
September 1991 Volume 1 Number 1

C

..
,,.
THE

OMMERCIAL

EVOLUTION

By AbdtdK. Nabi
-; ~ ver the last decade, Smalltalk has made a dramatic evolution from a vi-
.,,: :?.$A \ sionary software research project into a commercial environment that is
~ ~,.,:: ;:s ,$, spearheading object-oriented programming, the next step in software

technology.

The focus of this article is the evolution of commercial Smalltalk from the early market

to today’s commercial success and what the future may hold. In addition to the evolution of

Smalltalk, the changes in the needs and demands of software development that contributed

to the spread of Smalltalk in commercial application development will be discussed.

THE EARLY YEARS OF SMALLTAIX ~~

Xerox, in the interest of broadening the Smalltalk base, licensed Smalltalk to several hard-

ware vendors (Apple, Hewlett-Packard, and Tektronix) and one startup software vendor

(Softsmarts). This groundwork led to the creation of a Smalltalk marketplace.
Xerox sold the Smalltalk environment bundled with its proprietary graphics worksta-

tions, which were quite expensive. These workstations pioneered the idea of high-perfor-

mance, graphical, interactive desktop computers. Xerox used Smalltalk internally to de-

velop custom document and information management applications. One major

application created in 1982, was a desktop publishing system for The New York Times. The

next year, Xerox developed Analyst, one of the first and best known commercial Smalltalk

applications.

The Analyst is an integrated information management system incorporating document

processing and layout, a spreadsheet, charting, database, hypertext, links, and a world map.

The embedded object architecture, level of integration, and seamlessness of the applica-

tions is outstanding even by today’s standards. Analyst’s capabilities are unmatched by any

other software package, partly because Analyst is written in Smalltalk. Analyst is still be-

ing sold as a commercial, end-user application by Xerox Special Information Systems.

To put the early years of Smalltalk at Xerox in some perspective, Smalltalk-80 was cre-

ated about the same time the IBM-PC was introduced. The Analyst was introduced two

years before the Apple Macintosh.

One of the early users of the exotic Xerox workstation and the Analyst were US intelli-
gence agencies. These agencies required the horsepower, graphics, and high-performance

development environment that the Xerox workstation and Smalltalk provided to create
interactive analysis workstations. This helped Smalltalk emerge from the lab into the mar-

ketplace. However, Xerox did not market these workstations and Smalltalk-80 to the gen-

eral software development market.
Tektronix was also an early pioneer of commercial Smalltalk, delivering its first

Smalltalk in 1985 (which, like Xerox’s, ran on a proprietary workstation). Unlike Xerox,

Tektronix was actively marketing the environment as a development tool, and at a con-

siderably lower cost (since by 1985 processors like the 68000 that Tektronix used made

low-cost workstations possible). Tektronix also used Smalltalk to develop custom software

for their workstations (such as a front-end for VLSI test equipment). Although successful

continued on w dune>.
/’

Edmors
John Pugh and Pad White
CarletonUniversity&The Object People

SIGS ~BLKNIONS

Advisory Board
Tom Atwood, ObjectTechnology
Grady Bcmclr,Rational
George Boaworth, Digitalk
Brad Cox, 3nformstionAge Consulting
Chuck Duff, TIWWMewater Group
Adele Gddbarg, ParcPlaceSystams
Tom Love, Consultant
Meilir Page-Jones, WaylandSystams
Bertrend Meyer,ISE

P. Michael Seashols, Versa.t
Bjarrw%roustrup,AT&TBellMS
Dave Thomas, ObjectTechnology

THS%fAUT/WC REPORT

Ediirid Board
Jim Anderson, D~italk
Adele Goldberg, Par&lace Systems
Read Phillips, KrwwiadgeSystemsCorp.
Wlke Taylor, htstsntiations
Deva Tbrnas, CbjactTadmolowkrtamatiom

Cdurtmists
Juanke Ewing, bwtsntiations
Greg Hendley, f(nowfedgesyssamsCOW.
EdKKmas,Allen-Bradley
%.sanrte Skublica, ObjectTachnologj
Eric Smii, f(nowladgaSystemsCorp.
Allen Wirt%Brock, Instantiaticms

Rebecca Wirfs-Brock, Tektronix

9(3S Publiions Group, Inc.

Richard P. Friedman
Grouppublisher

AR/Production
Eliae Varian, ProductionManager
Susan Cuillgan, CreativeOiractor

Elk&Mth A. (.&w, Pro4c@r Ed*or
Caren Pohrer, DasktopE@signet

Circulation
Dieneaedwey,cirdaticm Busha5sMaIragar
Kathleen Canning, FulfillmentManager
John Schrieber, CirculationAadstent

Marketing/Advertising

James Kavetea, Mvartising Diractor
Diane Morarrcie, Amountfiecutive

Gamidine%hsfren, A&@singsa!eaAssbtar
Bud Keegan, PromotionManagar

Adminiatr*iorr
t)avid C%&terpaul, Accounting
suzerrneW.mrula@ah,colrferenceMenage
Jennifer Fiachar, As&tent to the Publiier
Laura Lea Taylor, AdministrativeAssistant

Marguerite R. Monck, Ganwal Manager

2

John Pugh Paul White

EDITORS’

CORNER

Ill
elcome to the first issue of The .hudtdk Report! The Smalltalk community has long yearned

for its own publication. With your help, The .%udltcdkReportwill fill the void.

The use of Smalltalk within industry is expanding rapidly. Only industry insiders know

many of the exciting developments that are taking place and, as Abdul Nabi points out in his

lead article, they are not permitted to share them. Many companies believe it to be a strategic

advantage to be using Smalltalk and don’t wish their competitors to be aware they are using

it. So, the language that started it all (with apologies to Simula) is now seen by many as the

development system of choice for the 1990s. As our good friend Dave Thomas (paraphrasing

Winston Churchill) is quoted as saying, “Smalltalk is the worst possible programming envi-

ronment — until compared with all other programming environments.”

Our aim at the The .%rdtdk Report is to support the growth of Smalltalk as a development
vehicle for object-oriented systems and to serve as a focal point for sharing ideas and experi-

ences gained from the employment of Smalltalk technology in areas as diverse as real-time

embedded systems and financial systems. By publishing nine times a year, we will be able to
bring you timely information on new software releases of all dialects of Smalltalk, third-party

products, class libraries, books, industry news, etc. We will addressall aspects of application

development with Smalltalk, e.g., project management, analysis and design, development

tools, language issues, metrics, performance issues, and education and training.
In the lead article of our premiere issue, Abdul Nabi takes us on a tour through time —

from the early days of Smalltalk at Xerox PARC to current implementations and applications.

He discusses the issuesfaced by Smalltalkers in the past, problems that have been solved, and

the challenges that lie ahead. He explains how, and why, the commercial evolution of

Smalltalk has unfolded in the manner it has and speculates where this evolution will lead.
In this first issue, we also introduce two of our regularly appearing columns. In “Getting

Real,” Juanita Ewing discusses the issuesof developing industrial strength applications with

Smalltalk. In her first column, she addressesthe pros and cons of employing class ownership

as a vehicle for code management within a programming team. In their GUI column, Greg

Hendley and Eric Smith tackle the topic of graphical user interfaces. In the first installment

of a two-part column, they discussgiving application windowsdialog box functionality in
Smalltalk/V PM. In future issues,watch out for other columns; on design from Rebecca Wirfs-

Brock and on “Smalltalk with Style” from Ed Klimas and Suzanne Skublics.

Our authors and columnists are willing to stand up and be counted, expressing their own

personal, sometimes controversial, opinions. To make this forum truly effective, we encourage
you to “jump into the foray” and let your ideas be heard. Use our “Messages”corner as a soap-

box to vent your own opinions. In this issue, Allen Wirfs-Brock laments the absence of a con-

ference where Smalltalk users and developers can get together and share their work.

Also in this issue: Charles Rovira suggestsenhancements to the compress changes facility

in Smalltalk/V Windows, Ralph Johnson describes the Typed Smalltalk project at the Uni-

versity of Illinois, and Jim Salmons reviews the WindowBuilder/V product from Acumen.

The SnudMk Reportis written by Smalkalkers for SmalltalkeH we encourageyou to contribute.

Enjoy the first issue!

-L L. R-& Q \ “.All—. —-
John Pugh and Paul White

Editors
T(I. Smalltalk ReyIrc (ISSN* 1056.7976) IS p.hbsh.ed 9 cmm a year, every monrh .XCCPIfor the Mar/Apr, July/Auz, and Nmlilc combmed US..S. P.bhshed by CCOT, Inc., a member O(the SIGS Publicacmm

Gm.p, 588 Broadway, New York, NY IC012 (2 12)274-C640. 0 Copyright 1991 by CCQT, lnc All rwhts reserved. Reprcductmn of thts rnaten.l by .Iccmontc trammisston, Xerox or any other methcd wdl be treared as

a wdlful viol.mm of the US Copyrigbr Lw and M flatly probibtced. Mated may he reproduced wwh express rmntssion from rhe p.bl,shers Maded Fmsc Class. S.bscriptmn rat= I year, (9 tss.=) domest~c, $65, For-

e,en and Canada. $50. Smde . ..! mice. $8.00 POSTMASTER: Sad addrms ‘ham, ad s.bscnmio” orders tw TIIE SMA.LLT.iLKREIORT, Subscr&r %wces, 12ept. SML,P.O.h. 3CO0,Oawll.,NJ 07834 Subm,t

.wucles m the Fdttom at 91 Second Avenue, Ottawa, Ontario K 1S 2 H+, Canada.

. - “ ‘“
THE SMALLTALKREPORT

Fastest PathtoPlatform Indepdem ●

Macintosh II
family

4

1WIN
1

.-nW,....,. ...
!

Sun SPARC
DECstation ‘———J

Windows 3.0- runs, just by makmg

compatible selections in the editor.

leap free of platform limitations and deliver full-color
GUI applicti”ons in half the time...wiih Tigrem.

Introducing an irmedible lets you build customized, color

OOP brwakthmuglx A complete

development environment that lets
you create object+riented, multi-

user applications that run across all
major platforms and networks. And
lets you deliver them up to 80%
faster than ever before.

T@re’” Programming Environment,

running with Objectworks@ \
SmaMalk Release 4, offers a set of
tools that turns a major hassle into
a quick drag. Literally. Because it

GUIS just by dragging and dropping,
You’ll choose from a large library

of user interface components. Objects
like scrolling text fields, check boxes,
radio buttons and more.

Drag them from the palette onto
your application screen. Move and
resize them as often as necessary.

No recompiling needed. And
virtually no code to write. Tigre’s
Interface Designer automatically
creates the Smalltalk GUI for you,

TIGRE OBJECT SYSTEMS, INC.

Give the interface your unique
imprint by clicking selections to

change color, font, borders, icons, etc.
And you can add your own custom

GUI creations to the library for reuse.
Use Tigre’s multi-user, object-

oriented database manager, to
provide network-compatible access

to text, images, icons, sounds – any
type of stored data.

Phone now for a complete package
of information on T~e. There’s never
been a faster track to freedom.

Call: (408) 427-4900, Fax: (408) 457-1015
3004 Mission Street, Santa Cmz, CA 95060

4.

■ EVOLUTION OF SMALLTALK
continued from page 1 . . .

in-house, Tektronix, primarily a test equipment manufacturer,

had difficulty marketing their Smalltalk workstation. By 1985,

developers and organizations were standardizing on main-

stream personal computers and workstations; thus, the appeal

of a custom workstation was limited. However, Tektronix de-

veloped a large group of people experienced in developing and

marketing Smalltalk and object-oriented development that

would later seed several successful companies in the Smalltalk

and 00P market.

Digitalk introduced Methods, a text-based Smalltalk, in

1985, and then Smalltalk/V, a graphics version, in 1986. The

most significant feature was that Digitalk’s Smalltalk ran on

the popular IBM-PC. By providing a low-cost Smalltalk for

the IBM-PC, Digitalk expanded the base of Smalltalk users,

many of whom were building prototypes or custom applica-

tions. The success of these early developers spread the use of

Smalltalk as a commercial development environment.
In early 1986, a company by the name of Softsmarts

brought the first Smalltalk-80 for the IBM PC/AT to the mar-

ket. Like Digitalk, the Softsmarts version proved that

Smalltalk could run on low-cost personal computers. Softs-
marts was also the first Smalltalk-80 to incorporate color

graphics and external language support. However, the PC

marketplace for Smalltalk became dominated by Digitalk with

lower-cost versions of their Smalltalk/V product (which in-

cluded the same feature set and ran on eight-bit PCs).

About the same time, the group within Xerox PARC that

had created Smalltalk wanted to spin off a company that

would focus on marketing Smalltalk. From that drive, Parc-

Place Systems was born. The first few years were spent creat-

ing the infrastructure of the company and creating portable

commercial versions of Smalltalk for PCs, Macintoshes, and

UNIX workstations.

Although the early and mid- 1980s laid the groundwork for

the future growth of Smalltalk, both the state of the computer
industry and Smalltalk itself prevented the widespread accep-

tance and use of the language.
One perception of Smalltalk that remains to this day is

that it performs poorly compared to standard languages. Much

of the perception is based on the fact that early versions of

Smalltalk were interpreted and included automatic storage

reclamation (garbage collection). What is interesting to note

is that even early versions of Smalltalk performed quite well

(most people made performance statements without direct ex-

perience). Much of this performance is based on the fact that

Smalltalk is best suited for complex, interactive information

analysis and management applications. In simpler applica-

tions, the overhead of Smalltalk becomes a factor that makes
it uneconomical for those applications. As the application be-

comes more interactive or complex, the power of Smalltalk

becomes a key benefit in both development time and cost.
Also, performance can be improved since the lower-complex-

ity code that is created by using Smalltalk can be optimized
PUBLISHER’S
NOTE

II ~n’t it time for an independent publication devoted

Iexclusively to Smalltalk users”is a question I’m fre,
quently asked at conferences. Even though Smalltalk

is celebrating its tenth anniversary this fall (since Byte’s
landmark issue lauding the language) there’s been a sur-
prising paucity of editorial coverage devoted to Smalltalk
in any publication since.

We at SIGS Publications have seen a recent resur-
gence in the interest in and usage of Smalltalk. It re-
mains the archetype of a pure and fully integrated 0-0
development environment as 00P explodes in the
1990s. According to Ovum’s Object TechnologySource-
book, Smalltalk sales (in the US and Europe) are cur-
rently $21 million and are expected to double to $40
million by 1993 — making it one of the fastest-growing
languages.

The time has come for an independent forum de-
voted exclusively to Smalltalk users’ informational
needs. The .MutlkalkReportwill publish over 200 pages of
need-to-know information on Smalltalk during its first
volume year. Our editorial mission, simply stated, is to
stimulate, track, and evaluate Smalltalk usage on a
worldwidebasis.

Welcome to the premiere issue. It represents hun-
dreds of hours of thinking, writing, and research. By
reading The Wu&dk Report,you can quickly benefit by
gaining access to nowhere-else-found techniques, advice,
ideas. source code, and “insider news” — a veritable
goldmine of consolidated information. You can rely on
what you read in The Srnalltdk Reportto be timely and
accurate. We rxrblish it with the same editorial integrity-.
as we do our sibling publications, the .Jounudof Object-
OrientedProgramming,Object Magazine, The C++ Report,
the Hotline on Object-Oriented Technology,and The Inter-
national00P Directory.

1encourage you to contact us regardingyour opinion
of this issueand what you’dlike to see in upcoming issues.
Your feedback is valuable to us as the newsletter evolves.

I invite you to plug into the insiders network of
Smalltalk developers by becoming a Charter Subscriber.
Join our family of well-informed readers. We look for-
ward to serving your informational needs. Enjoy the
premiere issue!

Sincerely,

Richard P. Friedman
Group Publisher
THE SWILLTALK REPORT

5,
more easily than the large, complex amount of code created in

traditional languages.

Another major obstacle to the widespread use of Smalltalk

was a lack of acceptance of both graphical user interfaces and

the object-oriented paradigm. Most computing was being

done on either terminals or text-based PCs. Graphics were re-

served for video games and exotic applications. Much of this

was due to the fact that high-performance hardware and high-

resolution graphics displays were not commonly available.

PCs were being used in data entry, or simple analysis, and not

to provide highly interactive interfaces or to solve complex

problems. Thus, the range of applications that Smalltalk is

ideally suited for were not being widely developed.

Many early projecrs done in Smalltalk were either proto-

types or systems that evolved through many iterations. 0-0

analysis and design methodologies along with good implemen-

tation strategies were still forming (many of these early pro-

jects contributed to this process). However, in comparison to

traditional development languages, Smalltalk appeared cava-

lier, undisciplined, and immature. The speed perception and

lack of object-oriented analysis and design methodologies cre-

ated the perception that Smalltalk, although good for rapid
prototyping, could not be used in a disciplined way to create

robust, high-quality, commercial applications.

During the middle to late 1980s, desktop computing and

GUI-based interfaces became accepted. Smalltalk was behind
in integrating with the standard GUIS that were emerging,

continuing to provide its own nonstandard GUI. Also,

Smalltalk was a closed language, not allowing interfaces to

other languages or libraries. However, now all versions of

Smalltalk from both ParcPlace and Digitalk integrate with the

standard windowing systems and external languages. As a re-

sult, Smalltalk provides one of the best environments for de-

velopment of host-based applications (given the complexity of

GUI programming interfaces).

Another major block was the lack of Smalltalk developers,

tools, training, and support services. These were areas of the

market that had to grow to make Smalltalk a viable commer-

cial development environment.

SMALLTALK TODAY

Over the last five years, the Smalltalk industry has grown and

most of the hurdles have been cleared. Smalltalk has become

more widely used in commercial software development. This

is due not only to changes in the Smalltalk environment it-

self, but also to the software development marketplace as a
whole.

Changes in the overall marketplace have played a key role
in the success of Smalltalk. Time-to-market, adaptability, and

cost control have become increasingly crucial factors in over-

all business success. It is this business environment that has

accelerated the acceptance of obj ect-oriented technologies

and Smalltalk. Information systems managers today are more
interested in solutions than in the technology employed.
VOL. 1, No. 1: SEPTEMBER1991
Many clients we work with that would have never considered

Smalltalk as a development and delivery language a few years

ago are now pursuing aggressive Smalltalk strategies.

The personal, highly interactive, graphical environment

that Smalltalk pioneered is now accepted and several GUIS

are widely in use. One result of the acceptance of GUIS is a

further increase in software complexity and development

costs. Developers now have to deal with the large library of

APIs that GUI and operating system have. Actually, the

Smalltalk windowing system, which has been considered

difficult to use, looks absurdly simple when compared to sran-

dard windowing system libraries.

66
Many clients . . . that would have

never considered Smalltalk as a

development and delivery language

a few years ago are now pursuing

aggressive Smalltalk strategies.
99

Both ParcPlace and Digitalk have introduced versions of

Smalkalk that access and use the host GUI and APIs. When

there were no standard windowing systems, Smalltalk provided

its own. This, of course, was unacceptable once standards for

windowing systems were established. Both Digitalk and Parc-

Place versions of Smalltalk run using the host windowing sys-

tem and allow access to the host API and external language

functions (i.e.,Windows and Presentation Manager DLLs).

One of the main differences between Digitalk and Parc-
Place’s versions of Smalltalk is how they provide host integm-

tion. Digitalk’s Smalltalk V Mac, V Windows, and V PM pro-

vide tight integration with their host and use the host

environment controls and libraries (windows, menus, buttons,

and so on). ParcPlace’s Objectworks/Smalltalk Release 4 uses

only the higher-level and portable host services (windows,

fonts, and graphics) to provide image portability across plat-

forms and operating systems. Objecrworks/Smalltalk does al.

low the developer to access the host’s controls and libraries at

the expense of portability.

The amount of computing horsepower that sits on the aver-

age desktop today exceeds the horsepower that came with the
original $100,000 Smalltalk machines from Xerox. This allows

the user to use the system in an interactive graphical envircm-
ment to solve increasingly complex problems. However, the

cost and development time of software using traditional meth-

ods has not kept pace, leaving idle MIPS on the desktop.
Smalltalk allows an effective, efficient, and cost-effective way to

develop interactive applications that solve complex problems.

■ EVOLUTION OF SMALLTALK

6.
Both Digitalk and ParcPlace have also improved perfor-

mance of the system by switching from a purely interpreted

environment to executing compiled code. The performance of

garbage collection has also been increased. In a variety of ap-

plications, particularly highly interactive and complex analy-

sis, Smalltalk actually performs as well as or better than sys-

tems developed with traditional languages.

An example of high-performance Smalltalk in a commer-

cial application is HPMS, a system developed for Hewlett-

Packard by Knowledge Systems Corporation. The HPMS sys-

tem is a complex process modeling tool primarily designed for

manufacturing. h includes heavy computation and graphics

for flow autorouting and diagraming. Most who see the sys-

tem believe that it actually was written partly or entirely in C.

However, HPMS is implemented entirely in Smalltalk with-

out the use of C or assembly code. More information on the

HPMS system can be found in Robert Whitefield and Ken

Auers’ article “You can’t do that with Smalltalk! Or can you?”

in the May/June 1991 premiere issue of Object Maga~ne.

Besides the Smalltalk language vendors, several other com-

panies have formed to provide tools, training, consulting, and

support for Smalltalk. Without this framework of companies

providing the supporting products and services, corporations

could not make the commitment and investment in Smalkalk.

One company, Object Technology International (OTI),

provides team development and source code control tools for

Smalkalk (essential for large-scale commercial development).

OTI has also used Smalltalk successfully in ROM-based em-

bedded controller applications, where typically low-level lan-

guages are used.

TODAY’S OBSTACLES FOR SMALLTALK

Many of the companies that are using Smalkalk are very secre-

tive about their use (to the point of not allowing any Smalltalk

books to be visible in offices). These companies view the use of

Smalltalk as a strategic competitive advantage. Unfortunately
for those in the Smalltalk industry, this reluctance to share suc-

cess stories makes it difficult to promote wider use of the lan-

guage through examples. Often people in the Smalltalk indus-

try, when talking about Smalltalk’s success, must be vague with

lines like, “All sorts of companies are having tremendous suc-

cess with Smalltalk, but we can’t tell you about any of them.”

As larger projects are being developed with Smalltalk (by

companies we can’t talk about), more time is being spent on
analysis, design, and software quality. When used for proto-

types, analysis and design are not significant issues. Still, for

high-quality production software, Smalltalk requires design,

testing, and iteration. Even today, many users first developing

with Smalltalk get enamored of the enormous productivity

gains of Smalltalk and try to turn functional prototypes into

commercial software (which ends up being low in quality,

difficult to maintain, or taking longer than expected). The

process of managing the Smalltalk software lifecycle and then

reuse of code are still issues. As more experience in managing
the high productivity of Smalltalk is compiled, issues such as

reuse and quality will be better understood.

Companies now making the investment in Smalltalk de-

velopment face the difficulty of finding resources and educa-

tion. The number of experienced Smalltalk programmers is

limited, and competition for those developers is heavy. In ad.

dition, training in-house developers in object-oriented tech-

nology and Smalltalk takes approximately two months. After

the initial training period, six months of use is required before

enough experience is developed to create quality commercial

software. Managers have difficulty accepting these time

frames, given the pressure to deliver. Often this pressure is the

reason for using Smalltalk.

SMALLTALK TOMORROW

Over the next few years, several significant products will come

out using Smalltalk. Smalltalk development and product suc-

cess stories will be published (many in The Smalltalk Report).

The base of users and projects will expand both in organiza-

tions already using Smalltalk and in new ones.

The Smalltalk industry will expand with more companies

being formed to provide products and services, particularly

developer training, analysis and design tools, code genera-

tion, application frameworks, and tools to manage large-scale

reuse of code.

Several companies will deliver integrated analysis, design,

development, and Iifecycle management tools developed in

Smalltalk. These tools will push object-oriented application

development into a more disciplined and efficient level, par.

titularly in large organizations.

For application developers in both large and small organiza-

tions, more development tools will be delivered. Interface

builders and application frameworks such as Acumen’s Widgets

and Tigre Object Systems’ Tigre Programming Environment

are already in use building successful commercial applications.

In the software development community, there is always the

tendency to find the best technology. Currently, in the object-

oriented arena, many are looking for a winner, be it C++,

Smalltalk, Eiffel, and so on. The history of software shows us

that there isn’t a winner, just as there isn’t any best automobile.

There will be a variety of languages and tools to support various

types of development. Smalltalk will find success in commercial

applications, particularly in interactive desktop analysis applica-

tions, where the power of Smalltalk is best applied. %

REFERENCE

[1] Whitefield, R. and K. Auer. You can’t do that with Smalltalk! Or
can you?ObjectMagatine,1(1), 64–69, 1991.

AbdulK. Nabi can be readwdat KnowledgeSystemsCmporation,

114MacKenm Dr,, Ste, 100, Cary, NC27511.
THE SMALLTALKREPORT

ETTING REAL

Should classes have owners?

Juanita Ewing
7

R
s Smalltalk engineering projects grow larger, the need for

reusable code increases. Developers need to build larger ap-

plications even faster. The easiest way to increase the ca-

pabilities and scope of an application is to reuse more classes.

Large applications require teams of Smalltalk programmers to

glue these reusable classes together and write some applica-

tion-specific code, too.

WHAT ISA REUSABLE CLASS?

Classes are reusable in two ways: as a client making instances

or as the basis for new subclasses. The characteristics of these

two kinds of reusable classes are different. For client use, you

want a fleshed-out and general class. For subclassing, you want

a minimal and flexible class. Beyond these characteristics,

how do you tell if a class is reusable? To paraphrase Ralph

Johnson, a class isn’t reusable until proven reusable. That

means it has been used in more than one application.

It takes extra time and effort to write classes that are

reusable. This extra effort is a separate programming activity.

Developers caught up in deadlines for delivering an applica-

tion often don’t have the time necessary to flesh out and pol-

ish their classes. For example, developers will initially create a

single class that should be refactored into a combination of an

abstract class and a concrete class. The concrete class can be
reused by making instances of it and the abstract class can be

reused by making new subclasses derived from it. The reusabil-

ity of classes written with the goal of multiple uses is much

greater than those written for specific roles in an application.

In conjunction with supporting teams of developers, some

Smalltalk environments actively promote the creation of
reusable classes. One of the goals of these environments is to

separate application engineering from the creation of reusable

units of code.

IS CLASS OWNERSHIP A GOOD BASIS FOR

PROMOTING THE CREATION OF REUSABLE

CLASSES?

Suppose each class is owned by a single developer. The theory
is that an owner feels responsible for and will take the extra

effort to make a class truly reusable. The creation of reusable

classes is important to the entire organization as well as the

developers. Programming environment capability by itself is

not enough. To back up this capability in the programming

environment, the developers’ organization must reward the
VOL. J, No. 1: SEPTEMBERJ991
production of reusable code. Responsibility and ownership are

established management techniques for motivating employ-

ees. It’s become common practice in manufacturing environ-

ments to give employees more responsibility and have them

provide input about the manufacturing process. Employees

don’t just screw on lug nuts anymore.

Let’s assume the owner of a class is rewarded for producing

a reusable class. What if another developer finds a bug in that

class, or thinks of a useful extension? In a system with class

ownership, the owner writes the code to fix the bug or writes a

new method. He is the one who is motivated to make the

class more reusable.

WHO IS BEST QUALIFIED TO FIX THE BUG OR

WRITE THE NEW METHOD?

In the case of the bug, the best qualified person maybe the de-

veloper who detected the symptom of a problem and isolated

the error. After the detective work, fixing the bug may be sim-
ple. And, sometimes it is difficult to reproduce a bug. In the

case of the new method, maybe the person who thought of the

extension knows best how to implement it. Maybe in both

cases the owner and the person suggesting the change need to

work together to come up with the best solution. The best

qualified person depends on the situation. Flexibility in the

programming environment is critical.

Systems with class ownership are not flexible. Even the

motivational aspects are wrong for flexibility. What is the mo-

tivation for developers who are not owners ?

DO CLASSES EXIST IN ISOLATION?

When a class is part of an application, it interacts, or collabo-

rates, with other classes. Sometimes the collaboration is part

of a framework. For example, a view and a controller collabo-
rate as part of the MVC framework. An instance of view is

never used alone. It is always paired with a controller. Because

of the relationship between these two classes, coupled with

the fact that modifications in one class will probably require

corresponding modifications in the other class, there is a

strong reason for the same developer to own both of these

classes. It makes sense that any related classes should also be

owned by the same developer. Evidently all parts of a frame-

work should be owned by the same developer.

Continuing this example, what about the view’s relationship
with its model ? Some views have a close connection with their

■ GETTING REAL

8.
models. This argues that the model should be owned by the

same developer that the view and controller are owned by. And

yet in different applications the same view may collaborate with

different models. Are all of those models owned by the devel-

oper that owns the view? Class ownership doesn’t take into ac-

count the flexibility required by multiple applications.

A subclass is closely related to its superclass. If the behav-

ior of a class changes, there may be ramifications in the sub-

class, requiring corresponding changes in subclasses. This im-

plies that the same developer should own classes that are

hierarchically related. Obviously, if one developer owns the

entire image, we aren’t talking about teams of Smalltalk pro-

grammers anymore.

If classes have owners and related classes are owned by the

same developer to improve the efficiency of the team, how do

you devise a reasonable partitioning if the ownership is re-

stricted to a single developer per class? The answer is, you

can’t. The goal of grouping related classes conflicts with the

goal of distributing classes to individual owners.

66
The advantage of multiple

developers is to allow multiple

perspectives and therefore create

more general classes.
99

DO MULTIPLE DEVELOPERS AFFECT THE QUALITY

OF CLASSES?

Close collaboration between developers is important in the

production of reusable classes. People who are working to-

gether tend to be more creative. Multiple perspectives in-

crease the likelihood of more general abstractions. Multiple

developers are an advantage. The result of multiple developers

is classes that are well fleshed out and suitable for client use

and classes that are general abstractions suitable for sub-

classing.

SHOULD CLASSES BE ACCESSIBLE TO MULTIPLE

DEVELOPERS?

The programming environment needs to promote developers

working together. One way to do this is to make classes acces-

sible to multiple developers. That way, each developer could

make changes when most appropriate. If you have one owner,

what do you do when that owner goes on vacation? What if

the owner is ill at a critical time in the project? The program-
ming environment should make it easy to implement contin-

gency plans to keep a project going,

Since a reusable class is produced by a team of people, the

entire team should be rewarded. Team programming environ-

ments usually have author designations for accountability.

Outstanding efforts will continue to be noticed in these envi-
ronments because of accountability features.

HOW DOES THE PROGRAMMING ENVIRONMENT

KEEP THINGS FROM FALLING BETWEEN

THE CRACKS?

How do you ensure that the entire class hangs together? You

don’t want to end up with classes that area hodgepodge of

functionality. Some automatic checks could be installed to

produce warnings if, e.g., a method contains no references to

self or instance variables.

Most of the consistency checks for a class cannot be auto.

mated at this time. A human still needs to browse and under-

stand a class to see if it follows basic design principles. In a coop-

erative team, this responsibility can be shared. Peer reviews, or

more formal code reviews, are an essential part of team efforts.

The programming environment should be able to restrict

the set of developers for a class to avoid unauthorized

modifications. Many operating systems offer these kinds of

limitations. A team programming environment could be even

more selective. Also, it is a good idea to place at least one ex-

perienced person with a group of inexperienced people. Peo-

ple who have good rapport generally program together well.

A programming environment for teams of Smalltalk devel-

opers should promote the creation of reusable classes by re-

warding all developers. The advantage of multiple developers

is to allow multiple perspectives and therefore create more

general classes. Another benefit of multiple developers is more

apparent in the final stage of the software lifecycle. classes
that are developed by multiple programmers are therefore un-

derstood by multiple programmers. It is easier for the organiza-

tion to maintain classes because more than one person has the

knowledge and understanding required for the job. %

.luanita Ewing is a senior staff memberof Instantiation, Inc., a soft-

ware engineeringand constdting jirm thatspecializes in cheloping and

applying object-orientedtechnologies.She husbeena project leaderfor

commercial object-oriented software projects, and is an expertin the

design and implementation of object-oriermed applications, frameworks,

ands ysterns. In her previous position at Tektronix hc,, she was r-e-

sponsibfe for thedevelopmentof class libraries& thefirst commercial

qualitySmaUalk-80 system. Her professiorud activitiesincktde Work-

shopand Panel Chairs fm the00PSLA conference.
THE SMAL.LTALKREPORT

Greg Herdey and Eric Smith

Giving application windows dialog box

functionality in SmaHtak/V PM, part 1
9.
UJ
elcome to the first installment of what we hope will be
long-running column! Smalltalk has been around for

some years now. When Smalltalk was young, the idea of

applications having windows the way cats have kittens was a

new one. Smalltalk environments of yore preceded the prolif.

eration of standardized window environments. Therefore, they

tended to carry their own windowing system with them.

These old clunkers would grab the whole machine (keyboard,

screen, and mouse) and have their own way with them.

Of late, however, the world has been changing. For nearly

every kind of desktop workstation, from the PC-clone to the

top-of-the-line UNIX workstation, there is a standard win-

dowing system available. Applications that run on these ma-

chines are increasingly expected to conform to the interface

standards of the host windowing system. Further, they are ex-

pected to work with other applications running under the

same windowing system.

Fortunately, Smalltalk has kept up. Both of the major ven-

dors are beginning to support “host windows.” In this column,

we’ll be providing information on the nuts and bolts of getting

applications going in Smalltalk while working with the facili-

ties provided by the host windowing system. To begin this is-

sue, we’ll dive right in to a two-part examination of how to

build dialog boxes wholly within Smalltalk/V PM.

Dialog boxes are useful for displaying messages and gathering

input from the user. In Smalltalk/V PM, there are two sub-

classes of DialogBox to handle simple cases. MessageBox is use-

ful for getting quick yes/noor confirm/cancel information from

the user. Prompter is useful for posing a question and soliciting

an answer. There are other DialogBox subclasses for find and re-
place, choosing fonts, and defining new subclasses. In each case,

a specific Presentation Manager (PM) dialog resource is used.

The resource defines the types and locations of the dialog’s

controls. To define a dialog with a different layout of controls, a
new PM dialog resource must also be defined. This can be done

with the dialog box editor or the linker and resource compiler

that come with the Presentation Manager development kit.

If you have been using Smalltalk for a while you may ask,

“Why can’t all the work be done in Smalltalk?” This column

proposes one approach to building custom dialogs wholly

within Smalltalk. This approach creates a subclass of Applica-

tionWindow and gives it some useful behavior currently found

only in DialogBox. In addition to convenience, there are two

advantages to building dialogs wholly within Smalltalk. One
VOL. 1, No. 1: SEPTEMBERJ991
advantage is you can use your own custom panes in addition

to control panes. (DialogBox is restricted to holding control

panes.) The other advantage is that once you know how, you

can add the behavior to any application window.

ESSENTIAL BEHAVIORS OF DIALOGBOX

Since we will be taking the essential behavior of DialogBox

and adding it to ApplicationWindow, let’s identify what that

behavior is. Under DialogBox in the encyclopedia of classesl

is the comment:

“A DialogBox is a popup window used to display rnes.

sages and gather input from the user. A dialog box can be

modal or modeless, A modal dialog box requires that the

user te~minates that dialog box before using the window

chat opened the dialog. A modekss dialog box allows the

user to continue to use the window without terminating the

dialog box. ”

So, an optional behavior of dialogs is being modal. (Appli.

cation windows are modeless.)

You may have noticed another behavio~ dialogs seem to

stick with the application window that created them. If an ap-

plication window and it’s dialog are partially obscured by

other windows and either the application or its dialog is se-

lected, the application and the dialog window come to the

front together. This sticking together is one of a set of behav-

iors dialogs have because of the ownership relationship be-

tween a dialog and its application window. The application
window is said to own the dialog.

The option of being modal and the ownership relationship

are considered to be essential behaviors of DialogBox. Other

behaviors such as displaying messages, gathering user input,

opening, closing, and passing messages are already part of be-

ing an application window. The rest of this column will dis-

cuss modality and ownership, where they are documented,

what they mean, how Smalltalk/V PM uses them, some ways

for you to use them, and finally, how to put it all together to

make your own dialogs wholly within Smalltalk/V PM. The

remainder of part 1 will cover modality. Part 2 will cover own-

ership and putting it all together.

MODALITY

Chapter 19, Dialog Windows, of ref. 2 (pp. 247-262) de-

scribes two kinds of modality dialogs may have in PM. A dia-

■ GUIS

10.
log may be system modal or application modal. When a dialog

is system modal, the dialog takes control from all other win.

dews in the system. When a dialog is application modal, it

takes control from all other windows in the application. (As

an aside, any window may be created system modal. Further

discussion on this is deferred to a later issue.) Dialogs in

Smalltalk/V PM are neither.

Dialogs in Smalltalk/V PM are modal only to the window

that was active when the dialog was opened. As a result,

modality for Smalltalk/V PM dialogs is handled within

Smalltalk. This makes it fairly easy to move the modality be-

havior to ApplicationWindow.

The mechanism for making dialogs modal is documented

on page 468 of the SrnaMk/V PM Handbook. 1

“Dialog boxes can be made modal to the currently active

window by putting self processlnput as the last line in your

dialogbox’s open method. processlnput will not return until

the user closes the dialog box (actually, tmtd anothe~ method

in your dialog box class sends self close). Again, see New-

SubclassDialog for an example.”

66
. . . dialogs seem to stick with the

application window that created

them. If an application window and its

dialog are partially obscured by other

windows and either the application or

its dialog is selected, the application

and the dialog window come to the

front together.
99

To understand what goes on when dialogs are made modal,

let’s look at the method processInput in DialogBox. This

method is inherited by NewSubclassDialog:

promsbrput
“Makethe receiver modal to its owner window.
This methoddoesn’t returnuntil close has been
sent to the receiver.”

I cursor 1
Processor currentProcessIsRecursive ifTnre: [

self error: ‘Cannot do modal dialog during recursion.’].
owner disable.
cursor:= Cursor.
CursorManager normal change.
sem:= Semaphore new.
[CurrentProcess makeUserIF. Notifier run] fork.
semwait,
CurrentProcessmakeUserIF.
cursorchange.

Two actions are taken to make the dialog modal: the

owner is disabled and processing in the method is blocked.

Disabling the owner is easiest, so let’s look at it first.

DISABLING

Disabling the owner means the dialog’s application window is

prevented from receiving any more keyboard or mouse input.

Conceptually, the dialog’s owner is the application window

that created the dialog. In implementation, the owner is set to

the frame window of the active window when the dialog re-

ceives the message fromModule:id: or fromResFile:. The code

that finds and sets the owner is the same in both methods. Ex-

amining the code confirms that the owner is a window handle.

ownerisNiliffnre: [
owner:=Notifier activeMainWindow.
owner notltil iffrue: [owner:= owner frameWindow]],
owner isNll ifhue: [owner:= WmdowHandle queryActive].

The method for disable in WindowHandle sends the

method enableWindow:fEnable: to PMWindowLibrary, the

sole instance of PMWindowLibraryDLL. In response,

PMWindowLibrary calls the MS 0S/2 function WINEN-

ABLEWINDOW. MS 0S/2 responds by disabling the frame

window and all its child windows (see pp. 260–261 of ref. 3).

So, the owner ignores all future keyboard and mouse input

until it is enabled. The dialog enables its owner in the

method close.

BLOCKING

Blocking means that the Smalltalk process executing the

method stops. The method does not return (and so the calling

method does not continue) until the process is unblocked.

The blocking is done in three lines:

sem:= Semaphorenew.
[CurrenffrocessmakeUserIF.Notifierrun] fork.
semwait.

The first line is simple, It initializes the semaphore. The

second line makes a new user interface process and starts it
processing events. The third line actually blocks the process

the method is executing in. The process is blocked and the

method does not return until the semaphore is signaled. The

dialog signals its semaphore in its method close. Once the

semaphore is signaled, the method processInput is resumed,
the user interface process is restored, and the method returns.

The method close for DialogBox closes the dialog and undoes

both actions taken in processInput:

close
“Closethe receiver.”

ownerenable.
THE SMALLTALKREPORT

ownermakeActive.
Notier remove: self.
PMWindowLibrarydestroyWindow handle.
sem notNil iffrue: [

sem signaL
Processor terminateActive.]

The first two lines enable the owner (the frame window of

the dialog’s application window) and restore it as the active

window. The next two lines do some clean-up necessitated by

the dialog having been created differently than a normal win-

dow. The last three lines signal the semaphore and kdl the ac-

tive process. Signaling the semaphore allows the process that

was waiting on the semaphore to resume. This lets the method

processInput resume and return.

ADDING MODALITY TO APPLICATIONWINDOWS

This is where you try out what you just read. Start by creating

a subclass of ApplicationWindow. Give it an instance variable

to hold the semaphore:

ApplicationWindow subclass: #DialogApplicationWindow
instanceVanableNames: ‘sem’
classVariableNames:”
poolDictionanes: ‘PMConstants’

Copy the method processInput from DialogBox. At the

end of processInput add the line:

super close. “<<Addedbecause of difference between ctose in
DialogBoxand ApplicationWindow.”

Copy most of the method close from DialogBox. Modify it

to look like this:

dose
“Closethe receiver.”
“Most of this is copied from
DialogBox. GLH18 July 1991.”

ownerenable.
owner makeActive.
sem notliil

ifTnre: [
sem signaL
Processor terminateActive.]

ifFalse: [super close.] “<<Addedin case I am not modaL”

The differences between the close methods in DialogBox

and ApplicationWindow will be covered in the next install-

ment of this column. For now, just trust that this is necessary.

The class will also need a method for finding and setting the

dialog’s owner. Make the three lines from from Module: id:

into a method:

findAndSetOwner
“Find the active window and make it my owner.
This code is copied from DialogBox>>fromModule:id:.
GLH18 June 1991.”

owner isNil ifTnre: [
owner:= Notifier activeMainWindow.
VOL. 1, No. 1: SEFTEMBERJ991
owner not.lfil it’1’rue:[owner:= owner frameWindow]].
owner isNil iffnre: [owner:= WindowHandle queryActive].

The last method is for convenience:

openModal
“Open and become modal the way
most dialogs do. GLH18 June 1991.”

self firtdAndSetOwner.
super open.
self processInput.

Now, test the class. Open a workspace. This WNbe the application
window for the dialog. From the workspace type, select, and do
togethen
Temp := DialogApplicationWindownew.
Temp openModaL
Terminal belL

Notice you can no longer type or use the mouse with the

workspace. Also, note the last line did not execute. The dia-

log is modal to the workspace. The workspace is disabled and

the process is blocked. Now, close the dialog. The bell will

sound. Closing the dialog unblocks the process as expected

Also, note the workspace is enabled so the mouse and key-

board work with it.

Note: if you completely covered the dialog with the

workspace, all is not lost. Simply type and do

Temp close

from the Transcript. This is why the global variableTemp wasused.

In part 2, we will add ownership to DialogApplication-

Window and tie everything together, If there is space, you’ll

be shown some other ways to use these dialog behaviors. %

REFERENCES

[1] Smakalk/T@PM Tutorial and PrognzmmingHandbook, Digitalk
Inc., Los Angeles, CA, January 1989.

[2] Microsoft OperatingSystem/2 Programmers Reference, Vol. 1, Mi-

crosoft Press, Redmond, WA, 1989.

[3] Microsoft Operating System/2 Programmer’sReference,Vol. 2, Mi-
crosoft Press, Redmond, WA, 1989.

Greg Herdey is a member of the technical staff at Knowledge Systems

Corporation. His 00P experience is in SnrakWV(DOS), SrnAhalk-

802.5, Objectworks/Snudkalk Rekz.se 4, and SrnaUalk/V PM.

Eric Smith is a member of the technical staff at Knowkdge Systems

Corporation. His specialty is custom graphical user interfaces using

.%rudkalk (various dialects) and C.

They may be contacted at Knowledge Systems Corporation, 1f4

MacKenan Dr., Cary, NC 2751 1,orbyphoneat(919) 481-4000.

COMPRESSING

CHANGES IN

/V WINDOWS

ChaTks-A. Rovira
12.
Q
fter suffering through a series of embarrassing

A crashes, I came to the conclusion that the System-

Dictiona~>compressChangesmethod for Digitalk’s

Smalkal~ Windows and Smalltalk /V Mac

lacked a little something in the robustness column. Here’s

what I did to remedy the situation.

SMALLTALK WILL CRASH IF ABUSED

As loath as anyone might be to admit it, Smalltalk does suffer

from certain problems when dealing with resources that are

not its own. The Mac and Windows are great environments

when it comes to providing objects and functionality, but the

integration with Smalltalk is not as complete as it needs to be.

The holes are quite deep enough to break an ankle when you

stumble into them.

A HANDLE IS NOT A MONIKER

It is possible to leave handles or pointers to objects lying around

and to trip over these objects, handles, or pointers when saving

the image or during the course of execution. Leaving things un-

reclaimed is easy to do during the heat of a debugging session

.,. I’ve done it often enough. Saving the image after every vic-

tory, no matter how minor it might seem, is an essential compo-
nent of debugging, but save your image with unreleased handles

and life will rapidly become unpleasant.

After a while, an image becomes slow, bloated, and unreli-

able. What could be better than starting fresh with a new copy,
straight from the shrink-wrapped diskettes, and filing in all of

your work. It’s all been preserved in the change.log or the /V

Mac image data fork. Unfortunately, the change.log contains a

record of everything that you’ve done while developing your

system of application. Every successful dolt execution, two
copies of every class definition, every method you’ve defined, as

many times as you’ve defined it, every selector you’ve gotten

rid of. Everything!

Filing in your change.log will take the maximum amount of

time and it’s not likely to work. The dolts are the show stop-

pers. Any d-dt that brought up a window or otherwise inter-

fered with the scheduling process is likely to stop the filing in

of the log.

CLEAN UP YOUR ROOM

There is a way to shrink the change.log, remove all of the mis-

cellany, folderol, and failure, and leave only the shiny new

code: Smalltalk compressChanges. As it comes shipped by Dig-

italk, this copies the code to a new change.log, adjusting all

pointers as it does so, saving the image when it’s finished, and

throwing away the old change.log. Try it . . . you’ll like it. Ex-

cept that we’re attempting to dispose of a flabby, flatulent, or

faltering image, so we’re going to try fdingIn the change.log,

appropriately renamed, into a brand spanking new copy of /V
. . . Wrong! CompressChanges cleans up a little too much. All

the class definitions are now missing. Filing in the change.log

will halt at every class asking if you want to declare <your-

ClassNameHere>. Then it will merrily reject all the code be-

cause, since <yourClassNameHere> is not a class, it does not

understand methods (don’t ask . . .). Also, classes that need

initialization will once again need initialization and there will

be nothing to tell you which these are. The last straw is that

any global variables you might have used in your application

are now in lost in dataspace.

WHAT K-TEL HAS TO TEACH US

Get one now! It’s new! Improved! Get one NOW! It won’t

rust, rot, or testify in court! Get one now! It’s tanker bilge. It’s

a dessert topping! It’s both! Rated X, the unknown. Positively

no one admitted. Consult your local listings.

GET A LOAD OF THIS
In keeping with the tradition of writing frightfully incomplete

articles, there is one minor component missing from the listing

included, mostly because it deserves a separate article in its

own right. To move global variables and their values out of the

image and onto a file from which they can be recovered re-

quires something called a Loader. Due to idiosyncrasies pecu-

liar to each implementation of Smalltalk, Loaders tend to be as

individual as the system in which they reside. Also, since this

facility is needed in a development environment, loaders, at

least as I implement them, tend to use the compiler because

operation is faster than using becomes:.

SON OF COMPRESSCHANGES
The code in Listing 1 is capable of compressing the change.log

into a form that can be filedIn into a new image. After a short

initialization sequence to record what-classes and globals are in

the new system, all of the classes and global variables are
THE SMALLTALKREPORT

13.
defined, the methods are saved, and the required class initial-

ization is performed and global values are loaded in.

To keep track of what additions or changes have been made

to the original image it is necessary to determine what classes

and globals are present in the image. This is the function of the

initialization sequence. The code not directly related to Sys-

temDictionary>> compressChanges is there to keep track of the
system as it changes.

● Ckzss>>comment is necessary because I use class comments

for a class hinting mechanism that allows me to verify

methods to ensure that I won’t get ‘does not understand:’

walk-backs. It can also ensure that cloned images don’t con-

tain more objects, classes, or methods than is absolutely

necessary. Like the Loader, this deserves its own article.

● Class> >rwnoveFromSystem was modified to add the very last

line. It also checks if the class has instances and prompts

the operator through a ConfirmDialog. This is a standard

Widgets/286, Widgets/Mac dialog which I implemented in

/VWindows to maintain compatibility. The method can be

changed to simply abort if there are any instances of the

class.

● Ckzss>>removelnstimces just does what it says it does.

● The following methods have been modified to keep com-

ments around across recompilation:

Ckr.ss>>sttbclass: instanceVariabk+James :cla.ssVarWeNarnes :p

oo[Dictionaries:, Chs>>vatikBywSuhhs: cbsVati&k.

Names:poolDictionaries: ,Cla.ss>>vanabkSubclass: instance-

VariableNames:classVatib/eNames :poolllictiommies:

● MetaCkzss>>name :environment:subckz.ssO f:instanceVariabk-

Names: variable: words :pointers:chssVariabkNames:poolDic.

tionaries:comment: changed: was modified to remove

redefined classes from a list of the classes that were present

in the original image.

● SystemDictionary >>compressChanges is where the metaphor-
ical rubber hits the yellow brick road. It has been modified

to add a preamble to the image that gathers all classes and

all global variables defined in the originaI image and to do

messages sends of the following selectors:

● SystemDictionary>>compressClassDefsOf: into: places

all new or changed class definitions into the

change.log. This method is implemented recursively

to ensure that the class hierarchy is respected. To

make it easier to relate class definitions with their or-

der in the CHB, the subclasses are sorted alphabeti-

cally. This message is sent immediately after the

preamble.

● SystemDictionary >>compressCfassInitslnto: finds all

user-defined classes that implement an initialize se-

lector and places the appropriate message send so
VOL. f , No, 1:SEFTEMBER1991
that the class will be initialized automatically on

filing in the log.

c SystemDictionary >>compressGlobalDefsInto: reserves

name space for all new globals used in any methods

in the change.log. This message is sent immediately

after having saved all of the global values.

● SystemDictionary >>compressGloballnitsJnto: loads the

globals from a ‘recovery .dat’ file. This will be the last

message in the change.log

● SystemDicnonary> >compressGlobalValuesInto: saves

all new globals used in the image in a ‘recovery .dat’

file. This is sent immediately after saving all class

definitions.

● SystemDictionary>>~emoveKey:ifAbsent: keeps track

of deleted globals. If if it necessary to modify globals

that come with the system, remove them from the

system before replacing them with their new value.

This ensures that they are unloaded.

66
Due to idiosyncrasies peculiar to

each implementation of Smalltalk,

Loaders tend to be as individual as

the system in which they reside.
99

PITFALLS

There are none. I have used this method to successfully save

change. logs that contained all information necessa~ to re-

cover my system after some real doozies. I sometimes refresh

the image and fileln the change.log to ensure that I have no

obscure semickcular references or other uncollected garbage.

Since implementing these changes, I am much more com-

fortable about experimenting with objects and resources out-

side Smalltalk’s control. When I’m trying a triple somersault

from the flying trapeze, it’s always nice to have a safety net. %

Now based in Ottawa, Canada, Charles-A, Rovirahas been involved

withdata processing since J 975 and with .%udkalk and other object-

oriented technologies since 1987. His CompuServeID is:

[71 230,121 7J. He’ll admit to someunusualliterary influences, suck

as Douglas Adams, Terry Pratchett, and D. H. Luwrence. Also

Kierkegard,but why bring him up.

■ COMPRESSING CHANGES

14.
List

Cfossmethods

comment

“answertheclasscomment”

‘comment

removeFromSyatem

“Removethe receiver from Smalkalk. Report an emor if there are any sub-

ckcssesor instances of the receiver.”

... addedlineof code

OriginalClassesremove myNameas$rrrbol ifilbsent []

removwInstances

selfwitfAIWrbclasses do: [:aClass[

aclassaUInstancesdo: [:anInstance I

anInstacrce becomw String new]].

subclasw claassynrbol

instanceVariabIeNamex instanceVariables

classVariableNames: classVatibles

poolDictionanes: poolDictNames

“Create or modify the class class$nnbol to be a subclass of the receiver with

the specified instance variables, class variables, and pool dictionaries.”

... insertedlinesof code

\aConrment originalClass I

comment:= String new.

originalCtass:= Smalltalk ah class$nrrbol ifAbsenk [].

originalClass notNi\ ifTme: [

aCocrrment:=originaKlass comment].

... modifiedlineof code

commenk aComment

changed: nil

variabM3ytaSubclasx class$-mbol

classVariableName% classVariables

poolDiclionaries: poolDictNanres

“Create or modi& the chs class$nrrbol to be a variable byte subclass of the

receiver with the specified class variables and pool dictionaries.”

... insertedlinesof code

I aMetaClassaConrcnentoriginalClass I

aConrment:= String new.

ongirralcfass:= SmaWalk at class.$ynrbotifAbsenti [].

originalclass notlfif iflkucx

[aConcnrent:= original(lass comment].

... modifiedlineof code

conrmenk aComment

changed: nit

variabIeSubclsas: ckSynrbol

instanceVariableNamex instanceVariabtes

classVariableNamex classVariables

poolDiionarie.w poolDictNames

“Create or modifythe class cki.ss$mrbolto be a variable subclass of the re-

ceiver with the specified instance variables, ckcssvariables, and pool dictio-

naries.”

... iruertedlinesof code

I aMetaClassaComment originalClass I

aConuuent:= String new.

originalclass:= Smalltalk at cla,ss.$ymbotifAbsenti [].
ing I.

originalClass notNil ifhe: [

aConrment:=originalclasscomment].

... modl~edlineof code

changed: nil

MetaClass methods

narne: newName

environment aSystemDictionary

subclassOfisuperclass

inatanceVariableName% s@ingOfInstVarNames

variable: variabteBoolean

wurd.x wordlroolean

pointem poirrterBoolean

ctassVasiableName% s&ingOfClassVarNames

podtlictionariex stringOfFoolNames

ctunrnent conurrentstcing

changed changed

“Private - Create or modiijr the chss and the metaclass of name new-

Name to be as defined by the arguments. Checkif an OriginalClassis

being redefined”

... added lineof code

OriginalClassesremove newName as$nnbol ifAbsent: [].

‘answer

SjstenrDfctfbnmymethods

compresschanges

“Build a new change log file retaining only the latest version of changed

methods in the current change log. Save the image to the image file.”

I logDirectory stream tempLogNamedialog aFileStream I

d~log := DialogBoxnew

fromDLLHle:‘vwdtgs.dl~

tempLateName:‘CompressicrgChange’.

dialog showWindow.

logDirectory:= (Sources at 2) file directory.

stream:= logDirectorynewFile: ‘ChangLog.tmp’.

streamlineDeEraiter Cr.

tempLogName:= stream pathName.

... addedlinesof code

stream nextFcrtAIL

‘ “evaluate”

I ongirralc’lassesonginalGLobalsI

onginalClasses := SortedCollection new.

onginalGlobals := SortedCollection new.

SmaKtalkassociationsDo: [:each I

(each value isRindOfiClass)

ifTrue: [originalClassesadd: each key]

ifFalse: [origfnalGlobalsadd each key]].

SmaWaLkah #OriginalCksses pub onginaltisses.

SmaWalkat #OriginalGlobalspub onginalGlobals. !!’;

cr.

. addedlinesof code
self compressClassDefsOfiObject into: stieam.

self compressGlobaWaluesInto:

(aFileStream:= File pathName: ‘recover.dat’).

aFileStream close.

self compressGlobalDefsInto:stream.
THE SMALLTALKREPORT

V

... addedlinesof code

seff getSourceCtasses do: [:class [

self compressChangesOficlass class into: stream.

self compressChangesOEclass into: stream].

added linesof code

seff compressClassInitsInto: stream.

self compressGlobaUnitsIntw.stream.

.. added line of code

stream close.

(Sources ah 2) c~ose.

File remove: (Sources ah 2) pathName.

File renames tempLogNanreto: (Sources at 2) pathName.

Sources at 2 prrh

(togDirectoryfile (Sources ah 2) file name).

(Sources at 2) EneDelimiter: Cr.

ApplicationWmdownew saveInrageNoConfinn.

dialog close

cosnpressClassDefsOkaCtassintw aStreanr

‘Write into a streamall of the hierarchy of class detiltions that are new to

the image.”

1classes 1

(OriginalClassesincludes aClass name as.symrbol)ifFake [

aClassfileOutOn:aStream.

aStream nextpuk $!!; CC”.

Transcript cr; show aCkss name”].

classes := aClass subclasses asSortedCoUectiorx

[:first :second [rirst name< second name].

classes do: [:aSubclass I

sell compressCtassDefsOfaSubclass into aStream]

compressClassInitsIntct sStream

‘Write irdtiabzation code for all classes that have it”

I initifir.edClasses I

aStream nextPrrtAlh’ “evaluate”’; cr.

initiafizedCfasses:= self seleti [:ariEntry I

(anEntry isKindOf Class) &

(anEntry class selectors includes: #irritiafise) &

(OriginalClassesinchrdes anEntcy) not].

initialisedClasses do: [:aCLassI

aStream nextPutAIL self name, ‘ initiafise.’; cr].

aStream nextPutAlk ‘!!’;cr

compressGlobalDefsInto: aStream

“Set up all global names”

I globafsDictionary I

(OrigmalGlobatsincludes: #OriginalClasses)

ifFalse: [OrigirralGlobalsadd #OriginalClasses].

(OrigirralGlobaLsirrcludex #OriginalGlobals)

ifFafstz [OriginalGlobafsadd: #OrigirralGlobafs].

aStream nextput.llk’ “evahrate”’; cr.

globafsDictionary:= seff reject [:anEntry I

anEntry isKindOfiClass].

globalsDictionary keysDo: [:a$rrrbol I

(OrigirralGlobalsincludes: a$nrrbot) ifpafss [

aStream nestPrrtAll: ‘ Smalkalk ati #’r

aSymbolprirrtString,’ put nit.’: CI]].
OL. 1, NO. 1 :SEPTEMBER ~991
aStieam nextFutAll: ‘!!’; cr.

conrpressGlobaUrritsInto:aStream

“Getglobals if we can load them.”

aStream nextPutAW ‘ “evaluate”

I collectionOfAssociations aFileStream I

SmaUtalkat #Loader ifAbsenL [

Transcript cr; show

“Loader not available. Globalsnot loaded.”.

“nil].

aFileStream:= Diskfile “recover.dat”.

aFileStreanr sise> OifFalse [

aFileStream close.

File remove aFileStream pathliame.

Transcript cr; show

“Recover.dat not available. Globalsnot loaded”.

‘nil].

collectionOfAssociations:= Loader new readFrom: f.

aFlleStreamclose.

collectionOfAssociations do: [:aPair I

Smalltalk add: aPair]. !!!!’

compressGlobalValuesInto: aStream

“Save (unload) all of the globak into aStream”

I aCoUectionclassList I

SmaUtafkah #Loader ifAbsen~ [

Transcript cr; show

1 ‘Loadernot available. Gtobalsnot saved.’.

“Nl] .

aCollectionOfAssociations:= OrderedCollectionnew.

classList:= #(Behavior Pemistent ClassReader

ClipboardManagerCompilerContext CursorManager

DelayedEventDeletedfCfassDirectoryDos

DyrramicDataExchangeEmptySlotFile Font

GraphicsMedium“GraphicsTool”InputEvent Loader

Menu MenuItem Message NotificationManager

FrocessScheduler ViewManagerWindowWinHandle

WinInfoWmLogicalObjectWmStructure).

(OnginalGlobafsincludes: #OriginalClasses)

ifFake: [OrigirralG~obalsadd: #OriginalCfasses].

(OriginalGlobalsincludes: #OrigirralGlobal.s)

ifFalse: [OriginaU30baLsadd #OnginalG\obals].

seff associationsDo: [:aPair I

(sPaic value isKindOkClass) ifFafse: [

(OriginalGlobaLsincludes: aPair key) ifFalse: [

(classList includes: aPairvalue) ifFafse: [

aCollectionOfAssoaations add: ea]]]].

Loader new tite: aCollectionOfAssociations to: aStream.

removeKey al(ey ifAbsent aBlock

‘We’regetting rid of something in Smalltalk. Check if it’s an

OriginalGlobaL”

OriginalGlobalsremove: aKey ifcibsen~ [].

‘super removeKey aKey ifAbsent: aBlock
15,

1A
lU.
1AB REPORT Ralph Johnson

The Typed Smalltalk

University of Illinois

project at the
Reports of current work in Smalltalk
taking place in leading university and

research laboratories.

T
he Typed Smalltalk project is one of several object-oriented

projects at the University of Illinois at Urbana-Champaign,

and the largest that uses Smalltalk. The goal of the Typed

Smalltalk project is to make Smalltalk as fast as any other lan-

guage by using optimizing compiler technology. We want to

make Smalltalk fast without losing any of its advantages or

changing the way it is used. We want to hide the compiler

from the programmer and keep the programming environment

just as interactive and useful for prototyping as Smalltalk has

always been.
Typed Smalltalk is a large project with many components.

These components fall into two categories, language changes

and the compiler. The major language change is a type system

that was designed to fit the way Smalltalk programmers pro-

gram, not to force programmers to use a particular style. Type

information does not change the meaning of a program but is

just an annotation on an untyped program. Although the

original motivation for the type system was to provide infor-
mation that the compiler could use to make programs faster, it

is also useful documentation.

One important part of the type system is a type inference

system that automatically finds the types in a program. The

compiler can infer a type for a method (the types of all the
variables used in the method and its return type), but a pro-

grammer can refine these types to make the type more precise.

The goal is for the programmer to rely on type inference when

a program is being written and is changing a lot, and then to

narrow down the types as the program moves from develop-

ment to production use.

The compiler (TS) uses type information to convert

Smalltalk into efficient machine code. TS is entirely written
in Smalltalk. It has been designed to be portable and has a

table-driven code generator. We currently have code genera-
tors for the M68020, the NS32032, and the SPARC and are

working on one for the i80386.

The biggest problem with the back-end is that it is slow.

The best way to solve this is to compile it. Unfortunately, TS

does not work well enough yet to compile itself.

The project has had two major problems. We are using a

single technique to attack both problems. The first problem is
endemic to building large software systems: making the system

reliable. The second is endemic to academic projects: building

a large system on a shoestring budget with high attrition rates

of workers. Although we have had some funding from NSF

and a little from Tektronix and BNR, a lot of the work on the

compiler has been done by unsupported students working on

thesis projects. These volunteers work for the fun of it, so the

work must be fun, and they tend to leave just about the time

they have mastered the system.

The computer center of my alma mater had a sign that

gave the “ten laws of computing.” I don’t remember most of

them, but one of them was that “All nontrivial programs have

bugs in them.” A corollary was “If your program has no bugs

then it is trivial.”

Since we are trying to make a reliable optimizing compiler,

this implies that we must build a trivial optimizing compiler.

Unfortunately, optimizing compilers are big and compli-

cated,and tend to be buggy. In spite of this, we have tried to

make TS as simple as possible by rewriting parts that are com-

plex. We have rewritten some of the parts at least a half dozen

times. This has greatly improved the reliability of TS, though

there are many parts that are still complex and TS is still un-

reliable. Part of the Smalltalk culture is rewriting code until it

is elegant, easy to understand, and reusable. Our strategy fits

into this culture perfectly.

Another reason for reliability problems is improper testing.

Most people do not think that testing is fun, so volunteers are

unlikely to develop and implement thorough test plans. Also,

exhaustive tests of optimizing compilers are very difficult. Fi-

nally, the Smalltalk culture does not recognize the value and

difficulty of testing and there are few tools to support it. Al-

though the first two problems are peculiar to us, the third is
widespread in the Smalltalk community and needs to be fixed.

One of the keys to having thesis projects produce useful

software is to limit the scope of each project and to give the

student time to rewrite the software several times. This not

only produces better software, but the students are happier be-

cause they know they have done a good job. A good MS thesis

project is to rewrite an overly complex part of the compiler, so

this approach helps make the compiler more reliable.

MS students tend to spend a semester learning TS and

Smalltalk, a semester doing useful work, and a couple of
months writing a thesis. The high attrition rate has made

painfully obvious the need for high-quality documentation.
THE SMALLTALKREPORT

Bring your large, complex object-oriented applications under ● 02
control with AM/ST, the Application Manager for SmaHtalkN. Every class has an owner.

Functional view across classes
The AM/ST Application Browser helps both individuals and and related methods within classes.
development teams to create, integrate, maintain, document, Applications port easily across platforms.

and manage SmaHtalkN application projects. ● Auto
Revi.%n history f8 e%~;imethod.

at!c Docu e a on

,,,).”(3%,,s Me(i,.d, Y,,,.b,,s ,.”, Analysis and design reports.
i Customizable documentation templates.

,,,.,>,’..O ,,, ,,,, ,,
. . . i

,!,, ., ,,,,. ,.,<
..! s,.,,, “,!

.4 ..3 Source Co

d ..1

3—-=”-J -8- j - -,;
●.Pae.:,.,.:”,;,,, : ntrol

. Integrate work of several users.
‘,,. ! “,.<,, ,E”*. Save and browse multiple revisions easil . ●

c...,,,.!,-,T,, 1. ,m.,.r,>.,,!..... ..,*,.,,...< ., , ,,.., JCheck-in, check-out, and lock source co e. **
,,.,,,,,,.!,,,,,, ++

.,. .,” .,.. ,,,, &,ti Customize code templates.

.,. ,.,-,..,. ,,,,,.,,
I

1

.’ Develop in a LAN environment.r.J. .,!”..,!. -1.,.!-.wr—cC“.... -,6!.,..,,,,. . ,,..., , Deliver applications without AM/ST.
“,‘“’,- ““a’”-, .L,,.,,.- .-~,-—-”.,,’,~,,,,. . . ,,,. ..,.,—L,,,a,—cr.
,.”!, . c..,’ ,,.,...041,.,,,0,,,,

.____J. . ..’1
● Static Analvsis TOOIS

,.L!,!,!1.1W’& .__-__” Application consistency re orts.
“L “1~ t?Graphical views of hierarc Ies.

Cross-reference of variable and method usage.

❑
Coopers :g::;,

-...=lm I Up-to-date method index.

: & Lybrand~~:~:vlfvlac
$395 ● Dyn amic Analvsis T001s
$395 Locate performance “hot spots. ”

, $475 Determme test coverage.

SoftPert Systems Division Site Licenses call $“*** &*&al aWa@8mum~fw%wrlOL=@manL”

One Main Street ~w Productivity Tools ! __ ‘“$ “’ W Omat&n,tnterSc4v

Cambridge, MA 02142 Windows 3.0 VAYindows $475 $-w&tiwm*tiM&”

(61 7) 621-3670 Change Browser *
Hal Hiietxaad, AnamatLabs

$195 sI@IWW,s~registered tradematiofD#gitalk, Inc.
(61 7) 621-3671 Fax Source Control ●* $1595 AWSTts a registered trademark of SoftPeiiS@ems, Ltd.

17.
—.. . .
1 his has led us to concentrate on developing documentation

and figuring out how best to describe the system. One thing

that we have learned is to concentrate on the big picture and

ignore information that can be learned just as easily with the

browser. Thus, pictures that list the entire class hierarchy are

not important, but descriptions of the meaning of the hierar-

chy are. Lists of all the methods in a protocol are not impor-

tant, but descriptions of what each method does are.

Although most of the work on TS has been done at the

University of Illinois, Justin Graver, who did the original work

on type inference, is now at the University of Florida and has

several students working on projects related to the compiler.

Thus, TS is a multiinstitution project. We hope that it will

become reliable enough to be useful in the near future and

that many more people will start to use it.

SMALLTALK CODE ARCHIVE

The University of Illinois has an archive of Smalltalk software

and of papers on object-oriented programming. TS is not in

the archive yet. However, the archive contains a lot of soft-

ware that was developed at Illinois including Foible, a frame-

work for visual programming environments that was written

in Smalltalk-80. It also contains the archive of Smalltalk-80

developed by Manchester University software and the archive

of Smalltalk-V software developed by the International

Smalltalk Association.

You can access the archive by anonymous ftp to

st.cs.uiuc.edu (which is currently an alias for
VOL. 1, No. 1: SEPTEMBER1991
speedy.cs.uiuc.edu at [128.174.241.10]) or by sending e-mail

to archive-setver@st. cs.uiuc.edu of the form

To: archive.servert%t. cs.uiuc.edu
Subject:
path youmame@your.intemet. address
archiver shar
encoder uuencode
help
encodedsend Is.lR.Z

which will cause the archive server to e-mail instructions to

you. Report problems with the archive to archive-

manager@st.cs.uiuc. edu.

As a last resort, you can get the entire contents of the

archive on an Exobyte tape or 1/4” QIC-24 (DC600A car-

tridges) in tar format, on Macintosh disks, or on DOS 3 1/2”
inch disks by sending $200 to William Voss at Department of

Computer Science, 1304 W. Springfield, Urbana, IL 61801. x

Ralph Johnson is in the Department of ComputerScience at tk Uni-

versity of Illinois at Urbana-Champaign. He can be reached there at

1304 W. Sp@jield, Urbanu, IL 61801, or by phone at (217) 244-

0098, or via e-mail at johnson@cs .uiuc.edu.

18.
Allen Whfs-13Tock

Smalltalk, organization, and you
A forum for sharing ideas, tips, and
experiences or just a place to have

your say . . .

T
his morning, I was reading through the papers in the confer-

ence proceedings of the 1991 USENIX C++ Conference.

This is a collection of eighteen papers relating to the applica-

tion, implementation, and possible extension of C++. In gen-

eral, the papers are well written, most are informative, and some

are controversial. Collectively, they show that there is a a large

and thriving C++ community that is not only actively applying

and evolving their language but also communicating, sharing,

and recording their shared experiences. They clearly show that
C++ is a living, +t-rarnic language.

As a Smalltalk user and implementor, my immediate reac-

tion to this collection was a sense of longing for a similar set of

papers concerning Smalltalk. I know there is comparable work

being done in the Smalltalk community. If this wasn’t the case,

Smalltalk would be a dead language. The problem is that there

is currently no forum for Smalkalk users and developers to get

together and share this work. Why not ?

For several years, 00PSLA provided such a forum. If you

look at the proceedings of the first two or three 00PSLA

conferences, you will find a large number of papers that di-
rectly relate to Smalltalk. This is not the case today. Why?

Because 00PSLA is now a large, formal, scientific confer-

ence that addresses all aspects of object-oriented technology.

To be accepted at 00PSLA, a paper must address original

ideas that are broadly applicable to object-oriented technol-

ogy. A paper that is of utility only to the users of a particular

language will normally not be accepted. At most, one or two

Smalltalk-related papers will now be selected for an OOP-

SLA conference. Generally, the same will be true of C+ + or

any other language. This does not mean that only one or two

good papers exist, but to publish more would result in an un-

balanced conference. If eighteen of the twenty-three papers

at this year’s 00PSLA were the papers from the USENIX
C++ Conference, only C++ programmers would attend

00PSLA.
The obvious solution is that we need a Smalltalk confer-

ence. This is not a totally new idea; others have suggested it in

the past, but nothing has happened so far. ‘Why? It’s easy for an
individual such as myself to get excited about the idea. I know
what has to happen. I lived through the organization of the first

00PSLA. I could get on the phone and start calling people to

get them involved... but wait, reality starts to kick in. Organiz-

ing a conference takes a lot of work and entails considerable

financial risk. I run a small business. Can I afford to take the

time away from my clients and employees? Could I carry the

financial burden? Well, it was a nice idea, but back to work.

What is really necessary for the organization of a success-

ful conference is an organization to back it. For 00PSLA,

this was the ACM. For the C++ Conference, it is USENIX.

USENIX describes itself as follows:

“The USENIX Association is a not-for-profit organiza-
tion of those interested in UNIX and UNIX-like systems. It
is dedicatedto fosten’ng and communicating the development
of resea~ch and technological information and ideas pertain-
ing to advanced computing systems, to the monitoring and
encouragement of continuing innovation in advanced com-
puting envi~onment, and to the provision of a forum where
technical issues are aired and critical thoughtexercised so
that its members can remain current and vital. To these
ends, the Association conducts large semi-annual technical
conferences and sponsors workshops concerned with varied
special--interest topics... ”

66
A successful users group must be a

response to a real need, a “pul

from the user community.

II

99

What about Smalltalk? Unfortunately, there is no compara-

ble Smalltalk user’s organization. Past efforts to create such an

organization have been unsuccessful. Like conferences, user or-

ganizations take a considerable investment of time and money.

Past efforts were “pushed” by vendors or individuals who had

neither the time nor financial resources to be successful. A suc-

cessful users group must be a response to a real need, a “pull”
from the user community. In addition, it must have the backing
THE SMALLTALKREPORT

Smalltalk/V
productivity =

CodelMAGER
(Formerly named IMAGER)

●

●

●

●

●

Put related classesand methods into a single
task-oriented application object.
Browseonly what the application sees of the image
but easily Import of delete external code.
Automatically document all application code using
modifiable template%they can even be executable!
Keep a histofyof previous versionsand restore them
with a few keystrokes,
Printan application as a formatted, paginated,
commented report. Even a table of contents!

There’s more–
. Many chores like change log recovery are menu-driven.
of large, corporate sponsors that can afford to commit people

and financial resources to its success.
Perhaps, today, the environment is ripe for such an organiz:

tion. There are now numerous large corporations that are mak

ing strategic commitments to Smalkalk. These are the organiz:

tions that really need and can afford to support a Smalkalk

users group and conference. My final remarks are to my col-

leagues in these organizations.

You and your organization have made a commitment to

Smalltalk. Its future success is critical to your future and succes

This requires a dynamic, vibrant community of Smalltalk users

Take control of your future, get involved and organized. Put to

gether an organization, sponsor conferences and workshops, en

courage standards. You know who you are, you know you have

the need. So do it. If you don’t know who your counterparts in

other corporations are, then call me at (503-242-0725) and I

will get you connected. Let’s make Smalltalk succeed! $%

Allen Wirfs.Brock can be reached at Instantiations, Inc., 921 SW

Washington, Ste. 312, Portkmd, OR 97205, or by phone at (503)-

242-0725.
Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and write to:

ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIH, Lotus, and Excel.

‘Intelligent Systems, Inc.

f SW N. State Street, Ann Arbor, Ml 4S1C4 (313) 996-42* (313) 9964241 fax

● New browserson classvariables and references,
global variables, ObJect dependents.

● Intelligent browsersare graphic, Interactive and
context-sensitive. Many update automatically.

~ow–prvtlle application execufion
with statr%ticsand a calling treei

~~Py*e~mt~@
.................. .

(4‘r”w’er””pgl r!mtmw!:d!;

:odelMAGER 1$..

codlng<~
ra”PPii:OtiOriPr Wi;d

Utilities...

<

template editina

;code profllln$
testinOSappiicOtlOn testing

%- Sn@tdkfV&CaWIAAGER a. rea mork$ ol CWtak, Irw &ZuWr Cuts CWP

Shipping & honcttlrKJO S13 mail, O $20 UPS per COPY. 4S hr order
tumarwnd. Fax or phone for quickest handing.

NAM

AcaRE.ss

Sr.w
lh

ml Fosr

Version: Cl Mac •l 2S6 ~:
PhlvwskmwalkrMe3Q90

Dlsketta ~ 3 Jfz Q 5 1/4
ExpirvDote _ I_ I_

-b
== = = = z 2035 C te-de-llesse, Suite 201

%4-- =- =‘= MONTR L,Quebec H4N 2M5
6-I ~~~ ~e~(514) 332-1331 ~ (514) ~.1032

19.

VOL. 1, No. 1: SEPTEMBER1991

-)n
Lu .
OFTWARE REVIEW reviewed by Jim Salmons

WindowBuilder: An intetface builder

for Smalltalk/V Windows
UJ
indowBuilder, from Acumen Software, is a User Interface

Management tool which greatly facilitates the rapid de-

velopment of Smalltalk/V Windows applications. As its

name implies, WindowBuilder enhances developer productiv-

ity by providing a” construction set” tool with which to inter-

actively design application windows and dialogs in a “what

you see is what you get” manner. Once you are satisfied with

your design, WindowBuilder creates a new class to encapsu-

late your design, generating the Smalltalk methods which

bring it to life.

At a list price of $149.95, this is a potent rapid application

development tool which should be included in any

Smalltalk/V developer’s environment. Though there is room

for improvement, this initial release of WindowBuilder is a

much needed enhancement to Smalltal~ Windows.

HOW DOES WINDOWBUILDER WORK?

WindowBuilder consists of software and a ninety-five page
manual. The WindowBuilder tool and its associated classes
are easily installed by filing in a single Smalltalk source file.
Thirty-one classes are added to the base Smalltalk/V Win-

dows environment. Some of these classes implement the Win-
dowBuilder tool itself, but many are refinements and enhance-

ments to the base system’s window user interface Control

classes. In addition to new classes, Acumen has made a signifi-

cant number of modifications to methods in the base

Smalltal~ Windows classes.

Once filed in, a WindowBuilder menu is added to your

Transcript window menubzu giving you quick access to creating

new and editing existing WindowBuilder windows and dialogs.
WindowBuilder defines a new abstract class, WBTopPane, from

which new windows and dialogs subclasses are created.

Figure 1 shows WindowBuilder in use to create a relatively

complex application window. To place the Male RadioButton

in the Sex GroupBox, as shown, the tool palette on the upper

left side of the WindowBuilder window is used first to select a

primary icon to place “Button” objects, after which a “Ra-

dioButton” secondary icon is selected. A crosshair cursor then

appears to target the button’s placement in the GroupBox.

The newly placed button displays “selection handles” to in-

dicate that it is the active object. The Attributes Pane aIong

the bottom of the WindowBuilder window is used to specify a

default title, associated instance variable and Windows-specific
style attributes. The Events group includes a When ComboBox
. .
ions A!lgn Size Group Add

i
. Acme Rotiets Employre Database . 1+

L
‘::5-MI.IJ=EE
Figure 1. WindowBuilder tool building a database application window.

which allows you to choose events to which the selected object

will react. In this case, the RadioButton associated with the rb-

Male instance variable will react to a clicked event by sending

its parent window the rbSexUpdate message. The Events

group can be used to specify as many when: event perform:

methodassociations as required by your design.
A well-implemented group of alignment options make it

easy to create a clean window or dialog design. The Distribute

Horizontally and Distribute Vertically options, which space

objects evenly between two outermost selected objects are par-

ticularly useful and relatively rare in user interface design tools.

A Framing Parameters Editor is provided to specify the

complex relationships among window control objects when

the window is resized. In Figure 2, the Framing Parameters Ed-

itor is being used to specify that the upper-left comer and bot-

tom of a ComboBox are fixed relative to the Parent window’s

top left dimension while its right dimension is scaled to the

window’s new size.
A Menubar Editor makes is easy to design dropdown

menus to be added to your window designs. As with your basic

window or dialog design, WindowBuilder generates the often

complex and error-prone source to the methods which create

and initialize your menus.
Working in concert, the tools provided by WindowBuilder

make quick work of designing a window or dialog. As an in-

teractive tool, you can save your design to its own WBTop-
THE SMALLTALKREPORT

”&

-1
. !MnduaBuilder.%WaEmp0t3 . .
HI. EdtiQpllmsAlignSizeEW.PAddDiim-1 ●AcmeF30&er.EIIIF.Iehrsb,s.
1%1-‘=zl[?~~w,,F3rstN.nn;:
H 1111

u-a C-lhliw
r-l ‘c”-”- ‘-v- i F-7

I CECJEZI

Figure 2. WindowBuilder’s Framing Parameters Editor.

Pane subclass at any time and a Test It button is provided to

generate an instance of your design.

Once you have the design worked out, you may then open

a Class Browser on your window’s WBTopPane subclass. To

complete the implementation, you simply complete the “shell

methods” which WindowBuilder generates based on your

when: perform: and menu item action specifications.

To make all these WindowBuilder features immediately ac-

cessible to you, a cogent manual is provided. It includes an

overview of the components and functionality of graphical

user interfaces, a ‘!Quick Peek” introductory tutorial, a user’s

guide, an extended example tutorial, a reference section and
an index. WindowBuilder is so intuitive, however, that you
hardly need the documentation.

USING WINDOWBUILDER TO CREATE A DDE

DATABASE CLIENT APPLICATION

About three-quarters of my development session was spent

implementing the DDE communication between Smalltalk/V

and Pioneer Software’s Q&E database engine (Fig. 3). The de-
velopment of the window design was truly painless using Win-

dowBuilder. Since WindowBuilder generates empty methods

based on the control and menu event specifications of your

design, it is essentially a “fill in the gaps” process to make the

application fully functional.

Had I not been using WindowBuilder, I anticipate my

experimental development effort would have easily doubled.

WindowBuilder makes Smalltalk/V Windows a viable

choice as a consultant’s rapid application development en-

vironment.

WINDOWBUILDER’S BRIGHT SIDE

WindowBuilder is a vastly improved way to develop a

Smalkal~ Windows user interface when compared to writ-

ing raw source code. As a consultant, I would only recom-

mend Smalltalk/V Windows for corporate client development

projects if it were enhanced with WindowBuilder.

The Framing Parameters Editor and the Align menu fea-
tures of WindowBuilder are particularly useful and are often
VOL. J, No. 1: SEPTEMBER1991
Ve EMWDE,OEFW0RD8F. EMP,0f3F.DEPTS16FI II. .
.%l,a Search Lq.t W3nd.mHelp

1, Edit Qe@ Eu@oyce

Ma...,,

Wdtmm IEmployees

n
ee””etlMcC1.llwI
s.rnp.ir

Ave.SalarX$3@.500

IIC* STZ@Cad,3—‘I
Hobble%StamIIC.lkdiDandng

Figure 3. A WindowBuilder-built DDE client application window

and its Q&E database server.

not implemented as well in other user interface builders which

I have used.

WindowBuilder is extensible. WindowBuilder is provided

in source code and its interface includes a facility for adding

your own new Subpane classes. If you create, or purchase, a set

of interface components such as ToggleSwitch or Thermome-

terGuage objects, you could include them in your Window-

Builder designs.

Acumen supplies a WindowBuilder run-time file. Once

you have an application built based on a WindowBuilder user
interface, you can create a lean image with the classes and

method changes required to implement the interface but not

the WindowBuilder tool itself.

66
WindowBuilder is a vastly improved

way to develop a SmalltalkN

Windows interface when compared to

writing raw source code.

99

A WINDOWBUILDER WISH LIST

The most glaring problem I had with Version 1.0 was the lack

of a Z-order editor. Windows uses a Z-order list to determine

the order through which the window “focus” will progress un-

der keyboard control. In a data entry application, you often

want to make an entry and tab to the next logical field. It is

surprising that Acumen did not provide any means to control

and reorder this all-important aspect of a window or dialog de-

sign. The current workaround for the lack of a Z-order editor

is to cut and paste the addSubpane: blocks in the addSub-

panesTo: method. In a window as complex as the DDE
Database example, this is incredibly tedious.
LI.

■ SOFTWARE REVIEW

Voss
Virtual Object Storage System for

SmalltalklV

Seamless persistent object management with update transaction
control directly in the Smalltalk language.

● Transparent access to Smalltalk objects on disk

● Transaction commit/rollback

● Access to individual elements of virtual
collections and dictionaries

● Multi-key and multi-value virtual dictionaries
with query by key range and set intersection

● Class restructure editor for renaming classes
and adding or removing instance variables
allows incremental application development

● Shared access to named virtual object spaces

● Source code supplied

loflic pl~~*~~~~~*ksizeq"ir~.vi~,~asteKadandE.&a~aCCe~~.

Available now for Smalltalk/V2S6 $149+ $15 shipping

IRTS Logic Arts Ltd. 75 Hemingford Road, Cambridge, England, CB1 3BY

TEL +44 223212392 FAX +44223245171

22.
Experienced Smalltalk/V Windows and Smalltalk/V PM

developers probably noticed that WindowBuilder uses

WBTopPane as the parent of application windows rather than
the more flexible and powerful ViewManager class. In many

circumstances, the multi-window views supported by View-

Manager designs are not required. When use of ViewManager

is desirable, it is possible to add each WBTopManager subclass

as a view of your application’s ViewManager instance and set

the owners of all Subpanes of your WindowBuilder windows

within your window’s TopPane to the ViewManager instance.

While this is possible, I would like to see a clean and easy
“Link to ViewManager Instance” option in a future release of

WindowBuilder.

Also, there is no easy way to save WindowBuilder designs as

subclasses of other WindowBuilder subclasses. I would like to be

able to encapsulate reusable instance variables and methods for

a DDE client WindowBuilder window in a new abstract sub-

class of WBTopPane. New DDE-based WindowBuilder designs
could be created as a subclass of this abstract class. Currently,

the only way to do this is to create your new design as a subclass

of WBTopPane, file it out, remove it, edit the source and file it

back in as the subclass of your abstract subclass of WBTopPane.
Where truly high performance is required or where multi-

ple instances of a window or dialog maybe active at one time,

it is often desirable to compile a window or dialog using the
Microsoft Resource Compiler from the Windows Software De-

velopment Kit or similar tool. Stored in a dynamic link library
(DLL), such resources blast onto the screen when created and

may take advantage of DLL shared run-time functionality. A

“Write WindowBuilder Design to DLG Script” which could

be fed to the resource compiler would be useful.

Finally, WindowBuilder does not fully implement the user in-

terface standards of the Windows and Presentation Manager

supported Common User Access (CUA) protocol. CUA de.

fines the “proper” way a keyboard interface should work in

terms of tabs between control groups and arrow keys moving

within a group’s items, etc. While a W indowBuilder window

may have the “look” of a CUA-compliant window or dialog,

the user access interaction misses the mark in terms of these

subtle “feel” requirements.

HOW WINDOWBUILDER STACKS UP
WindowBuilder is a welcome addition to any Smalltalk/V
Windows developer’s toolkit. WindowBuilder will enhance

the productivity of the new as well as experienced
Smalltalk/V Windows developer.

By comparison, Digitalks forthcoming Smart Parts product
(demoed for nearly a year as the “Look and Feel Kit”) has the

potential to establish an entirely new programming paradigm for

Smalltalk application development. Smart Parts will be a radical

departure from traditional Smalltalk development procedures.

While Smart Parts will be revolutionary, WindowBuilder is a

solid evolutionary extension to Smalltalk/V development.
Try it. You will like it. Thanks, Acumen, and keep up the

good work. @

PRODUCT 1NFORMATION

WINDOWBUILDER

RETAILPRICE$149.95

SYSTEMREQUIREMENTS:

SMALLTALK/VWINDOWS,

MICROSOFrWINEOWS3.0 ORLATER

ACUMSNSOFTWARE

2140 SHATTUCKAVENUE,SUITE1008

BERKELEY,CA 94704

(415).649-0601

Jim Salmons is PresidentofJFS Consuking of Lexington, South Car-

olina. JFS Consultingspecializes in the documentation of object tech-

nolo~ products and object-based user interface revision control sys-

terns. With Irispartner, Timlynn Babitdq, Jim is coeditor of The

International 00P Directory, published by SIGS Publications. Jim

and Timlynn are also Exhibits Cochairs of the annual ACM OOP-

S.LA Conference.
THE SMALLTALKREPORT

Learn OOPfrom the gurus at

scoop

,k+;~.$+$.,:5A<$$$$$’-{.::::::::.:,.. ~:::j

SCOOP-Europe presentsa diversifiedprogram of OOP-related topics. Featuring the thought lead-

ets in the technology, this five-dayevent offers over forty intensive tutorials, lectures, and technical

paper presentations— plus a large Exhibits area.

Learn the L.zteststate ofactivipfiom such notab[es as:

Larry Constantine —

original developer of
structured design

Grady Booth — O-O

design pioneer and

author of O-O DESIGN

Brad Cox — inventor of
Objective-C,

founder of Stepstone

Tom Atwood — President
of Object Design,

O-O database pioneer

Meilir Page-Jones —
noted industry

writer and consultant

Peter Coad — author of

O-O ANALYSISand

O-O DESIGN

Michael Jackson —
Founder of Michael Jack-

son Systems, publisher of
JSP & JSK methods

Tom Love — 00P pio-
neer and noted trainer and

consultant

Marie Lenzi — Editor,
OBJECT MAGAZINE and

HOTLINE ON OBJECT-

ORIENTED TECHNOLOGY

Chris Stone — President
of the Object Management
Group

plus Steve Cook, Rob Murray, Frank Ingari, and other industry pioneers.

If you axe using object-riented technology, 01 even
considering its usage, you should attmd SCOOP-Europe.

To receivea detailed brocbure, call 091.2S2.2032, fm 071.373.~*, or return card by mail.

r ------ ------ ------ ------ ------ ------ ---- 1
I Q Yes, I want to stay current on object-oriented technology Send me a detailed brochure. ~
I
1 Name

I, T,tle Company
:

I,
I Address
, :
1 Postcode
1

Co.nxry

I Phone

I

Fax I

I
, I&turn to SCOOP-Europe,CIO13mt.nU.iv.,43 Harringto. Gardens, LondonSW74JU, UK

I

1

L------ ------ ------ ------ ------ ------ ---- J

24.
Excerpts from industry publications
still traumatized from making the migration to the RDBMS,”

THE SMALLTAL.KREPORT
. . . SmalltalkiV has been realized in DOS, Macintosh, and Win-
dows versions. Much of the code can be used across all the en-
vironments. Objects can be stored in text form, and “filed out”
and “filed in” from system to system. Because Smalltalk is an
interpreter, these objects can be introduced into a running sys-
tem. The potential exists to network together Smalltalk systems
on a number of different platforms, and to let them exchange
objects in real time. This is not something you can do with
C++. Smalltall@ has the most thorough tutorial of any of the

packages reviewed here. The manual is a complete course in
the language, and the example files give you working code for
most applications. Smalltalk is not like other computer lan-
guages. Instead of being like a musical score, it is more like a
jam session in which you create both new instruments and new
musicians as you go along. When you’ve constructed your
band, you’re ready to play. Smalltalk is extraordinarily interac-
tive, and the ideal environment for creative people. Accessibil-
ity is excellent, limited only by Smalltalk’s unusual syntax. Every
element of Smalltalk, from object creation to debugging and
running the application, takes place with a single Windows ap-
plication. Integration is total. The assistance to clear thinking,
Smalltalk’s clean handling of the Windows environment, its in-
tegration and rich data taxonomy, and its potential for inter-
platform development, make Smalltalklv the winner among all
the packages we have surveyed .. .

Breaking into Windows, Birrell Walsh,
Microtimes, 6/19/91

. . . Only the interpreted object-oriented systems such as
Smalltalk, object-oriented Lisp, and various proprietary object-
oriented development systems, have a clear edge over
Nextstep in programmer productivity. Because these systems
are unsuitable for producing commercial applications due to
their poor performance, huge size, or restrictive licensing poli-
cies, it is hard to refute the commonly heard claim that the
Nextstep environment is the most productive mainstream de-
velopment environment available today . . .

The Next Next, Scott Raney,
UNIX World, 7/91

... Smalltalk is not about to replace COBOL, but it is finally ma-
turing into a viable choice in application development, espe-
cially for users looking for a tool to speed development of ad-
vanced graphical user interfaces in clientfserver applications . . .
AS a dynamically compiled language built on reusable objects
and a virtual interface that uses machine-independent, interme-
diate code, Smalltalk is also easily portable between the plat-
forms it supports . . .

... there is still no widely accepted development methodology
for Smalltalk or for any other object-oriented environment. In
addition, many users are still making the transition to the rela-
tional model and structured programming techniques. “Most
[IS developers] still don’t know what to do with objects. They’re
says Natasha Krol, application program director at the Meta
Group in Stamford, Corm. Smalltalk also faces increasingly stiff
competition not only from other object-oriented languages
such as C++ but also from new GU1-building tools, such as
Easel from Easel Corp, and Actor from Whitewater Group . . .

Smalltalk Grows Up, Jeff Mead,
Datamation, 7/15/91

IBM will postpone its scheduled announcement of support for
object-oriented technology in AD/Cycle until later this year . . .
IBM had planned to announce by the end of this month sup-
port for the Digitalk Smalltalk language in its strategic software
development environment. When it does make the announce-
ment, IBM said, it will also provide a more substantial state-
ment of direction for AD/Cycle and object-oriented languages
as well as methodologies . . . The AD/Cycle announcement will
focus more on how object-oriented technology will affect the
whole development life cycle . . . rather than on an individual
product . . . IBM still plans to include Smalltalk in AD/Cycle and
will also recognize C++ as an AD/Cycle language . . .

IBM puts off object-oriented support, Rosemary Hamilton,
Computerworld, 6/1 7191

.. . GUIS, however, are not a prerequisite of 00P programs,
But, the two have become closely identified because GUIS in-
crease the size and complexity of programs to the point where
traditional programming methods cannot manage them effec-
tively. 00P, on the other hand, can easily accommodate the
programming of GUIS. In fact, Smalltalk, one of the first com-
pletely object-oriented languages, incorporates a graphical en-
vironment of menus, windows and scroll bars . . .

Programming with Modules,
Chemical Engineering, 6/91

V

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in thisjeature should send press releases to our editm”aloffices, Product Announcements Dept., 9 J Second Ave.,

Ottawa, Ontario KI S 2H4, Canada.
Logic Arts announces VOSS: virtual object storage

system for Smalltalk/V

Logic Arts’ virtual object storage system, VOSS, is available now for

SmalltalkN 286. Voss object management facilities include: persis-

tent storage, transparent access, virtual collection and virtual dic-

tionary, multikey access, a class restructure editor, and import/ex-

port, in which administration facilities provide for backup, restore,

renaming, import/export between machines, or access over a net-

work. VOSS also features performance tuning: the control panel al-

lows cache size and other parameters to be tuned for optimum

performance, according to the degree of object volatility and ran-

dom v. sequential access to virtual collections. Many of the new

classes are independently reusable. SmalltalkN286 source code is

supplied. VOSS requires SmalltalkN286 and MS-DOS.

For further information, contact Logic Arts, Ltd., 75 Hemingford Rd., Cam-
bridge CBI 3BY, UK, (0223) 212392, or fax (0223) 245171.

Tigre ships multiplatform rapid GUI

application builder

Tigre Object Systems, Inc. of Santa Cruz, CA, is now shipping the

Tigre Programming Environment. Tigre implements the capability

to build graphical user interface applications quickly for instant use

on multiple computer platforms and heterogeneous networks,

Color applications created by Tigre run without modification on

Windows 3.0. Macintosh 11,Sun/3, Sun SPARCstation, IBM RS/6000,

Digital DECstation, Hewlett-Packard’s HP 9000 Series 300 & 400,
Apollo Series 2500, 3500, 4500, Sequent superminis, and on mixed

networks of these, Additional platforms will follow. Tigre, a fully ob-

ject-oriented system, uses Objectworks\Smalltalk Release 4 by Par-

cPlace Systems as its scripting language.

For further information, contact Tigre Object Systems, 3004 Mission St.,
Santa Cruz, CA 95060, (408) 427-4900, or fax (408) 457-1015.

Digitalk announces SmalltalkN developer conference

Digitalk, Inc. announced their first developers’ conference,

SmalltalkN Dev Con ’91. The conference will take place September

11-13 at the Universal City Hilton and Towers in Universal City (Los

Angeles), CA. Sponsored by Digitalk and B~E magazine, the con-

ference will include a wide range of technical topics, panel discus-

sions, speakers, and product demonstrations. Events include: ses-

sions on design, management issues, application delivery,

SmalltalkN internals, integrating with other languages, integrating

with other products, etc., as well as panel discussions, and industry

guest speakers.

For further information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.

Instantiations announces new engineering tools

and version management for Smalltalk

Instantiations, Inc. announced that it has developed a powerful new
OL. f, NO. f: &iiTEMEER1991
set of software engineering tools to support developers usinq

Objectworks\Sma~talk called Application Organizer’ Plus. Th~prod-

uct is an integrated set of tools that give Smalltalk users new ways

to structure applications, manage code, and optimize reuse and

was specifically designed to provide these capabilities without

sacrificing the freedom and high level of interactivity that are the

essence of Smalltalk programming.

Application Organizer Plus provides the Objectworks\Smalkalk de-

veloper with version management, improved code modularity, en-

hanced reusability, smaller delivered applications, new browsers,

and workspace enhancements.

For further information, contact Instantiation, Inc., 921 S.W. Washington,
Ste. 312, Portland, OR 97205, (503) 242-0725,

Digitalk ships new release of Smalltalk/V Windows

Digitalk, Inc. announced a new release of SmalltalkN Windows,

which combines Digitalk’s widely used object-oriented program-

ming environment with Microsoft Windows 3.0, SmalkalkN Win-

dows Release 1.1 contains an icon editor, performance improve-
ments, better memory utilization, and many new programming

examples demonstrating usage of Windows features.

SmalltalkN Windows includes standard SmalltalkN features such as

source code browsers, inspectors, and push-button debuggers. In

addition, SmalltalkN Windows provides interfaces to dynamic data

exchange (DDE), allowing information to be shared between

SmalkalkN programs and other programs and dynamic link li-

braries (DLls), providing a mechanism for calling code written in

other languages from within Smalltalk/V. Smalkalk# Windows

source code is compatible with Digitalk’s SmalltalkN PM program-

ming environment for 0S/2.

For further information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.

Digitalk announces royalty-free runtime

Digitalk, Inc. announced new versions of SmalltalkN DOS and

SmalkalkN Mac that include royalty-free runtime. SmalkalkN Win-

dows and SmalltalkN PM are already royalty-free.

The SmalltalkN DOS Version 3.0 runtime system allows developers

to create standalone executable applications and includes inte-

grated EGNVGA color. Registered users of earlier versions of

SmalltalkN may purchase an upgrade that includes a new manual.

The new version of SmalltalkN Mac allows developers to create

standalone, double-clickable applications with no additional royalty

payments. Prior to this new policy, there was a per-copy charge for

runtime applications. Registered users of earlier versions of

SmalltalkN may purchase an upgrade.

For further information, contact: Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.
25.

me S~ n@POfi stimulates, tracks, and evaluates usage of Smalltalk. Get accurate coverage on current trends,

echniques, the latest ideas and industry news. For users on all levels and dialects of Smalltalk.

Don’t Delay! Become a Charter Subscriber Today!
------ ------ ------ ------ ------ ------------ ------ ----------- -------- ------ ------ --------- J
~ Yes, enter my Charter Subscription at the term indi-

:ated. This is risk-free offer. I can cancel at any time and get

I refund of the unused portion of my subscription.

I year (9 issues) 2 years (I8 issues)

Ci $65 Domestic C)$120
c1 $90 Foreign (includes air service) Cl $ I TO

Q Check enclosed D Bill Me

Cl Charge my Cl Visa Cl MasterCard

Card # Exp. Date

Signature

For fastersarvicejcall212.274.0640 or fax 212.274.0646.
Make checks payable to* $~ ~Opd in US dollars drawn on a

US bank.

I
II

Name I
I
I

Title I
I
I

Company
I
I
I
I

Address I
I
I

City State zip
I
I
I
I

Phone I
I
I
I

Return to The SmailtelkReport II
Subscriber Services, Department SML j

PO Box 3000
I
I

Denville, NJ 07834
I

DIJA ~
1

------ ------ ------ ------ ------ ------ ------ ---------- ------ ------ --------- -------- ------- J

ParcPlace announces 4GL application development

tool for Objectworks\Smalltalk

ParcPlace systems announced the availability of FACETS, a devel-

opment tool for use when building applications in

Objectworks\Smalltalk Release 4. FACETS, supplied by Reusable

Solutions, was designed to help create screen-based, data-inten-

sive applications such as order entry, financial processing, and

other database-oriented 4GL applications. In conjunction with

Objectworks\Smalltalk Release 4, FACETS provides an extendable

object-oriented 4GL development environment and series of on-

screen forms that guide the user through the rapid generation of

interface components.

FACETS is fully compatible with Objectworks\Smalltalk Release 4

and fully portable across all supported platforms, and allows full

connection to Servio’s Gemstone interface for powerful database

connectivity.

For further information, contact ParcPlace Systems, 1550 Plymouth St.,
Mountain View, CA 94043, (800) 759-PARC.

26.

Object Technology International announces an ob-

ject-oriented team development environment for

0S/2 and Windows

Object Technology International, Inc. (OTI) announced the immedi-

ate availability on 0S/2 and Windows of Release 1.0 of ENVY/De-

veloper, an object-oriented team programming environment. With

ENVY/Developer, development teams using Smalltalk may work

concurrently on both 0S/2 and Wndows, sharing code and data

using the tools provided by the environment.

The environment supports the full manufacturing Iifecycle including

prototyping, development, interactive debugging, performance

analysis, packaging/delivery, and maintenance of large systems

written in Smalltalk, and provides all tools required to realize the

benefita of object-oriented software development. ENVY/Devel-

oper is currently the only toolset for delivering large systems incor-

porating advanced object-oriented technology.

For further information, contact Object Technology International, Inc., 1785

Woodward Dr., Ottawa, Ontario K2C 0P9, Canada, (613) 228-3535, or fax

(613) 228-3532.

THE SMALLTALKREPORT

1980 Smalltalk Leaves The Lab. We were there.

1984 First Commercial Version Of Smalltalk. We were there.

1985 First Industrial Quality Smalltalk Training Course. We were there.

1987 First Fully Integrated Color Smalltalk System. We were there.
1988 ResponsibilityDriven Design Approach Developed. We were there.
1991 Smalltalk Mainstreamed in Fortune 100 Applications. WE ARE THERE.

Smalltalk Technology Adoption Services
Technology Fit Assessment

Expert Technical Consulting

Object-Oriented System Design/Review
Proof-of-Concept Prototypes

Custom Engineering Services & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

ObjectWorks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltalk

Mentoring:

Project-focused team and individual learning experiences.

Smalltalk Development Tools
Application Organizer PiusTM Code Modularity& Version Management Tools

See our new Multi-User/Shared Repository Team Tools AtOOPSIA91 !

Smalltalk! Nobody Does It Better.

Instantiation, Inc.
1.800.888.6892

‘z

wINDowsANDos/2:
l?Rm EN)DEUS?IIRI

NowmG.
IDWindows and 0S/2, you need prototypes. YOUhave to get a sense

for what an application is going to look like, and feel like, before you can write

it. And you can’t afford to throw the prototype away when you’re done.

With Smalltalk/Y you don’t.

Start with the prototype. There’s no development system you can buy

that lets you get a working model working faster than Smalkalk/V

Then, inaementally, grow the prototype into a finished applica-

tion. TU out new ideas. Get input from your users. Make more changes.

Be creative.

Smrdltalk/Vgives you the freedom to experiment without risk. It’s

made for trial. And error. You make changes, and test them, one at a time.

Safely. You get immediate feedback when you make a change. And you can’t

make changes that break the system. It’s that safe.
And when you’re done, whether you’re writing applications for

Windows or OS/2, you’ll have a standalone application that r~s on both.

Smalltalk/v code is portable between the Windows and the 0S/2 versions.

And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at

Smalltalk/V today. it’s time to make sl’nalltalklv
that prototyping time productive.

Smalltalk/V is a rwktenxl trademarkof Digitalk, Inc. Other product names are trademarksor registered
trademarksof their-reqxxtive holders -
Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082; FSX(213) 645-1306

LOOK WHO’S TALKING
HEWLETT-PACKARD NCR

HP has developeda network trouble- NCR basan integrated testprogram develojs-
sbooting toolca[ledthe Network Advisor ment environment for digital,analogand
The Network Advisor offersa com@ben- mi.wd mode printed circuit board testing.

sive set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK

prob[em isokztion.The NA user interface is Midkmd Bank builta Windowed Technical
buitt on a windowingsystem wbkb allows TradingEnvironment for currency, futures
multiple applicationsto be executed and ~tocktroders using Smidltalk Y
simultaneously.

KEYmms
H World’s leading, award-winning obje~-

oriented programming system

■ Complete prototype-to-delivery system

H Zero-cost runtime

■ Simplified application delivery for
creating standalone executable (.EXE)
applications

■ Code portability between Smalltalk/V
Wksd&vs and Smalltalk/V PM

W Wrappers for all Windows and 0S/2
controls

■ Support for new CUA ’91 controls for
0S/2, including drag and drop,booktab,
containe~ value set, slider and more

■ Transpanmt support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) C&

■ Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and 0S/2 class libraries, tutorial
(printed and on disk), extensive samples

■ Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

■ Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This SmalltalVV Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalkalk/V PM applications are used to
develop state-of-the-art CUA-compliant
appfimtions —and they’re p+xtable to
Smalkalk/V Windows.

	By ArticleTitle
	Compressing changes in Smalltalk/V Windows
	Giving application windows dialog box funtionality in Smalltalk/V PM
	Lab Report: The Typed Smalltalk project at the University of Illinois
	Messages: Smalltalk , organization, and you
	Should classes have owners?
	The Commercial Evolution of Smalltaik
	 WindowBuilder: An interface builder for Smalltalk/V Windows

	By Author Name
	Ewing, Juanita
	Hendley, Greg
	Johnson, Ralph
	Nabi, Abdul
	Rovira, Charles-A
	Salmons, Jim
	Smith, Eric
	Wirfs-Brock, Allen

	By Topic
	Getting Real
	GUIs
	Product Review

