.

PAllERN LANGUAGE

Patterns do not stand in isolation. The epilogue and prologue

sections of each pattern link it to several others. The result can be

seen as a kind of lattice, with problems that need to be addressed

first higher than those that can be considered later. Much of an

expert’s skill comes tiom knowing what to worry about up front

and what can be safely postponed. This process-oriented infor-

mation is oflen as valuable as the patterns themselves.

The patterns together form a language in the sense that the
18
patterns are terminal symbols, and the links between them are

the productions. You create well-formed sentences by consider-

ing a sequence of patterns in turn. The result is a folly formed

system. This is the primary difference between a pattern lan -

guage and a set of design rules (like the Apple Human Interface

Guidelines). The pattern language helps you create a system

with the desired properties, not just analyze existing systems for

the existence of those properties. A pattern language for good

design will lead you to create a system with high coherence and

low cohesion, not just describe the properties in isolation.

A complete pattern language for object-oriented program-

ming encompasses patterns at all levels. Broad patterns cover

issues like distribution of responsibility and control structures.

Subsequent patterns help use the right abstractions in a library.

Final patterns deal with variable naming, method naming,

breaking methods into smaller methods, factoring code into

inheritance hierarchies, and performance tuning.

CONCLUSION

No one has yet written a pattern language for objects like the

one outlined above. There is general agreement that the prob-

lem of communicating intent is critical to cashing in on the

promise of object-oriented programming. Researchers world-

wide have turned to pattern languages as a promising ap-

proach to the problem. Here area few I know abou~

. Ralph Johnson at the University of Illinois is writing a pat-

tern language for Hot Draw, a graphical editing framework.

“ Richard Helm and John Vlissides of IBM and Erich Gamma

of the Union Bank of Switzerland have been writing a cata-

log of “design patterns,” which capture common design ele-

ments of C++ programs.

*Bruce Anderson of the University of Essex is leading an

effort to compile an “architecture handbook.”

. Oscar Nierstrasz at the University of Geneva has been using

patterns to try to achieve reuse.

In subsequent columns I will explicitly use the pattern format

where appropriate to describe SmaJltalk idioms. I recommend

the study of Christopher Alexander’s work for those interested

in attacking the educational side of the reuse problem. I have

enjoyed studying the material both because of the obvious par-

allels between the pitfalls of professional architects and profes-

sional programmers, and because I am now far more sensitive

to my physical environment [and its effect on my life.

Architecture has the advantage (and disadvantage) of thou-

sands of years of history to mine for patterns. Programming is a

new enough discipline that we all have to invent new solutions

often. Collecting and disseminating these common patterns will

hasten the day we can get on to more interesting questions. As

you discover patterns in your own work please send them to me. El

Kent Beck has been discovering Snm[kalk idioms~or eight years at
Tektronti, Apple Computer, and MmPar Computer. He is also the
founder of First Class Sof?ware, which develops and distributes
reengheering products for Smalltalk. He can be reached at First Class
Sojhvare, P.O. Box 226, Boulder Creek, CA 95006-0226, by phone at
408.338.4649, fa 408.338.3666, or compusewe 70761,1216.
THE SMALLTALKREFOMT

■ MODULES continuedfrom pIWb

Figure5.

s

ADDING MODULES TO SMALLTALK

Where a normal Smalltalk class uses a Difion~ for its pool of

class variables, a module class uses a ModuleDifionary for its

domain. The ModuleDifionary class is similar to the SystemDic-

tionary class. Like the Smathalk system dictionary, each module

domain can contain shared objects, including other Smalltalk

classes. In addition, each module domain keeps track of the

names of the module class variables.

Each class contained in a module domain needs to know

what module contains it. For this reason, each class contained

inside a module domain is associated with an Encapsulated-

MetaClass rather than a MetaClass. The class EncapsulatedMeta-

Class extends the class MetaClass by adding a reference to the

module whose domain contains the encapsulated class.

Figure 5 depicts the classes changed to extend Smalltalk/V.

Rectangles with doubled borders indicate the new classes.
L
FEB
Smalltalk
\b I

AEz ‘etaclasszEncapsulated
MetaClass
.?’

INTERNATIONAL SYMPOSIUM &
EXHIBITION ❑ N OBd ECT

TECHNOLOGY

Y
METHODOLOGIES AND TOOLS

APRIL 22 & Z3,1993

FRANKFURT, GERMANY

CONTACT: +49.69 .5 Z.19. HZ

DBd ECT EXPO EUROPE
JULY 1 Z-1 6, 1993

LONDON, ENGLAND

CONTACT: ZIZ. Z74.9193

TOOLS EUROPE 93 DBd ECT EXPO
MARCH H–1 1 , 1993 APRIL 19–23, 1993

VERSAILLES, FRANCE NEW YORK, NEW YORK

CO NTACT:+3EI .1.45 .3 Z.5B. HD CONTACT:Z1 2.274.9135

RUARY1993
RESOLVING SHARED NAMES

Smalltalk methods use names that

start with lower case for private

names, including instance variable

names, method arguments, and

block temporaries. Smalltalk meth-

ods also can reference shared objects

whose names are capitalized.

The visibility of these shared names

depends on where they are located in

the system. Shared names can be

found in class variable pools, global

pool dictionaries, and the Smalhalk

system dictionary. During method

compilation, references to shared

names are resolved by searching dic-

tionaries in the fotlowing order

“ class variable pools of the class

and its superclasses up through

the class Object
“ pool dictionaries to which the class subscribes from the

Smalltalk system dictionary

- the Smalltalk system dictionary itself

Extending the visibility rules of the compiler is the key to

adding modules to Smalltalk. The Smalltalk system dictionary i

the enclosing domain for classes not contained in a module. As

such, it is also considered the system domain. Because a module

contains a name space in its domain, references to shared names

are resolved by searching dictionaries in the following ordec

“ class variable pools of the class and its superclasses up

through the class Object

- pool dictionaries to which the class subscribes in the mod-

ule domains enclosing the class up through the Smalltalk

system domain

. module domains enclosing the class up through the

Smalltalk system domain
00 PSLA’9S
SEPTEMBER Z6-UIZTOEER 1

WASHINGTON, DC

CONTACT:91 9.4S1 .4D00 I

T!
19

■ MODULES

I

L

Because these new visibility rules subsume existing rules, the

semantics of normal classes continue to be supported.

BREAKING AND ENFORCING MODULE ENCAPSULATION

Because modules enclose and encapsulate their private classes,

programming tools need a way to break the encapsulation of

the module to create new classes inside the module. For this

reason, a change has been made to class Class.

When a module class sends #doesNotUnderstand: aMessage,

the message selector is checked to see if it is a capitalized unary

selector that is the name of a private class inside the module. If

so, the message answers the requested private class from the

module. Otherwise, the message is dealt with using the existing

#doesNotUnderstand: behavior.

This revised behavior is provided expressly for the compiler

and development tools. This service breaks the encapsulation
20
of the module similar to the way #hstVarAti breaks the encap-

sulation of an object.

To enforce the encapsulation of a finished module, the

module can be closed by adding another version of #doesNo-

tUnderstand to the module class, overriding the one in class

Class. This can be accomplished simply by sending the message

#closeModule to the module class:

ModuleAcloseModule.

This forces other classes outside the module scope to use

the publicly defined interface to the module.

MODULE INTERFACES

The module that encloses a group of private classes can provide

either direct or indirect access to the services of those classes. If
Listing 1.

ClassFilerobjects are responsbile for filingSmalkalJ source code in and out of
sbeams, usually FileStrearm Thisexampleis derived fromthe SmalltaUr
ClassReader.It showshowprivate methods can be encapsulated in a module.

“Thepublic interface module class.”
Objectmodulesubclass: #CCassF1ler
instanceVariableNames:

‘privateSeLf’
cCassVmiabl~Namex”
poOIDicbOrraries:”!

‘Theprivate ClassFiierclass:
Objectsubclass #classFiler ix ClawFiler

inatanceVariableNames:
‘class‘

cCessVariableNames:”
pOOIDictiOntis: “ !

!ClassFii class methods !
fOrClass:atis

“tmswera new i-stance of a public ClassFiler
object.”

‘seMnew forclasx aClass!!

!CCassFilermethods !

fileIrrFrormastream
“Readchunk horn a.sbeam. Compileeach
chh as a method for the class described
by the receiver. Logthe source code of the
method to the change log.”

I sbeam I

stream:= Sources at 2.
&earn setToEnd.
privateSeCfinstanceHeaderOmstream.
privateSelffileIrrFrOrm&ream.
sheam neatChurdrPut:”; flush!

fileOukmethodNameOru&Stream
‘Fileout the named method for the class
describedby the receiver to aStream, in
chunk format.”
privateSellcheclrh methodName.
aStream cr.
privateSelfimtanceHeaderOrxaStream.
privateSeKfileOukmetbodliame On:aSixeam.
aStseamnerrtChurd@ut:”;cr.!

fileOutOrca.%eam
“Fileout all the methods for the class described
by the receiver to aStream, in chunk format.”
astream cr.
privateSelfinshrceHeaderOrr aStream.
privateSeHfileOutMethodsOmaStieam.
aStieam nextChru-d@uk”;cr!

forrlass: aClaw
“Answerthe receiver after attaching a new
private instance of the private Class.Herclass.”
privateSeLf:=ClassFilernew setl%ss: atis. ! !

!classFiierClmsFilerclass methods ! !

!ClassF1lerClassF1lermethods !

checkFoc methodName
‘%r@ that the class describedby the receiver
contains the named method.”
class methodDiciimrq

at: methOdNmne
MLwent: [

‘seti error
methodhme asString,
‘is ndssing from’,
class printSting

1.!
fileInFrorn aShesm

“Readchunks fromaStreamuntil an empty
churrl (a single bang’!!’) is found. Compileeach
chmdras a method for Lheclass described
by the receiver.”
I aStrinq result I
~ ash-g:= aS&eamnextChunk,

ashilrg iasrrrpty
1
whlleFalse:[

result:=class compile:aSbing.
result not.MlifTme: [

result value sOurceSbing:aString

l.!l
fileOukmethodlbme On:aSbeem

“Fileout the named method for the class
describedby the receiver on aStieanr, in
chunk format.“
aStieam m; nextChunkPuti (

class sourceCodeAtimeLhodNarne
).!

fileOutMethodsOn:asheam
“Fileout all of the methods for the CCMS
describedby the receiveron aStieam?

class selectors asSortedCollectiondo: [:selector I
self fileOut selector OruaStream

1.!

‘Writea header which identifies the class
desaibed by the receiveron aStream.”

“Notethat filing in hanslates doublehangs to
single bangs arrdfiling out translates single
bangs into double bangs (like those used here).”

aStiearn
cr; nextPuk $!!;
nexLPutAllclass print.i%ing;
space; nextPutAlb ‘methods!!‘!
THE SMALLTALKXEPOnT

the module grants direct access to an enclosed class by publish-

ing it, then all the services of that class are directly available.

A module can provide direct access to an enclosed private

class by supplying an accessing message as part of the public

interface to the module. Suppose we want to give direct access

to SubchssB in Figure 3. We could give ModuleA a class method

named #SubclassB that answers SubclassB:

!ModukAclass methods !
SubclassB

“PublishSubclassB.”
“SubctassB!!

However, modules provide their greatest advantage when

they hide or limit the visibility of their internals. This visibility

is determined by what information (objects) is revealed by the

66
Extending the visibility rules of the

compiler is the key to adding modules

to Smalltalk.
99

module class and its instances (if any). The module forms the

public interface to the classes inside the module domain.

COMPARISONS WITH OTHER WORK
Several other works 3,5,6suggest that modules are not first-class

and have no direct representation in an active system of ob-

jects. They suggest that modules only serve as name spaces for

controlling the visibility of shared names. This article has pre-

sented a different viewpoint, advocating the inclusion of mod-

ules as a special kind of class.

Using a responsibility-driven approach,s,T the design of an

object system can achieve a high degree of encapsulation and

reusability. Classes help to maintain encapsulation when they

limit access to their variables. Modules can help to maintain a

higher degree of encapsulation by limiting access to the private

behavior of subsystems.

The Law of Demeters suggests that object systems can best

realize the benefits of reuse by strictly limiting the visibility of

objects to those other objects in the system that require such

visibility. With classes and modules, visibility is controlled by

the system designer.

CONCLUSION
This article shows how modules can be made first-class within

Smalltalk systems. Modules provide a natural way of packaging

object systems and give object system designers more options

for controlling the visibility of a system’s implementation de-

tails. Modules reduce the possibility of naming conflicts be-

tween separable systems of objects.
FEBMJARY1993
Just as classes forma hierarchy for the inheritance of struc-

ture and behavior, modules can be used to form a nested hi-

erarchy of name spaces (domains). The organizing principles of

classes and modules are orthogonal and complement each other.

Classes can be imported into modules by adding a private

subclass of the same name to the module domain. However,

given the new visibility rules for shared names, this kind of

transparent subclassing maybe the only reason for explicitly

importing classes from outside a module,

Classes can be exported from a module by providing a mes-

sage for accessing the class by name. However, this kind of rev-

elation on the par-t of a module is discouraged because it leads

to dependencies on the module’s internals.

SOURCE CODE AVAILABILITY
Modules may be added to Smalltalk with relatively few

changes. Two new classes and some changes to various core

Smalltalk classes and the front end of the compiler provide the

essentials for creating module classes. A tool for browsing

module domains is included. This shows one way that support

for modules may be integrated into the programming tools.

The source code for adding modules to Smalltalk/V is avail-

able through the American Information Exchange (AMIX). EJ

References
1

2

3

4

5

6

7

8

Wirth, N. PROGRANIMING IN MODUI.A-Z, TEXTS ANLI.Moixo-

GRAPHS IN COMPUTERSCIENCE,2nd Edition, David Gries,
Springer-Verlag, Berlin, 1984.
Booth, G. SOFTWARE ENGINEERING WITH ADA, Benjamin/

Cummings, Menlo Park, CA, 1983.
Wirfs-Brock, A. and B. Wilkerson. An overview of modular
Smalltalk. 00PSLA 198.9PROCEEDIN-GS,September 1988,
pp. 123-134.
Rumbaugh, J. et al. OBJECT-ORIENTEIIMODELINGAND
DESIGN, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.
Wirfs-Brock, R. B. Wilkerson, and L. Wiener. DESIGNINGOD-
JECT-OSUENTEDSOFTWARE,Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990.
Szyperski, C.A. Import is not inheritance, why we need both:
modules and classes. ECOOP 199z PROCEEDINGS,June/July
1992, pp. 19-32.
Wirfs-Brock, R. and B. Wilkerson. Object-oriented design a
responsibility-driven approach. 00PSLA 1989 PROCEEDINGS,
October 1989, pp. 71-75.
Lieberherr, K.L. and L Holland. Formulations and benefits of
the law of Demeter. SIGPLAN NOTICES, v24#3, March 1989,

PP. 67-78.

Nik Boyd has been developing object systems since 1987. Since Jan-
uary 199o, he has been with Citicorp Transaction Technology Inc. in
Santa Monica, California, where he is currentlya PrincipalMember
of the Technical Stafi His expen”encewith 00P includes work with
PARTS Workbench, Smalltalk/Vfor PM, Mac, Windows, and DOS,
and Objectworks/Smalltalk v2.5 for DOS and v4.Ofor Windows. His
research interests include instance-centered and class-centered object

systems, as well as took and techniques that support object-ori”entd
software engineering. Nik may be contacted via internet e-mail at
741 70.2/71 @ CompuServe.conr or through the American Informa-
tion Exchange (AMIX).
21

L
Product Announcements are not reviews.They are abstracted tlom press releasesprovided by vendors, and no endorsement is implied.

Vendors interested in being included in this feature should send press releasesto our editorial of17ices,Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario KIS 2H4, Canada. I

—.—..- — .J
The Smalltalk Interface to Objective-C makes Objective-C ob-

jects look like Smalltalk objects. The interface is based on the

simple concept that every remote Objective-C object can be

represented by a local Smalltalk proxy object and every Objec-

tive-C class can be represented by a Smalltalk instance. Mes-

sages sent to a local Smalltalk proxy object are transparently

forwarded to the actual Objective-C object it represents and

the results are returned as Smalltalk objects. If the return value

is an object ID, a proxy for that object is returned so that fol-

low-on messages are also forwarded.

To the Smalltalk developer, there are just Smalltalk mes-

sages being sent to Smalltalk objects. To the Objective-C devel-

oper, there are just Objective-C messages being sent to Objec-

tive-C objects. The net result is that the two languages are very

smoothly integrated. Developers no longer have to choose be-

tween using Objective-C or Smalltalk. They can use both lan-

guages together, each where it is best suited.

BerkeleyProductivelyGroup,35032MaldstoneCorsrLNewark,CA

64550,510.793.6066,fax: 510.765.6077

The Object People Inc., a leading international provider of

training, mentoring, and project development services in ob-

ject-oriented technology, has expanded its educational facilities
22
and launched a new internship program for Smalltalk pro-

grammers. The company specializes in the design and develop-

ment of custom Smalltalk applications.

The new training facility allows the firm to offer an ex-

panded schedule of open enrollment courses in SmalltalkW,

Objectworks\Smalltalk, and object-oriented concepts, analysis

and design. In addition, the firm’s Objectworks\Smalhalk

courses now include the new VisualWorks application devel-

opment environment t recently introduced by ParcPlace. The

Object People is also offering courses in PARTS, Digitalk’s new

“visual development tool” for 0S/2.

The new internship program is designed to fast-track the

development of accomplished Smalltalk programmers. Interns

will have the opportunity to work on their own applications

while having immediate access to assistance and guidance from

experienced Smalltalk developers. Internships are flexible in

duration and are spent at The Object People’s educational fa-

cility in Ottawa. The program is available to both Smalltalk/V

and Objectworks\Smalltalk developers, Participation in the

program is strictly limited in view of the intensive one-on-one

interaction required to make the program successful.

The Object People Inc., 506-665 Meadowlands Dr., Ottawa, Ontario,

Canada, K2C 3N2, 613.230.6667, Fax 613.235.6256
.

Excerpts fi-om industry publications
DATABASES

. . . Is the decomposition of the Open 00DB system into mod-

ules arbitrary, or will other efforts to build a system with simi-

lar functionality result in a similar factoring? It is too early to

report that such experiments necessarily result in similar fac-

torings, but the Open 00DB’s factoring into modules is very

similar to the application integration framework being devel-

oped by the industrial consortium Object Management

Group. . . . Thus, the OMG and the Open 00DB architectures

are almost isomorphic. It is interesting that one is viewed as an

application integration framework architecture and the other
as an OODB architecture. . .

Architecture of an open otject-otiented database management

system, David L. Wells, Jose/A. Blakeley,

and Craig W. Thompson, COMPU7ER, 10/92
. . .The power of objects is in their robustness, extensibility,

flexibility, and modularity. Actually I wish engineers did not

have to know or care about objects. Except as interesting

metaphors, they are not useful to any one but computer pro-

fessionals. But we are not yet able to reach that level of infor-

mation hiding. If you are selecting an engineering database

management system today, it probably should be object-ori-

ented—and if it isn’t, you should know why not.

What’s the big deal about objects?, Joel N. Orr,

COMPUTER-AIDED ENGINEERING, 11/92

DESIGN
. . .Although it’s nice that operating systems are becoming ob-

ject-oriented for the user, there’s no doubt that maintaining

backward compatibility with a straight C API brings with it an
THE SMALLTALKREPORT

—.. .

AmericanManagmentSystems, an international consult.
ing and software developmentfum, is experiencing con-
tinued growrh. AMS dssignsand developsbreakthrough

;$l%:;o::fl:Ki$.h’i- ‘howh ‘k ‘“’”e

We currently have numerous positions available for 00
professionals, all of which olkz excellenrgrowth opportu-
nities.

● SMALLTALK or C++ designers and develo era
Jof small, medium and huge scale systems un er

os/2anduNIx.

To fti our more about your future with a reco
AR::leader in ap lied technology, please send or F

resumero: !4e arsO’Neil, AsnericanMarsagesnent
Systesnh 1777fi. KntStie~Alin#m,VAZ2209.
FAX: (703)S41-6456.

AMEBICAN MANAGEMENT MmTEMsl mc.
rkd~ “ zmdwMmDlv.

We are a rapidly growing

consulting company with

many state of the art openings.

+

LONG TERMASSIGNMENTS

HIGHEST COMPENSATION

SMALLTALK80

w
UOMPUTER CORPORATION

12[2 Avwsue of the Americas. New York, NY 10036, 9th Floor
212) 840-8666 ● (800) 843-9 [19 “ Fax (212) 768-7188
inherent complexity. Object management needs to be inte-

grated much more smoothly into the operating system services

and made to fit naturally with object-oriented languages. In

effect, you want the operating system support for objects to be

as transparent as support for memory allocation and dealloca-

tion, file services, and so on. The approach must be sufficiently

general that it can accommodate a range of languages, not just

C++ and Pascal. There will always be a place for interpreted

languages such as Smalltalk and Actor, and I hope that future

object-oriented operating systems will make cross-language

sharing of objects a reality.

Po~morphism unbound, Zack Urlocker,

WINDOWS TECH JOURNAL, 10/92

OOP is inclusive, just as structured programming was two

decades ago. It differs, however, from structured programming’s

traditional association with functional design methods such as

functional decomposition, dataflow diagrams or data structure

design. In 00P, objects are first categorized into classes and or-
FEBRUARY1993
ganized hierarchically according to their dependency and simi-

larity. Each class comprises a set of attributes reflecting the ob-

jects’ generally static properties and a set of routines (in

Smalltalk, methods) that manipulate these attributes. Then rela-

tions between classes, such as inheritance, are designed. . .

Object-oriented computing, David C. Rine and

Bharat Bhargava, COMPUTER, 10/92

.. .“In the object world you start by defining classes,” explained

Lanny Lampl, a technical consultant in Levi Strauss” Informa-

tion Resources Group. “YOU have to parcel out the responsibil-

ities of each object and decide how classes will interact with

each other.” Carrying out an object-oriented analysis turned

out to be harder than switching to SmallTalk. “The syntax of

the language is not the big thing,” Lampl said. “The important

thing is learning how to think about objects.”

Levi Strauss cuts c/ient/serverpattern, Jean S. Bozman,

COMPUTERWORLD, 11/16/92
23

Where can you find the
best in object-orientedtraining?

Thesameplaceyou found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V

Whetheryou’re launching
a pilot project, modernizing
legacy code, or developing a
largescaleapplication, nobody
elsecan contribute such inside
expedise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
award-winningpmkt.s, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you’ll learn from a

reduce your learning curve,
and you’!l meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalkk training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Sotiare”).

Weknow objects and
Smalltalk7Vinsideout because
we’ve been developing real-
world applications for years.

The result? You’llabsorb
the tips, techniques and
strategies that immediately

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM5
International Alliance for
AD/Cycl+lBMk software
development strategy for the
19905. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk71/help
you get the mostpowerout of it.

boost your productivity You’ll

B,~

	By Article Title
	A quick look at two interface builders
	A short introduction to pattern language
	Characterizing your objects
	Constants, defaults, and reusability
	Copying
	Modules: Encapsulating behavior in Smalltalk

	By Author Name
	Beck, Kent
	Boyd, Nik
	Ewing, Juanita
	Hendley, Greg
	Knight, Alan
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Putting it in perspective
	Smalltalk Idioms

