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Abstract—JavaScript is the de facto programming language for
the Web. It is used to implement mail clients, office applications,
or IDEs, that can weight hundreds of thousands of lines of
code. The language itself is prototype based, but to master
the complexity of their application, practitioners commonly rely
on some informal class abstractions. This practice has never
been the target of empirical investigations in JavaScript. Yet,
understanding it would be key to adequately tune programming
environments and structure libraries such as they are accessible
to programmers. In this paper we report a large and in-
depth study to understand how class emulation is employed in
JavaScript applications. We propose a strategy to statically detect
class-based abstractions in the source code of JavaScript systems.
We used this strategy in a dataset of 50 popular JavaScript
applications available from GitHub. We found systems structured
around hundreds of classes, suggesting that JavaScript developers
are standing on traditional class-based abstractions to tackle the
growing complexity of their systems.

I. INTRODUCTION

JavaScript is the de facto programming language for the
Web [1]. The language was initially designed in the mid-
1990s to extend web pages with small executable code. Since
then, its popularity and relevance has only grown [2], [3].
For example, JavaScript is now the most popular language at
GitHub, considering new repositories created by language. It is
also reported that the language is used by 97 out of the web’s
100 most popular sites [4]. Concomitantly with its increasing
popularity, the size and complexity of JavaScript software is in
steady growth. The language is now used to implement mail
clients, office applications, IDEs, etc, which can reach several
hundred thousands lines of code1.

Despite the complexity, size, and relevance of modern
JavaScript software, little research investigated how developers
effectively organize and manage large JavaScript software
systems. Specifically, JavaScript is an imperative, and object-
oriented language centered on prototypes, rather than being a
class-based language [1], [5], [6]. Despite not having explicit
class constructions, the prototype-based object system of the
language is flexible enough to support the implementation
of mainstream class-based abstractions, including attributes,
methods, constructors, inheritance hierarchies, etc. However,
structuring a software around such abstractions is a design
decision, which should be taken by JavaScript developers. In
other words, the language is flexible enough to support different

1http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-
collection-of-javascript-code-lines-in-the-world, verified 11/15/2014

modularization paradigms, including procedural programming
(e.g., a system is as set of functions, like in C), modular
programming (e.g., a system is a set of modules that encapsulate
data and operations, like in Modula-2), and class-based object-
oriented programming (e.g., a system is a set of classes, like
in Java).

In this paper, we report an empirical study conducted to
shed light on how often JavaScript developers modularize
their systems around abstractions that resemble object-oriented
classes. An in-depth understanding of this phenomena can
contribute to the design of better programming environments
for JavaScript, with support for example to class-based pro-
gram views. It can also contribute to specifying tools for
helping JavaScript developers on designing, understanding,
and evolving JavaScript classes. Finally, the new standard
version of JavaScript, named ECMAScript 6, will include
syntactical support for classes [7]. Therefore, revealing how
JavaScript developers currently emulate classes might be a
valuable information for developers that plan to use classes in
their systems, according to this new standard syntax.

The main contributions of our work are as follows:
• We document how prototypes in JavaScript are used to

support the implementation of structures including both
data and code and that are further used as a template for
the creation of objects (Section II). In this paper, we use
the term classes to refer to such structures, since they have
a very similar purpose than the native classes available in
mainstream object-oriented languages.

• We describe a strategy to statically identify classes in the
code of JavaScript software, as described in Section III.

• We propose an open-source supporting tool, called
JSCLASSFINDER, that practitioners can use to detect
and inspect classes in JavaScript software. This tool is
described in Section III-B

• We provide a thorough study on the usage of classes in
a dataset of 50 popular JavaScript software available at
GitHub (Section IV). This study answers the following
research questions: (a) How often JavaScript developers
use classes? (b) How often JavaScript developers use
inheritance? (c) What is the size of JavaScript classes (in
terms of number of methods and attributes)?

II. CLASSES IN JAVASCRIPT

This section lists the different mechanisms to emulate classes
in JavaScript. To describe these mechanisms we conducted an



informal survey on documents available in the web, including
tutorials2, blogs3, and StackOverflow discussions4. We also
surveyed a catalogue of five encapsulation styles for JavaScript
proposed by Gama et al. [8] and JavaScript books targeting
language practitioners [9], [10].

Basically, objects in JavaScript are sets of name-value pairs.
The names are strings, called properties, and the values are
numbers, booleans, strings, functions, etc. To implement classes
in JavaScript — i.e., data structures that resemble the class
concept of mainstream object-oriented languages — the most
common strategy is to use functions. Particularly, any function
can be used as template for the creation of objects. In a function,
the keyword this is used to define properties that emulate
attributes and methods. Attributes are properties associated
to numbers, booleans, strings, etc. Methods are properties
associated to inner functions. The keyword new is used to
create objects for a class.

To illustrate the definition of classes in JavaScript, we use
a simple Circle class. Listing 1 presents the function that
defines this class (lines 1-6), which includes a radius attribute
and a getArea method.

1 function Circle (...) { // function -> class
2 this.radius= radius; // property -> attribute
3 this.getArea= function () {// function -> method
4 return (3.14 * this.radius * this.radius);
5 }
6 }
7 ...
8 // Circle instance -> object
9 var myCircle = new Circle (10);

Listing 1. Class declaration and object instantiation

Each object in JavaScript has a default prototype property
that refers to another object. To evaluate an expression like
obj.p, the runtime starts searching for property p in obj, then
in obj.prototype, then in obj.prototype.prototype, and
so on until it finds the desired property or reaches an empty
object. When an object is created using new C its prototype

is set to the prototype of the function C, which by default
is defined as pointing to an Object. Therefore, a chain of
prototype links usually ends at Object.

By manipulating the prototype property, we can define
a method whose implementation is shared by all object
instances. It is also possible to define properties shared by
all objects of a given class, akin to static attributes in class-
based languages. In listing 2, Circle includes a pi static
attribute and a getCircumference method. It is worth noting
that getCircumference is not a method attached to the class
(as a static method in Java). It has for example access to
the this variable, whose value is not determined using lexical
scoping rules, but instead using the caller object.

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction to
Object-Oriented JavaScript

3http://javascript.crockford.com/prototypal.html
4http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-

a-class-in-javascript

1 function Circle (radius) {
2 ....
3 }
4

5 // prototype property -> static attribute
6 Circle.prototype.pi = 3.14;
7

8 // function -> method
9 Circle.prototype.getCircumference= function () {

10 return (2 * this.pi * this.radius);
11 }

Listing 2. Using prototype to define methods and static attributes

Prototypes are also used to simulate inheritance hierarchies.
In JavaScript, we can consider that a class C2 is a subclass of
C1 if C2’s prototype refers to an instance of C1. For example,
Listing 3 shows a class Circle2D that extends Circle with
its position in a Cartesian plane.

1 function Circle2D (x, y) { // class Circle2D
2 this.x = x;
3 this.y= y;
4 }
5

6 // Circle2D is a subclass of Circle
7 Circle2D.prototype = new Circle(10);
8

9 // Circle2D extends Circle with new methods
10 Circle2D.prototype.getX = function () {
11 return (x);
12 }
13 Circle2D.prototype.getY = function () {
14 return (y);
15 }

Listing 3. Implementing subclasses

Alternatively, the subclass may refer directly to the prototype
of the superclass, which is possible using the Object.create()
method. This method creates a new object with the specified
prototype object, as illustrated by the following code:

1 Circle2D.prototype=Object.create(Circle.prototype)

Table I summarizes the strategy presented in this section
to map class-based object-oriented abstractions to JavaScript
abstractions.

TABLE I
CLASS-BASED LANGUAGES VS JAVASCRIPT

Class-based languages JavaScript

Class Function
Attribute Property
Method Inner function
Static attribute Prototype property
Inheritance Prototype chaining

III. DETECTING CLASSES IN JAVASCRIPT

In this section, we describe a strategy to statically detect
classes in JavaScript source code (Section III-A). Section III-B
describes the tool we implemented to detect classes in



JavaScript using the proposed strategy. We also report lim-
itations of this strategy, mainly due to the dynamic behavior
of JavaScript (Section III-C).

A. Strategy to Detect Classes

To detect classes, we reused with minimal adaptations
a simple grammar for JavaScript, originally proposed by
Anderson et al. [11] to represent the way objects are created
in JavaScript and the way objects acquire fields and methods.
This grammar is as follows:

Program ::= FuncDecl*
FunDecl ::= function f() { Exp }
Exp ::= new f()

this.a= Exp;
this.a= function { Exp }
f.prototype.a= Exp;
f.prototype.a= function { Exp }
f.prototype= new f();
Object.create(f.prototype);

This grammar assumes that a program is composed of
functions, and that a function’s body is an expression. The
expressions of interest are the ones to create objects and to
add properties to functions via this or prototype.

Definition #1: A class is a tuple (C,A,M), where C is the
class name, A = {a1, a2, . . . , ap} are the attributes defined
by the class, and M = {m1,m2, . . . ,mq} are the methods.
Moreover, a class (C,A,M), defined in a program P , must
respect the following conditions:

• P must have a function with name C.
• P must include at least one expression new C().
• For each a ∈ A, the function C must include an assign-

ment this.a = Exp or P must include an assignment
C.prototype.a = Exp.

• For each m ∈ M, the function C must include an
assignment this.m = function {Exp} or P must
include an assignment C.prototype.m = function

{Exp}.

In the JavaScript examples of Section II we have two classes:

• (Circle,{radius,pi},{getArea,getCircumference})
• (Circle2D, {x, y}, {getX, getY})

Definition #2: Assuming that (C1,A1,M1) and (C2,A2,M2)
are classes in a program P , we define that C2 is a subclass
of C1 if one of the following conditions holds:

• P includes an assignment C2.prototype = new C1().
• P includes an assignment C2.prototype =
Object.create(C1.prototype).

In the examples of Section II, Circle2D is a subclass of
Circle.

B. Tool Support

We implemented a tool, called JSCLASSFINDER, for identi-
fying classes in JavaScript programs. As illustrated in Figure 1,
this tool works in two steps. In the first step, Esprima5—a
widely used JavaScript Parser—is used to generate a full
abstract syntax tree, in JSON format. In the second step,
we implemented an application that supports the strategies
described in Section III-A to detect classes in a JavaScript
AST in the JSON format. JSCLASSFINDER also collects the
following basic object oriented metrics: Number of Attributes
(NOA), Number of Methods (NOM), Depth of Inheritance Tree
(DIT), and Number of Children (NOC) [12].

Fig. 1. JSClassFinder

C. Limitations

The proposed strategy requires each class C to have at least
one corresponding new C expression in the program. This is
important because any function in JavaScript has access to
this and can use it to add properties to the calling object or to
the global context. For example, suppose the following code:

1 function f(x) {
2 this.x= x;
3 }
4 f(10);

The call to f does not have a target object. In this case, the
result is to add a property x in the object that represents the
global context in JavaScript programs. Therefore, although f

resembles a constructor function, it is not in fact used as a
template to create objects, since the program does not include
a new. For this reason, it is not classified as a class, according
to our definition. On the other hand, classes designed to be
instantiated by client applications, as would be the case of
the public interface of APIs, are not detected by the proposed
strategy. In this case, the call to new is typically made by the
clients.

We also acknowledge that there is not one single strategy
to emulate classes in JavaScript. For example, it is possible to
create “singleton” objects directly, without using any class-like
construction, as in this example:

1 var myCircle = {
2 radius: 10,
3 pi: 3.14,
4 getArea: function () { ... }
5 }

In addition, there are numerous JavaScript frameworks, like
Prototype6 and AngularJS7, that support their own style for
implementing class-like abstractions. For this reason, we do

5http://esprima.org/
6http://prototypejs.org
7https://angularjs.org



not struggle to cover the whole spectrum of alternatives to
implement classes. Instead, we consider only the strategy
closest to the syntax and semantics of class-based languages.
Recognizing other ways to mimic classes could be the goal of
some future work.

Moreover, there are abstractions related to classes that are
more difficult to emulate in JavaScript, like abstract classes and
interfaces. Encapsulation is another concept that does not have a
straightforward mapping to JavaScript. A common workaround
to simulate private members in JavaScript is by using local
variables and closures. As shown in Listing 4, an inner function
f2 in JavaScript has access to the variables of its outer function
f1, even after f1 returns. Therefore, local variables declared
in f1 can be considered as private, because they can only be
accessed by the “private function” f2. However, we decided to
not classify f2 as a private method, mainly because it cannot
access the this object, nor can it be directly called from the
public methods of the class.

1 function f1 () { // outer function -> class
2 var x; // local variable
3 function f2 () { // inner function
4 // can access "x"
5 // cannot access "this"
6 }
7 }

Listing 4. Using closures to implement “private” inner functions

In JavaScript, it is also possible to remove properties from ob-
jects dynamically, e.g., by calling delete myCircle.radius.
Therefore, at runtime, an object can have less attributes than
the ones defined in its class. It is also possible to modify
the prototype chains dynamically. When we detect multiple
assignments to the prototype link of a class A, a warning is
raised reporting the alternative superclasses of A. Finally, the
behavior of a program can be modified dynamically, using the
eval operator [13], [14]. However, we do not consider the
impact of eval’s in the strategy described in Section III-A.
For example, we do not account for classes entirely or partially
created by means of eval.

Alexandre IWhat happens with functions that partially match
your class definition?J

IV. STUDY

The goal of this study is to evaluate whether the proposed
strategy is able to detect classes in real Javascript software.
The perspective is that of JavaScript developers interested in
understanding and evolving the classes used in their systems.
The context of this study consists of 50 popular Javascript
systems, available at GitHub.

In this study, we answer the following research questions:
• RQ #1: How often do JavaScript developers use classes?
• RQ #2: How often do JavaScript developers use sub-

classes?
• RQ #3: What is the size of JavaScript classes (in terms

of number of methods and attributes)?
In the following, we first describe the process we followed

to select JavaScript software from GitHub and to clean up the

downloaded code (Section IV-A). Next, we present and discuss
answers for the proposed research questions (Sections IV-B to
IV-D). Finally, we discuss threats to validity (Section IV-E).

A. Data Extraction

The JavaScript systems considered in this study are available
at GitHub. We selected systems ranked with at least 1,000 stars
at GitHub, whose sole language is JavaScript, that have at least
150 commits and that are not forks of other projects. This search
was performed on June, 2014 and resulted in 50 systems. After
the check out of each system, we automatically inspected the
source code to remove the following files: compacted files used
in production to reduce network bandwidth consumption (which
have the extension ∗.min.js), copyright files (copyright.js),
documentation files (located in directories called doc or docs),
and files belonging to third party libraries (located in directories
thirdparty or node modules). We did not discard test
files and examples, because these files usually include new

expressions, which are primordial for the success of the strategy
proposed to detect classes, as described in Section III-A.

The selected systems are presented in Table II, including
their version, a brief description, and size, in terms of lines of
code and number of files. Although we did not discard test
files and examples, they are not counted when computing the
size metrics in Table II. The selection includes well-known
and widely used JavaScript systems, from different domains,
covering frameworks (e.g., angular.js and jasmine), editors
(e.g., brackets), browser plug-ins (e.g., pdf.js), games
(e.g., 2048 and clumsy-bird), etc. The largest system (ace)
has 194,159 LOC and 574 files with .js extension. The smallest
system (masonry) has 197 LOC and a single file. The average
size and standard deviation is 13,846 ± 33,720 LOC and 58.68
± 121.1 files. The median is 2,462 LOC and 16 files. We also
found systems with hundreds of functions in a single JavaScript
file. For example, reveal.js is a system with a single file and
105 functions.

After downloading the systems and cleaning up the code, we
executed the JSCLASSFINDER tool to extract class information
and metrics on each system.

B. How often JavaScript developers use classes?

Table II presents the total number of classes detected by
JSCLASSFINDER in the selected systems. We found classes
in 37 out of 50 systems (74%). The system with the largest
number of classes is pdf.js (144 classes), followed by ace

(133 classes), three.js (106 classes), and brackets (101
classes). Semantic-UI is the largest system (11,951 LOC) that
does not have classes, at least as detect by our strategy. Systems
in Table II are classified in ascending value of what we called
Class Usage Ratio (CUR), which is defined as:

CUR =
# methods + # classes

# functions

This metric is the ratio of functions in a program that are
related to the implementation of classes, i.e., that are methods
or that are classes themselves. It ranges between 0 (system



TABLE II
JAVASCRIPT SYSTEMS (ORDERED ON THE CUR COLUMN, SEE DESCRIPTION IN ACCOMPANYING TEXT)

System Version Description LOC # Files # Func # Class # Meth # Attr CUR SCUR DOCR

masonry 3.1.5 Cascading grid layout library 197 1 10 0 0 0 0.00 - -
randomColor 0.1.1 Color generator 361 1 17 0 0 0 0.00 - -
respond 1.4.2 Polyfill for CSS3 media queries 460 3 15 0 0 0 0.00 - -
clumsy-bird 0.1.0 Flappy Bird Game 628 7 1 0 0 0 0.00 - -
deck.js 1.1.0 Modern HTML Presentations 732 1 22 0 0 0 0.00 - -
impress.js 0.5.3 Presentation framework 769 1 23 0 0 0 0.00 - -
async 0.9.0 Async utilities 1,117 1 75 0 0 0 0.00 - -
turn.js 3.0.0 Page flip effect for HTML5 1,914 1 18 0 0 0 0.00 - -
zepto 1.1.3 Minimalist jQuery API 2,456 17 149 0 0 0 0.00 - -
jade 1.0.2 Template engine for Node.js 4,051 28 41 0 0 0 0.00 - -
select2 3.4.8 Replacement for select boxes 4,132 45 44 0 0 0 0.00 - -
jQueryFileUp 9.5.7 File Upload widget 4,442 15 49 0 0 0 0.00 - -
semantic-UI 0.18.0 UI component framework 11,951 19 25 0 0 0 0.00 - -
wysihtml5 0.3.0 Rich text editor 5,913 69 107 2 0 3 0.02 0.00 0.50
underscore 1.6.0 Functional programming helpers 1,390 1 91 2 1 1 0.03 0.00 0.00
paper.js 0.9.18 Vector graphics framework 25,859 67 143 2 2 0 0.03 0.00 0.00
intro.js 0.9.0 1,026 1 24 1 0 2 0.04 - 1.00
timelineJS 2.25.0 18,237 89 213 10 0 7 0.05 0.00 0.40
jasmine 2.0.0 2,956 48 239 7 8 13 0.06 0.17 0.57
reveal.js 2.6.2 3,375 1 105 3 6 11 0.09 0.00 0.67
floraJS 1.0.0 3,325 26 104 4 6 8 0.10 0.00 0.50
express 4.4.1 2,942 11 84 3 7 11 0.12 0.00 0.33
numbers.js 0.4.0 2,454 10 119 1 14 4 0.13 - 0.00
typeahead.js 0.10.2 2,468 19 95 12 0 48 0.13 0.00 1.00
video.js 4.6.1 HTML5 video library 7,939 38 432 5 53 6 0.13 0.00 0.40
sails 0.10.0 13,053 98 154 9 15 54 0.16 0.00 0.22
ionic 1.0.0 14,376 90 283 15 31 26 0.16 0.14 0.27
chart.js 0.2.0 1,417 1 34 6 0 0 0.18 0.00 0.00
grunt 0.4.5 1,932 11 94 1 16 8 0.18 - 0.00
angular.js 1.3.0 Web application framework 79,753 539 705 40 86 74 0.18 0.03 0.43
ghost 0.4.2 15,048 122 205 12 32 17 0.21 0.18 0.08
brackets 0.41.0 122,971 403 2,723 101 638 452 0.27 0.15 0.34
backbone 1.1.2 1,681 2 17 3 2 0 0.29 0.00 0.00
skrollr 0.6.25 1,764 1 44 1 12 0 0.30 - 0.00
leaflet 0.7.0 8,389 71 63 9 10 19 0.30 0.00 0.33
ace 1.0.0 194,159 574 3,176 133 810 535 0.30 0.14 0.53
gulp 3.7.0 282 4 9 1 2 4 0.33 - 1,00
three.js 0.0.67 37,102 164 609 106 120 497 0.37 0.00 0.74
pdf.js 0.8.0 48,090 41 531 144 58 574 0.38 0.19 0.81
bower 1.3.5 8,194 53 306 13 112 34 0.41 0.00 0.08
algorithms.js 0.2.0 1,594 29 82 7 28 13 0.43 0.33 0.14
mustache.js 0.8.2 571 1 27 3 9 7 0.44 0.00 0.33
parallax 2.1.3 1,007 3 57 1 24 40 0.44 - 1,00
less.js 1.7.0 10,578 48 202 52 42 190 0.47 0.02 0.88
2048 Game 873 10 66 4 33 13 0.56 0.00 0.50
pixiJS 1.5.3 Rendering engine 13,896 72 361 61 152 267 0.59 0.00 0.69
isomer 0.2.4 770 71 47 7 29 25 0.77 0.00 0.43
slick 1.3.6 1,684 1 64 1 50 0 0.80 - 0.00
fastclick 1.0.2 798 1 22 1 18 9 0.86 - 0.00
socket.io 1.0.4 1,223 4 49 4 44 36 0.98 0.00 0.25

with no functions related to classes) to 1 (fully class-based
system, where all functions are used to support classes). For
systems that do not have functions, we define that CUR is
zero.

Figure 2 shows the distribution of the CUR values, consider-
ing all 50 systems (on the left and systems with CUR greater
than zero on the right). On the left, there are systems with very
small CUR values. The first quartile is 0.005 (lower bound of
the black box within the “violin”) and 13 systems have CUR
equal to zero (the width of the “violin” is an indication of the
number of the distribution of the systems for a given CUR
value). The median for all systems (white dot at the heart of

the violin) is 0.15 and the third quartile is 0.36 (upper bound of
the black box). We also found one almost fully class-oriented
system, socket.io, with CUR equal to 0.98.

One sees a significant change in the CUR distribution when
we only consider the systems with CUR greater than zero, as
represented in the violin plot on the right. One could consider
that these systems are those that chose to use classes with the
convention that our tool is looking for. Other systems might
use other conventions, or no class abstraction at all. The first
quartile of CUR is now 0.13, the median is 0.27 and the third
quartile is 0.43.

In other words, 26% of the systems do not use classes at all



or are using another abstraction that the one we are looking for.
This might be a deliberate design decision of their developers.
On the other hand, in the remaining systems, the emulation
of class is relevant, representing on the median 27% of the
functions.
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Fig. 2. Class Usage Ratio (CUR) distribution

We computed the Spearman’s rank correlation coefficient
between CUR and the following system size metrics: LOC,
number of files, and number of functions. The intention is to
clarify the effect of the system’s size on the usage of class-
based structures. The results are presented in Table III. We
found a very weak correlation for LOC (ρ=0.11, p-value=0.4),
and number of files (ρ=0.22, p-value=0.1), and slightly better
for number of functions (ρ=0.29, p-value=0.04). Marco ILeo,
we will have to explain what the p-values mean ... The p-values
are ....J

TABLE III
SPEARMAN CORRELATION BETWEEN CUR AND SIZE METRICS

LOC # Files # Func

Spearman 0.110 0.217 0.295
p-value 0.446 0.130 0.037

In summary, we observed four main groups of systems:
• Class-free systems: 13 systems that do not use classes at

all (CUR = 0).
• Class-agnostic systems: 18 systems that use classes, but

marginally (CUR ≤ 0.21).
• Class-aware systems: 15 systems where classes represent

an important and common data structure (0.21 < CUR <
0.59)

• Class-oriented systems: four systems that can be classified
as class-oriented systems (CUR ≥ 0.77).

Finally, the category of a system does not seem to be related
to its size. Nic Iyou could test that with a Kruskal Wallis
ANOVA test: H0=median size of all categories are equalJ

Fig. 3. Example of inheritance in algorithms.js

C. How often JavaScript developers use subclasses?

To evaluate the usage of inheritance, we propose a metric
called Subclass Usage Ratio (SCUR), defined as:

SCUR =
| {C ∈ Classes | DIT (C ) ≥ 2 } |

| Classes | − 1

where Classes is the set of all classes in a given system. SCUR
ranges from 0 (system that does not make use of inheritance) to
1 (system where all classes inherit from another class, except
one class that is the root of the class hierarchy). SCUR is only
defined for systems that have at least two classes.

As showed in Table II, the use of prototype-based inheritance
is rare in JavaScript systems. First, we counted 29 systems
(58%) having two or more classes, i.e., systems where it is
possible to detect the use of inheritance. However, in 20 of such
systems (69%), we did not found subclasses (SCUR = 0). The
system with the highest use of inheritance is algorithms.js
(SCUR = 0.33). As an example, in this system we found a
class Stack defined as a subclass of Queue, as represented in
the class diagram of Figure 3. In this example, Stack inherits
three methods from Queue (isEmpty(), pop(), and peek())
and redefines one method (push()).

D. What is the size of JavaScript classes (in terms of number
of methods and attributes)?

To answer this question, we initially investigated only
systems with at least 40 classes (7 systems), since they include
a significant number of classes, compatible with medium-sized
systems in class-based languages. Figure 4 shows the quantile
functions for the Number of Attributes (NOA) and Number of
Methods (NOM) values in each of these systems. In this figure,
each black line represents a system. The x-axis represents the
quantiles and the y-axis represents the upper metric values for
the classes in a given quantile. For example, suppose the value
of a given quantile p (x-axis) is k (y-axis), for NOA values.
This means that p% of the classes in the system in question
have at most k attributes. Moreover, Figure 4 includes a red



(a) NOA (b) NOM

Fig. 4. Quantile functions

line that represents the whole population of classes found in
our dataset (787 classes, detected in 37 systems).

Regarding the NOA values, the quantile functions show that
the vast majority of the classes have at most 11 attributes.
Specifically, the 90th percentile values range from 5 attributes
(angular.js) to 11 attributes (brackets and three.js).
Regarding NOM values, the vast majority of the classes
have less than 13 methods. In this case, the 90th percentile
ranges from one method (pdf.js) to 13 methods (brackets).
Regarding the whole population of classes, the results are
similar. For NOA, the 90th percentile is xx; for NOM, the 90th
percentile is xx.

In fact, when generating the quantile functions, we found a
very large class in the ace system, with 164 attributes and 503
methods. By inspecting its source code, we discovered that
this class is a PHP parser, automatically generated by a parser
generator tool. For this reason, we removed this class from
the quantile functions presented in Figure xx. Otherwise, it
would require the presentation of very high values in the y-axis.
Anyway, this finding shows that class-emulation in JavaScript
is also a design decision followed by developers of program
generators tools.

Figure 4 also shows that the considered metric values tend
to present a right-skewed (or heavy-tailed) behavior, meaning
that while the bulk of the distribution occurs for fairly small
classes (in terms of NOA and NOM) there is a small number
of large classes with NOA and NOM measures much higher
than the typical value, producing a long tail to the right, if
the metric values are presenting in a histogram. In fact, this
heavy-tailed behavior is normally observed in source code
metrics [15]–[17].

In Table II, 16 out of 37 systems with classes have a

total number of attributes (# Attr column) greater than the
total number of methods (# Meth column). This contrasts
to the common shape of classes in class-based languages,
when usually classes have more methods than attributes [18].
Therefore, we propose a metric called Data-Oriented Class
Ratio (DOCR) to investigate this phenomena in more detail.
DOCR is defined as follows:

DOCR =
| {C ∈ Classes | NOA(C ) > NOM(C) } |

| Classes |
where Classes is the set of all classes in a given system. DOCR
ranges from 0 (system where all classes have more attributes
than methods) to 1 (system where the number of methods of
each class is equal or greater than the number of attributes).
DOCR is only defined for systems that have at least one class.

Table II presents the DOCR values for each system and
Figure 5 shows the DOCR distribution using a violin plot.
The median DOCR value is xx, which can be considered as a
high measure. For example, metric thresholds for Java suggest
that classes should have at most 8 attributes and 16 methods,
i.e., they recommend two methods per attribute for a typical
class [19]. On the other hand, half of the JavaScript systems we
studied have more than xx% of classes with more attributes than
methods. Although we have not inspected the code in detail to
explain this phenomena, we hypothesize that it might be due
to the less importance that JavaScript gives to encapsulation.
For this reason, getters and setters are usually more rare than
in Java software.

E. Threats to Validity

First, the proposed strategy to detect classes do not handle
the whole spectrum of class styles supported by JavaScript and
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also by third-party frameworks, as discussed in Section III-C.
However, we cover the style that closely resemble the syntax
and semantics of classes, attributes, and methods in class-based
languages. Second, as usual, our dataset might not represent the
whole population of JavaScript systems. But at least we selected
a representative number of popular and well-known systems,
of different sizes and covering various domains. Third, the
proposed strategy depends on new expressions to detect classes.
Therefore, it misses important classes of APIs, libraries, and
frameworks, which are designed to be instantiated by clients.
To mitigate this issue, we did not removed test files and files
with examples from our dataset, when searching for classes. In
a manual inspection, we did not found classes in such systems.
However, if they exist, they are counted in our study.

V. RELATED WORK

Studies: Richards et al. [13] conducted a large-scale study on
the use of eval in JavaScript, based on a corpus of more than
10,000 popular web sites. They report that eval is popular, but
not necessarily evil. It is usually considered a best practice for
example when loading scripts or data asynchronously. After
this first study, restricted to eval’s, the authors conducted
a second study, when they investigated a broad range of
JavaScript dynamic features [4]. They concluded for example
that libraries often change the prototype links dynamically,
but such changes are restricted to built-in types, like Object

and Array, and changes in user-created types are more rare.
The authors also report that most JavaScript programs do not
delete attributes from classes dynamically. To some extend,
these findings support the feasibility of using heuristics to
extract class-like structures statically from JavaScript code, as
proposed in this paper.

Tools: Gama et al. [8] identified five styles for implementing
methods in JavaScript: inside/outside constructor functions us-
ing anonymous/non-anonymous functions and using prototypes.
Their main goal was to implement an automated approach
to normalizing JavaScript code to a single consistent object-
oriented style. They claim that mixing styles in the same code

may hinder program comprehension and make maintenance
more difficult. The strategy proposed in this paper covers the
fives styles proposed by the authors. Additionally, we also
detect attributes and inheritance.

Fard and Mesbah [20] proposed a set of 13 JavaScript code
smells, including generic smells (e.g., long functions and dead
code) and smells specific to JavaScript (e.g., creating closures
in loops and accessing this in closures). They also describe
a tool, called JSNode, for detecting code smells based on
a combination of static and dynamic analysis. Among the
proposed patterns, only Request Banquet is directly related to
class-emulation in JavaScript. In fact, this smell was originally
proposed to class-based languages [21], [22], to refer to
subclasses that do not use or override many elements from
their superclasses. Interestingly, our strategy to detect classes
opens the possibility to detect other well-known class-based
code smells in JavaScript software, like Feature Envy, Large
Class, Shotgun Surgery, Divergent Change, etc.

There is also a variety of tools and techniques for analyzing,
improving, and understanding JavaScript code, including tools
to prevent security attacks [23]–[25], to understand event-based
interactions [26], [27], and to support refactorings [28], [29].

ECMAScript 6: ECMAScript is the standard definition of
JavaScript [1]. ECMAScript 6 [7] is the next version of this
standard, which is currently in frozen state and it is planned to
be officially released in early 20158. Interestingly, a syntactical
support to classes is included in this new release. For example,
it will support the following class definition:

1 class Circle {
2 constructor (radius) {
3 this.radius= x;
4 }
5 getArea() {
6 return (3.14 * this.radius * this.radius);
7 }
8 }

This support for classes was proposed to do not have an
impact in the semantics of the language. For example, the
previous class is equivalent to the following code:

1 function Circle (radius) {
2 this.radius= radius;
3 }
4 }
5 Circle.prototype.getArea= function () {
6 return (3.14 * this.radius * this.radius);
7 }

The strategy proposed in this paper straightforwardly detects
this previous code as a Circle class, with a radius attribute
and a getArea method, as specified in ECMAScript 6.
Therefore, revealing how often JavaScript developers emulate
classes in the current version of the language might be a
valuable information for developers that plan to use classes in
their new systems, according to the ECMAScript 6 standard.
The proposed strategy and the JSCLASSFINDER tool can

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/
New in JavaScript/ECMAScript 6 support in Mozilla, verified 11/15/2014



also support a new variety of tools, aiming to translate “old
JavaScript class styles” to ECMAScript 6 syntax.

VI. CONCLUSION

Our tools and data are freely available at:
http://aserg.labsoft.dcc.ufmg.br/jsclasses
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