A New Generation of Class Blueprint

Nour J. Agouf*, Stéphane Ducasse, Anne Etien, Michele Lanza.
*Arolla, Inria, Univ. Lille, CNRS, Centrale Lille,

UMR 9189 - CRIStAL-France
nour-jihene.agouf@arolla.fr

Universite " S @R|StAL Gcentralelille

QI‘O//Q lrezia de Lille

mailto:nour-jihene.agouf@arolla.fr
mailto:nour-jihene.agouf@arolla.fr

jl‘/

N s~
Sifm SN
==

ok

O

E ARE GRAFTER

AROLLA IS A CONSULTING COMPANY SPECIALIZED IN
THE ADVANCED TECHNIQUES OF SOFTWARE,
DEVELOPMENT: CLEAN CODE, TDD, BDD, LEGACY

REMEDIATION, etc.

Ing

e
: £
nnu N
o
=
D qe!
= VR 7
S5
D

E E
- 2
O T
-

an i =

e

'
-

Pon

.

e U L

é{

A
oo

CodeCrawler

~

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO.1, JANUARY 2005 75

The Class Blueprint: Visually Supporting
the Understanding of Classes

Stéphane Ducasse and Michele Lanza, Member, IEEE

Abstract—Understanding source code is an important task in the maintenance of software systems. Legacy systems are not only

limited to procedural languages, but are also written in object-oriented languages. In such a context, understanding classes is a key
activity as they are the cormnerstone of the object-oriented paradigm and the primary abstraction from which applications are built. Such
an understanding is however difficult to obtain because of reasons such as the presence of late binding and inheritance. A first level of
class understanding consists of the understanding of its overall structure, the control flow ameng its methods, and the accesses on its
attributes. We propose a novel visualization of classes called class blueprint that is based on a semantically enriched visualization of
the internal structure of classes. This visualization allows a software engineer to build a first mental model of a class that he validates
via opportunistic code-reading. Furthermore, we have identified visual patterns that represent recurrent situations and as such convey
additional information to the viewer. The contributions of this article are the class blueprint, a novel visualization of the internal structure
of classes, the identification of visual patterns, and the definition of a vocabulary based on these visual pattemns. We have performed
several case studies of which one is presented in depth, and validated the usefulness of the approach in a controlled experiment.

Index Terms—Object-oriented programming, software visualization, reverse engineering, visual patterns, smalitalk.

1 INTRODUCTION

IT has been measured that, in the maintenance phase,
software professionals spend at least half of their time
analyzing software to understand it [1] and that code
reading is a viable verification and testing strategy [2], [3].
Sommerville [4] and Davis [5] estimate that the main-
tenance of a software system accounts for 50 to 75 percent of
its overall cost. These findings show that understanding
source code is an important task in the maintenance of
software systems.

Legacy systems are not only limited to procedural
languages, but are also written in object-oriented languages.
Contrary to what one may think, the object-oriented
programming paradigm has exacerbated this problem,
since in object-oriented systems the domain model of the
application is distributed across the whole system and the
behavior is distributed accross inheritance hierarchies with
late-binding [6], [7], [8].

Reading object-oriented code is more difficult than
reading procedural code [9]: In addition to the difficulties
introduced by the technical aspects of object-oriented
languages such as inheritance and polymorphism [6], the
reading order of a class’ source code is not relevant as it was
in most of the procedural languages where the order of the
procedures was important and the use of forward declara-
tions required. This lack of reading order is emphasized in

e S. Ducasse is with the Software Composition Group, Institute of Applied
Mathematics and Computer Science, University of Bern, Neunrueckstrasse
10, 3012 Bern, Switzerland. E-mail: ducasse@iam.unibe.ch.

e M. Lanza is with the Faculty of Informatics, University of Lugano, Via G.
Buffi 13, 6900 Lugano, Switzerland. E-mail: michele lanza@unisi.ch.

Manuscript received 1 June 2004; revised 8 Oct. 2004; accepted 22 Dec. 2004;
published online 9 Feb. 2005.

Recommended for acceptance by |. Knight.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0103-0604.

0098-5583/05/320.00 « 2005 |EEE

languages such as Smalltalk, a language based upon a
powerful integrated development environment (IDE) in
which the concept of source files is used only for external
code storage, but seldom for code editing. Moreover, even
for file-based languages like Java, IDEs such as Eclipse’ are
literally eclipsing the importance of source files and putting
forward a code browsing practice as in Smalltalk.

Understanding classes is of key importance as they are
the cornerstone of the object-oriented paradigm and the
primary abstraction from which applications are built.
Therefore, there is a definitive need to support the
understanding of classes and their internal structure. In
the past, work has been done to support the under-
standing of object-oriented applications [10], [11], [12].
Some other work focused on analyzing the impact of
graphical notation to support program understanding
based on control-flow [3]. Such approaches are powerful
for supporting the identification of design patterns, but
too generic and not fine-grained enough for the specific
purpose of class understanding.

In this article, we present an approach to ease the
understanding of classes by visualizing a semantically
augmented call and access-graph of the methods and
attributes of classes. Our approach only takes into account
the internal static structure of a class and focuses on the way
methods call each other and access attributes, and the way
the classes use inheritance, i.e.,, we leave out the runtime
behavior of a system.

We have coined the term class blueprint, a visualization of
a semantically augmented call-graph and its specific
semantics-based layout. The objective of our visualization
is to help a programmer to develop a mental model of the
classes he browses and to offer support for reconstructing
the logical flow of method calls. Our approach targets the

1. See http:/ /www.eclipse.org/ for more information.

Published by the IEEE Computer Society

Authorized licensed use limited to: INRIA. Downloaded on August 07,2022 at 22:25:12 UTC from IEEE Xplore. Restrictions apply.

The Class Blueprint OI”O//O

Is a representation of static data of classes in object-
oriented programming. It gives an overview of a taste of
the class, focusing on methods classification and

displaying their call-tflow.

t Vi

111

Class Bluepr

V1: Methods/attributes classification Q rOII Q

Initialization Externals Internals Accessors Attributes

V1: Methods/attributes nodes Q rO// Q

Initialization Externals Internals Accessors Attributes

]

L0

V1: Method node metrics OI‘O// Q

Initialization Externals Internals Accessors Attributes

A
Number of
e 1 O

V1: Attribute node metrics

arofla

Initialization Externals Internals

Number of
LOC

]

10

|

Accessors Attributes

]
[]

i

Number
of

external
accesses

Number
of

internal
accesses

V1: Simple line connection Q rO// Q

Initialization Externals Internals Accessors Attributes

Black line: Connection
between methods

Cyan line: Connection from
accessors to attributes

11

V1: Node type = a Color OI’O// Q

Initialization Externals Internals Accessors Attributes

Abstract
Extending
Overriding

Delegating

\ "\

Constant

Internal Implementation
Other

Attribute

Getter

BEORLUEBEO0OEON

Setter

=
=

RMODPublicationsBblForReportDocBuilder class

12

V1: Limitations

- Obsolete classification of methods

- Missing information about attribute accesses

- The interplay between instance side and class side is not well supported
- Does not heed dead code

- Unclear direction of links

- Does not show the occurrences of method names

- A method cyclomatic complexity is not revealed

~ Does not show if a method 1s tested or not

Class Blueprint V2

V2: Merging attributes & accessors layers QrO// Q

Initialize Externals Internals Attributes

15

V2: Superclass attributes Q rO// Q

Initialize Externals Internals Attributes

Superclasses
Attributes

Instance Side
Attributes

V2: Static vs Instance

arofla

Static Methods

Initialize Externals Internals

17

Static
Attributes

Superclasses
Attributes

Instance Side
Attributes

V2: Used vs Unused code

arofla

Static Methods

Initialize Externals Internals

Dead Methods

18

Static
Attributes

Superclasses
Attributes

Instance Side
Attributes

Dead
Attributes

V2: Segment connection Q rO// Q

Static T |
Instance SsNa i

N

Dead %

19

V2: Border width = Occurrences QrO// Q

Monomorphic: One method by
that name in the whole project. /
_
_
.
T
_

method

Polymorphic: Commonly named £

Megamorphic: Frequently
named methods

20

V2: Border color = Cyclomatic complexity QrO// Q

DI;I

!
| —_—

|
.]

V2: Sub-hierarchy attribute access Q rO// Q

Green: Accesses 1n the class and
in the subsystem

Blue: Accesses 1n the class

22

V2: Attribute protectors Q ro// Q

Accessor

Setter TopT ‘
Getter Bottom l ‘

Lazy Initializer Bottom l .

Setter

Lazy Initializer

23

V2: Test annotation Q rO// Q

Tested method

24

V2: Abstract reimplementation Q rO// Q

Abstract & Reimplemented

25

Va: Recan _ arolla

Merging attributes & accessors layers

Superclass attributes

—
Static vs Instance side iy <

Used vs Unused code j
Segment connection ClassBlueprint V1

Method names occurrences

Cyclomatic complexity

Sub-hierarchy attribute access -
O
Detection of lazy initializers

Detection of tested /untested methods ClassBlueprintV2

Reimplemented abstract methods
20

Evaluation.

AYAYAYAYA

Qualitative Quantitative

https://pixels.com/profiles/leon-zernitsky
https://pixels.com/profiles/leon-zernitsky

Evaluation: Protocol Q rO// Q

Invited people from the community
(26 participants)

@

@d% Individual/ Group meetings

a The meeting took from 10 to 25 minutes

28

Evaluation: What we asked for? Q rO// Q

Select a project they wish to analyze
Use the visualization on the selected project
Screen record the experiment

Write a report summarizing their findings

SR N

Fill the post-experiment survey

29

Evaluation: About the projects Q rO// Q

Project #Packages #Classes Median of methods Doma
Avatar 2 18 6 Proxy
~ Sindarin | 3 I 14 Debugging
.. MoTion | 23 S R I Pattern Machine =~~~
____________________________ Clap B AT 8 Parsng
__________________________ Slang | 2 T8 .29 .. Virtualmachine
______________ Polyphemus | 3 T 9 ... Virtual machine
__________________ AsT-Core | 3 w0t oo .21 Domain-Specific-Language
________________ Reflectivity | 5~~~ oug4 o ..13 Domain-Specific-Language
.,brud | R V. B D 12 . Virtual Machine
________________________ Seeker | 2 236 9 Debugging
_________________ MooseIDE |~ 16 250 o8 o Analysis
___________________ Polymath | 60 309 ou i Computing
_______________ Refactoring | 12 378 6 ... Refactorings
... AlPharo | 85 D I Artificial Intelligence
______________________ Roassal | 39 445 12 o . Visualizations
. lceberg |\ 11 o 488 10 Version Control
_________________________ Fylgga | 78 941 A5 ... Migration
Microdown 29 268 11 Parsing

The projects chosen by the participanécos englobe several domains (19 projects)

Evaluation: About the participants Q rO// Q

The participants have diverse profiles:
e Interns
e Developers

e PhD students

e Researchers

31

Evaluation: About the participants Q rO// Q

Debutants

10 %

45 %

Experts

Intermediary

—35 %

Advanced

10 %

Participants level of knowledge about the project.

32

Evaluation: Qualitative Q rO// Q

Screen records Findings reports

(over 600 hours)

Analyse data about the human-visualization interaction

33

Qualitative evaluation: What didwefiniz __aroffa

Qualitative evaluation: Flight over Q rO// Q

Empty Classes
Big Classes
Complex Classes

Dying Classes

SRR

Tested/Untested Classes

35

Qualitative evaluation: Plungein ______arolfa

Duplicated Code
Complex Methods
Dead Code

Long Method Comments
Tested/Untested Methods

Evaluation: Quantitative

arofla

1. The visualization helps in understanding the:

Strongly agree Agree Undecided Disagree Strongly Disagree
Code/State of a class is reused 15% 46% 15% 23%
Reused code from the superclass 3% 23% 53% 19%
Class/instance side communication 19% 53% 19% 7%
Design of the class 7% 38% 30% 23%
Mono/poly/megamorphic methods 26% 46% 26%
2. Does the visualization help in detecting:
Dead code 26% 46% 11% 3% 11%
Complex methods 46% 38% 11% 3%
Tested/Untested methods 34% 34% 190% 7% 3%
3. The visualization is: EE
Scalable 3% 42% 30% 15% 7% Il —
= -
Easy to use 15% 76% 7% =
a7 Quantitative

Anecdotal evidence Q rO// Q

44

- - %;\.I %-\\

In the MicHTMLDoc class we could exclusively
see the tested and untested methods.

27

- From the Microdown project

38

Anecdotal evidence Q rO// Q

44

Dead methods correspond mostly to
unused code that I forgot to remove.

27

- From the Seeker project

39

Anecdotal evidence Q rO// Q

44

I found obsolete prototype code by
taking a look at these long methods

27

- From the Seeker project

40

Anecdotal evidence Q rO// Q

14

The visualization also helped me quickly identify dead code and eliminate it. As
this 1s a new project (early stage of development) I didn’t remove all dead
methods or classes, but in other kinds of projects I would do it.

27

- From the Druid project

41

Anecdotal evidence Q rO// Q

44

I couldn't used it in the large classes, those
are the most interesting to analyze.

27

- From the Iceberg project

42

Conclusion

arofla

An enhancement of the Class Blueprint
visualization based on new requirements

Qualitative & quantitative evaluations on 26
participants and 19 projects

Participants reported some interesting
findings about anomalies in their software

A New Generation of CLASS BLUEPRINT

Nour Jihene Agouf', Stéphane Ducasse?, Anne Etien?, Michele Lanza3
1: Arolla and Univ. Lille, CNRS, Inria, Centrale Lille
2: Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL — 3: Software Institute, USI Lugano, Switzerland

Abstract—In object-oriented programming, classes are the pri-
mary abstraction mechanism used by and exposed to developers.
Understanding classes is key for the development and evolution
of object-oriented applications. The fundamental problem faced
by developers is that while classes are intrinsically structured
entities, in IDEs they are represented as a blob of text. The
idea behind the original CLASS BLUEPRINT visualization was to
represent the internal structure of classes in terms of fields, their
accesses, and the method call flow. Additional information was
depicted using colors. The thus created visualization proved to be
an effective means to support program comprehension. However,
a number of omissions rendered it only partially useful.

We propose CLASS BLUEPRINT V2 (in short BLUEPRINTV2),
which in addition to the information depicted by CLASS
BLUEPRINT also supports dead code identification, methods
under tests, and calling relationships between class and instance
level methods. In addition, BLUEPRINTV2 enhances the under-
standing of fields by showing how fields of super/subclasses are
accessed. We present the enhanced visualization and report on a
first validation with 26 developers and 18 projects.

Index Terms—Visualization, program comprehension, code
quality.

I. INTRODUCTION

Understanding application logic is a time-consuming task
during maintenance and software evolution. Researchers report
that over half of the maintenance time is spent on reading and
understanding source code [1], [2],where developers pore over
source code, looking for clues that help them to construct
a coherent mental model of a system [3], so as to make
appropriate changes while ensuring its quality [4]-[6].

This is a difficult undertaking for any programming lan-
guage, however maintaining and monitoring the quality of
an object-oriented system is more complex than for pro-
cedural programs [7], [8], due to several reasons, such as
inheritance and polymorphism [9]-[12]: Inheritance and poly-
morphism increase the flexibility of programs by allowing
dynamic binding of messages. Inheritance allows the extension
of an existing behavior through an inheritance hierarchy;
polymorphism the performance of a task in multiple forms,
with different objects responding to messages with the same
name but different implementations. What can and should be
considered a strength of object-oriented languages de facto
hinders program comprehension [11], [12]. Dynamic binding
of messages leads to more complex traceability of the call flow
of a program since the type of the object receiving the message
is determined at runtime. To follow the call flow of a program,
developers proposed several approaches, including integrated
development environments (IDE) and debuggers [13].

However, the usage of such tools is often too fine-grained,
and thus time-consuming. Software visualization can provide
a graphical view of a piece of software rather than a sequence
of source code text. To this end, researchers proposed several
visualization approaches, both in 2D [14] and 3D [15], [16].
Lanza and Ducasse [17] proposed the CLASS BLUEPRINT
visualization to help developers get a “taste” of the class.
CLASS BLUEPRINT presents the internal structure of classes
in terms of fields, their accesses, and the method call-flow.
Additional information was represented using colors. The
authors classified classes based on their internal structure [18].
Regardless of its effectiveness, it did not display some up-to-
date properties of object-oriented programming.

We present BLUEPRINTV?2, an extension of the CLASS
BLUEPRINT visualization based on updated requirements for
program understanding. This approach discerns it from other
(visualization) techniques that focus on views of sequential
text, by offering a technical portrayal of the class per se.
BLUEPRINTV2 supports the identification of dead code (single
and branch), methods under tests, and call flow between
instance and class (static) methods. It also enhances fields
understanding by showing how fields of super/sub-classes are
accessed, as well as lazy initialization in a compact form.
In addition to hook understanding from a superclass point of
view. After detailing the principles behind BLUEPRINTV 2, we
discuss its in-vivo validation with developers.

II. LiMITS OF CLASS BLUEPRINT

The CLASS BLUEPRINT visualization was created to help
developers understand class structures [17], [18]. It decom-
poses classes into layers representing the invocation sequence
going through external, internal, and accessor methods. This
decomposition into layers organizes the method call-graph,
and allows one to see which attributes are accessed by which
methods, directly or through their accessors (see Figure 1).

]

Fig. 1. A class blueprint from [18] with 5 layers: initialization, interface,
internal implementation, accessor and attribute.

