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Message from the Chairs

Welcome to  the  1st International  Workshop on Blockchain Oriented Software  Engineering
(IWBOSE2018). The workshop is co-lacated with SANER 2018 and will be held on the 20th of March in
Campobasso, Italy.  
The workshop aims at gathering together researchers from the academia and from the industry to
focus  on  the  new  challenges  posed  by  the  new  software  technology  supporting  the  various
Blockchains infrastructure. The Workshop’s goal is to gather together practitioners and researchers to
discuss on progresses on the research and on the practical usage of Blockchain technologies and smart
contracts, focusing on the application and definition of software engineering principles and practices
specific for such software technology, and for the technologies relying on it.  Motivations for this
workshop are the ever-increasing interest both in the research community and in the industry on
Blockchain  and  smart  contracts  principles  and  applications,  being  the  management  of
cryptocurrencies the most popular topic. These novelties call for specific tools, paradigms, principles,
approaches and research to deal with it and for a specific Blockchain Oriented Software Engineering
(BOSE ) [1].
The Workshop features six accepted papers, three focusing on Smart Contracts and three focusing on
Bockchain and ICO (Initial Coin Offers), where security patterns in Solidity, the inspection of Smart
Contracts, their velnerabilities are analized altogether with Property-Based Testing for Blockchain and
extended analysis of the success factors of ICOs. 
Workshop Keynote invited speaker is Prof. Michele Marchesi, from Cagliari University, Italy, with a
talk titled: Why Blockchain Is Important for Software Developers, and Why Software Engineering Is
Important for Blockchain Software. 
We would like to thank all participants and submitters for contributing to the workshop’s success.
 

[1] S. Porru, A. Pinna, M. Marchesi, R. Tonelli, “Blockchain-oriented software engineering: challenges 
and new directions” Proceedings of the 39th International Conference on Software Engineering 
Companion, p. 169- 171, May 2017, Buenos Aires, Argentina. 

                                                                                                                     A. Bracciali, S. Ducasse,     
            G. Fenu, R. Tonelli, 

Campobasso        
March 2018                                                                                                      IWBOSE 2018 Chairs
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Why Blockchain Is Important

for Software Developers,

and Why Software Engineering Is Important

for Blockchain Software

(Keynote)

Michele Marchesi
University of Cagliari, Italy

marchesi@unica.it

Abstract—In  the  past  few  years,  cryptocurrencies  and
blockchain  applications  has  been  one  of  the  most  rapidly
emerging fields of computer science, leading to a strong demand
of  software  applications.  Several  new  projects  have  been
emerging almost daily, with an impetus that was not seen since
the days of the dawn of the Internet. However, the need of being
timely on the market and the lack of experience in a brand new
field led to epic disasters, such as those of DAO in 2016 and of
Parity Ethereum wallet  in 2017.  Also,  there have  been several
hacks successfully performed on cryptocurrency exchanges, the
biggest being those of MtGox in 2014 (350 million US$), Bitfinex
in  2016 (72  million  US$),  and Coincheck in  2017 (400  million
US$).  The  application  of  sound  SE  practices  to  Blockchain
software  development,  both  for  Smart  Contract  and  generic
Blockchain software, might be crucial to the success of this new
field. Here the issues are the need for specific analysis and design
methods,  quality  control  through  testing  and  metrics,  security
assessment and overall development process.  At the same time,
Blockchain  development  offers  new opportunities,  such  as  the
certification of empirical data used for experiment; the ability to
design processes where developers are paid upon completion of
their  tasks  through  Blockchain  tokens,  after  acceptance  tests
performed using Smart Contracts; and more sound techniques
enabling pay-per-use software, again using tokens.

Index Terms—Blockchain;  Smart  Contracts;  Distributed
Ledgers
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Smart Contracts: Security Patterns in the Ethereum
Ecosystem and Solidity

Maximilian Wöhrer and Uwe Zdun
University of Vienna

Faculty of Computer Science
Währingerstraße 29, 1090 Vienna, Austria

Email: {maximilian.woehrer,uwe.zdun}@univie.ac.at

Abstract—Smart contracts that build up on blockchain tech-
nologies are receiving great attention in new business applications
and the scientific community, because they allow untrusted
parties to manifest contract terms in program code and thus
eliminate the need for a trusted third party. The creation process
of writing well performing and secure contracts in Ethereum,
which is today’s most prominent smart contract platform, is a
difficult task. Research on this topic has only recently started
in industry and science. Based on an analysis of collected data
with Grounded Theory techniques, we have elaborated several
common security patterns, which we describe in detail on the
basis of Solidity, the dominating programming language for
Ethereum. The presented patterns describe solutions to typical
security issues and can be applied by Solidity developers to
mitigate typical attack scenarios.

I. INTRODUCTION

Ethereum is a major blockchain-based ecosystem that
provides an environment to code and run smart contracts.
Writing smart contracts in Solidity is so far a challenging
undertaking. It involves the application of unconventional
programming paradigms, due to the inherent characteristics
of blockchain based program execution. Furthermore, bugs in
deployed contracts can have serious consequences, because
of the immediate coupling of contract code and financial
values. Therefore, it is beneficial to have a solid foundation of
established and proven design and code patterns that ease the
process of writing functional and error free code.

With this paper we want to make the first steps in order
to create an extensive pattern language. Our research aims to
answer which code and design patterns commonly appear in
Solidity coded smart contracts and the problems they intent to
solve. In order to answer these questions we gathered data from
different sources and applied Grounded Theory techniques to
extract and identify the patterns.

This paper is structured as follows: First, we provide a
short background to blockchain technology in Section II and
the Ethereum platform in Section III. Then, we discuss some
platform related security aspects in Section IV-C, before we
present elaborated security patterns in Section V in detail.
Finally, we discuss related work in Section VI, and draw a
conclusion at the end in Section VII.

II. BACKGROUND

A. Blockchains, Cryptocurrencies, and Smart Contracts

Blockchains are a digital technology that build on a combina-
tion of cryptography, networking, and incentive mechanisms to
support the verification, execution and recording of transactions
between different parties. In simple terms, blockchain systems
can be seen as decentralized databases that offer very appealing
properties. These include the immutability of stored transactions
and the creation of trust between participants without a third
party. That makes blockchains suitable as an open distributed
ledger that can store transactions between parties in a verifiable
and permanent way. One prominent application is the exchange
of digital assets, so-called cryptocurrencies. Widely known
cryptocurrencies are Bitcoin, Ethereum and Litecoin. They offer,
beyond the transfer of digital assets, the execution of smart
contracts. Smart contracts are computer programs that facilitate,
verify, and enforce the negotiation and execution of legal
contracts. They are executed through blockchain transactions,
interact with crypto currencies, and have interfaces to handle
input from contract participants. When run on the blockchain, a
smart contract becomes an autonomous entity that automatically
executes specific actions when certain conditions are met.
Because smart contracts run on the blockchain, they run
exactly as programmed, without any possibility of censorship,
downtime, fraud or third party interference [1]. Today, the
most-used smart contract platform in this regard is Ethereum.

III. ETHEREUM PLATFORM

Ethereum is a public blockchain based distributed computing
platform, that offers smart contract functionality. It provides
a decentralised virtual machine as runtime environment to
execute smart contracts, known as Ethereum Virtual Machine
(EVM).

A. Ethereum Virtual Machine (EVM)

The EVM handles the computation and state of contracts
and is build on a stack-based language with a predefined
set of instructions (opcodes) and corresponding arguments
[2]. So, in essence, a contract is simply a series of opcode
statements, which are sequentially executed by the EVM. The
EVM can be thought of as a global decentralized computer
on which all smart contracts run. Although it behaves like
one giant computer, it is rather a network of smaller discrete
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machines in constant communication. All transactions, handling
the execution of smart contracts, are local on each node of
the network and processed in relative synchrony. Each node
validates and groups the transactions sent from users into
blocks, and tries to append them to the blockchain in order to
collect an associated reward. This process is called mining and
the participating nodes are called miners. To ensure a proper
resource handling of the EVM, every instruction the EVM
executes has a cost associated with it, measured in units of
gas. Operations that require more computational resources cost
more gas, than operations that require fewer computational
resources. This ensures that the system is not jammed up by
denial-of-service attacks, where users try to overwhelm the
network with time-consuming computations. Therefore, the
purpose of gas is twofold. It encourages developers to write
quality applications by avoiding wasteful code, and ensures at
the same time that miners, executing the requested operations,
are compensated for their contributed resources. When it comes
to paying for gas, a transaction fee is charged in small amounts
of Ether, the built-in digital currency of the Ethereum network,
and the token with which miners are rewarded for executing
transactions and producing blocks. Ultimately, Ether is the fuel
for operating the Ethereum platform.

B. Ethereum Smart Contracts

Smart contracts are applications which are deployed on
the blockchain ledger and execute autonomously as part of
transaction validation. To deploy a smart contract in Ethereum,
a special creation transaction is executed, which introduces a
contract to the blockchain. During this procedure the contract
is assigned an unique address, in form of a 160-bit identifier,
and its code is uploaded to the blockchain. Once successfully
created, a smart contract consists of a contract address, a
contract balance, predefined executable code, and a state.
Different parties can then interact with a specific contract
by sending contract-invoking transactions to a known contract
address. These may trigger any number of actions as a result,
such as reading and updating the contract state, interacting and
executing other contracts, or transferring value to others. A
contract-invoking transaction must include the execution fee
and may also include a transfer of Ether from the caller to
the contract. Additionally, it may also define input data for
the invocation of a function. Once a transaction is accepted,
all network participants execute the contract code, taking into
account the current state of the blockchain and the transaction
data as input. The network then agrees on the output and the
next state of the contract by participating in the consensus
protocol. Thus, on a conceptual level, Ethereum can be viewed
as a transaction-based state machine, where its state is updated
after every transaction.

C. Ethereum Programming Languages

Smart contracts in Ethereum are usually written in higher
level languages and are then compiled to EVM bytecode. Such
higher level languages are LLL (Low-level Lisp-like Language)
[3], Serpent (a Python-like language) [4], Viper (a Python-like

language) [5], and Solidity (a Javascript-like language) [6].
LLL and Serpent were developed in the early stages of the
platform, while Viper is currently under development, and is
intended to replace Serpent. The most prominent and widely
adopted language is Solidity.

D. Solidity

Solidity is a high-level Turing-complete programming lan-
guage with a JavaScript similar syntax, being statically typed,
supporting inheritance and polymorphism, as well as libraries
and complex user-defined types.

When using Solidity for contract development, contracts are
structured similar to classes in object oriented programming
languages. Contract code consists of variables and functions
which read and modify these, like in traditional imperative
programming.

1pragma solidity ^0.4.17;
2contract SimpleDeposit {
3mapping (address => uint) balances;
4
5event LogDepositMade(address from, uint amount);
6
7modifier minAmount(uint amount) {
8require(msg.value >= amount);
9_;
10}
11
12function SimpleDeposit() public payable {
13balances[msg.sender] = msg.value;
14}
15
16function deposit() public payable minAmount(1 ether)

{
17balances[msg.sender] += msg.value;
18LogDepositMade(msg.sender, msg.value);
19}
20
21function getBalance() public view returns (uint

balance) {
22return balances[msg.sender];
23}
24
25function withdraw(uint amount) public {
26if (balances[msg.sender] >= amount) {
27balances[msg.sender] -= amount;
28msg.sender.transfer(amount);
29}
30}
31}

Listing 1. A simple contract where users can deposit some value and check
their balance.

Listing 1 shows a simple contract written in Solidity in which
users can deposit some value and check their balance. Before
describing the code in more detail, it is helpful to give some
insights about Solidity features like global variables, modifiers,
and events.

Solidity defines special variables (msg, block, tx) that
always exist in the global namespace and contain properties
to access information about an invocation-transaction and the
blockchain. For example, these variables allow the retrieval
of the origin address, the amount of Ether, and the data sent
alongside an invocation-transaction.

Another particular convenient feature in Solidity are so-
called modifiers. Modifiers can be described as enclosed code
units that enrich functions in order to modify their flow of
code execution. This approach follows a condition-orientated
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programming (COP) paradigm, with the main goal to remove
conditional paths in function bodies. Modifiers can be used
to easily change the behaviour of functions and are applied
by specifying them in a whitespace-separated list after the
function name. The new function body is the modifiers body
where ’_’ is replaced by the original function body. A typical
use case for modifiers is to check certain conditions prior to
executing the function.

An additionally important and neat feature of Solidity are
events. Events are dispatched signals that smart contracts can
fire. User interfaces and applications can listen for those events
on the blockchain without much cost and act accordingly. Other
than that, events may also serve logging purposes. When called,
they store their arguments in a transaction’s log, a special data
structure in the blockchain that maps all the way up to the
block level. These logs are associated with the address of
the contract and can be efficiently accessed from outside the
blockchain.

Given this short feature description, we can now return and
analyse the code example. First, the compiler version is defined
(line 1), then the contract is defined in which a state variable
is declared (line 3), followed by an event definition (line 5), a
modifier definition (line 7), the constructor (line 12), and the
actual contract functions (line 16 onwards). The state of the
contract is stored in a mapping called balances (which stores
an association between a users address and a balance). The
special function SimpleDeposit is the constructor, which is
run during the creation of the contract and cannot be called
afterwards. It sets the balance of the individual creating the
contract (msg.sender) to the amount of Ether sent along
the contract creation transaction (msg.value). The remaining
functions actually serve for interaction and are called by
users and contracts alike. The deposit() function (line 16)
manipulates the balances mapping by adding the amount sent
along the transaction-invocation to the senders balance, while
utilizing a modifier to preliminary ensure that at least 1 Ether
is sent. The withdraw() function (line 25) manipulates the
balances mapping by subtracting the requested amount to be
withdrawn from the senders balance and the getBalance()

function (line 21) returns the actual balance of the sender by
querying the balances mapping.

In summary, this simple example shows the basic concepts
of a smart contract coded in Solidity. Moreover, it illustrates the
most powerful feature of smart contracts, which is the ability
to manipulate a globally verifiable and universally consistent
contract state (the balances mapping).

IV. DEVELOPMENT ASPECTS

A. Limits of Blockchain Technology

First, it is important to state that not every application
is predestined to be run on a blockchain. There are many
applications that do not need a decentralized, immutable,
append-only data log with transaction validation. Due to
the inherent characteristics of blockchains, distributed ledger
systems are not suitable for a variety of use cases. For example,
computation-heavy applications are impractical to run on

blockchains, because of the accumulated computation fees
and the fact that many types of computations are impractical to
execute on a stack-based virtual machine. Another limitation
of blockchains is that they are not suitable for storing large
amounts of data. This implicit limitation results in the extensive
redundancy from the large number of network nodes, holding
a full copy of the distributed ledger. Nonetheless, this can be
overcome by not storing large data directly on the blockchain,
but only a hash or other meta-data on the chain. In the
context of data storage it is also important to realize that
the data on the blockchain is visible to all network participants.
This implies that keeping sensitive data confidential, requires
the obfuscation of plaintext data by some means. A further
limitation of blockchains is their performance. They are
currently not suitable for applications which demand a high-
frequency or low latency execution of transactions, because
of the additional work owed to the cryptography, consensus,
and redundancy apparatus of blockchain systems. Within these
limits smart contracts should be used for applications that
have something to gain from being distributed and publicly
verifiable and enforceable. In general, most applications that
handle the transfer or registration of resources in a traceable
way are suitable, e.g. land register, provenance documentation,
or electronic voting.

B. Coding Smart Contracts in Ethereum

Contract development on the Ethereum blockchain requires
a different engineering approach than most web and mobile
developers are familiar with. Unlike modern programming
languages, which support a broad range of convenient data types
for storage and manipulation, the developer is responsible for
the internal organization and manipulation of data at a deeper
level. This implies that the developer has to address details he
may not be used to deal with. For example, a developer would
have to implement a method to concat or lowercase strings,
which are tasks developers usually do not have to think about
in other languages. Furthermore, the Ethereum platform and
Solidity are constantly evolving in a fast pace and the developer
is confronted with an ongoing transformation of platform
features and the security landscape, as new instructions are
added, and bugs and security risks are discovered. Developers
have to consider that code that is written today, will probably
not compile in a few months, or will at least have to be
refactored.

C. Smart Contract Security

An analysis of existing smart contracts by Bartoletti and
Pompianu [7] shows that the Bitcoin and Ethereum platform
mainly focus on financial contracts. In other words, most
smart contract program code defines how assets (money) move.
Therefore, it is crucial that contract execution is performed
correctly. The direct handling of assets means that flaws
are more likely to be security relevant and have greater
direct financial consequences than bugs in typical applications.
Incidents, like the value overflow incident in Bitcoin [8], or the
DAO hack [9] in Ethereum, caused a hard fork of the blockchain
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to nullify the malicious transactions. These incidents show
that security issues have been used for fraudulent purposes
ruthlessly in the past. A survey of possible attacks on Ethereum
contracts was published by Atzei et al. [10] and lists 12
vulnerabilities that are assigned by context to Solidity, the EVM,
and blockchain peculiarities itself. Many of these vulnerabilities
can be addressed by following best practices for writing secure
smart contracts, which are scattered throughout the Ethereum
community [11, 12] and different Ethereum blogs. Most best
practices mainly contain information about typical pitfalls to
avoid and the description of favourable design and problem
approaches. The latter being the focus of this paper in order
to collate smart contract security design patterns.

V. SMART CONTRACT DESIGN PATTERNS

A software pattern describes an abstraction or conceptual-
ization of a concrete, complex, and reoccurring problem that
software designers have faced in the context of real software
development projects and a successful solution they have
implemented multiple times to resolve this problem [13].

So far, only few efforts have been made to collect and
categorize patterns in a structured manner [14, 15]. This section
gives an overview of typical security design patterns that are
inherently frequent or practical in the context of smart contract
coding. The presented patterns address typical problems and
vulnerabilities related to smart contract execution. The patterns
are based on multiple sources, such as review of Solidity
development documentation, on studying Internet blogs and
discussion forums about Ethereum, and the the examination
of existing smart contracts. The source code of the presented
patterns is available on github [16]. To illustrate the patterns in
practice, Table I at the end of this section lists for each pattern
an example contract with published source code deployed on
the Ethereum mainnet.

A. Security Patterns

Security is a group of patterns that introduce safety measures
to mitigate damage and assure a reliable contract execution.

1) Checks-Effects-Interaction:

CHECKS-EFFECTS-INTERACTION PATTERN
Problem When a contract calls another contract, it hands over control
to that other contract. The called contract can then, in turn, re-enter the
contract by which it was called and try to manipulate its state or hijack
the control flow through malicious code.

Solution Follow a recommended functional code order, in which calls to
external contracts are always the last step, to reduce the attack surface of
a contract being manipulated by its own externally called contracts.

The Checks-Effects-Interaction pattern is fundamental for
coding functions and describes how function code should
be structured to avoid side effects and unwanted execution
behaviour. It defines a certain order of actions: First, check
all the preconditions, then make changes to the contract’s
state, and finally interact with other contracts. Hence its name
is “Checks-Effects-Interactions Pattern”. According to this
principle, interactions with other contracts should be, whenever
possible, the very last step in any function, as seen in Listing
2. The reason being, that as soon as a contract interacts with

another contract, including a transfer of Ether, it hands over the
control to that other contract. This allows the called contract to
execute potentially harmful actions. For example, a so-called
re-entrancy attack, where the called contract calls back the
current contract, before the first invocation of the function
containing the call, was finished. This can lead to an unwanted
execution behaviour of functions, modifying the state variables
to unexpected values or causing operations (e.g. sending of
funds) to be performed multiple times. An example for a
contract function, prone to the described attack scenario, is
shown in Listing 3. The re-entrancy attack is especially harmful
when using low level address.call, which forwards all
remaining gas by default, giving the called contract more room
for potentially malicious actions. Therefore, the use of low
level address.call should be avoided whenever possible. For
sending funds address.send() and address.transfer()

should be preferred, these functions minimize the risk of re-
entrancy through limited gas forwarding. While these methods
still trigger code execution, the called contract is only given a
stipend of 2,300 gas, which is currently only enough to log an
event.

function auctionEnd() public {
// 1. Checks
require(now >= auctionEnd);
require(!ended);
// 2. Effects
ended = true;
// 3. Interaction
beneficiary.transfer(highestBid);

}

Listing 2. Applying the Checks-Effects-Interaction pattern within a function.

mapping (address => uint) balances;

function withdrawBalance() public {
uint amount = balances[msg.sender];
require(msg.sender.call.value(amount)()); // caller’s

code is executed and can re-enter withdrawBalance
again

balances[msg.sender] = 0; // INSECURE - user’s balance
must be reset before the external call

}

Listing 3. An example of an insecure withdrawal function prone to a re-
entrancy attack.

2) Emergency Stop (Circuit Breaker):

EMERGENCY STOP (CIRCUIT BREAKER) PATTERN
Problem Since a deployed contract is executed autonomously on the
Ethereum network, there is no option to halt its execution in case of a
major bug or security issue.

Solution Incorporate an emergency stop functionality into the contract that
can be triggered by an authenticated party to disable sensitive functions.

Reliably working contracts may contain bugs that are
yet unknown, until revealed by an adversary attack. One
countermeasure and a quick response to such attacks are
emergency stops or circuit breakers. They stop the execution
of a contract or its parts when certain conditions are met. A
recommended scenario would be, that once a bug is detected, all
critical functions would be halted, leaving only the possibility
to withdraw funds. A contract implementing the described
strategy is shown in Listing 4. The ability to fire an emergency
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stop could be either given to a certain party, or handled through
the implementation of a rule set.

pragma solidity ^0.4.17;
import "../authorization/Ownership.sol";
contract EmergencyStop is Owned {
bool public contractStopped = false;

modifier haltInEmergency {
if (!contractStopped) _;

}

modifier enableInEmergency {
if (contractStopped) _;

}

function toggleContractStopped() public onlyOwner {
contractStopped = !contractStopped;

}

function deposit() public payable haltInEmergency {
// some code

}

function withdraw() public view enableInEmergency {
// some code

}
}

Listing 4. An emergency stop allows to disable or enable specific functions
inside a contract in case of an emergency.

3) Speed Bump:

SPEED BUMP PATTERN
Problem The simultaneous execution of sensitive tasks by a huge number
of parties can bring about the downfall of a contract.

Solution Prolong the completion of sensitive tasks to take steps against
fraudulent activities.

Contract sensitive tasks are slowed down on purpose, so
when malicious actions occur, the damage is restricted and
more time to counteract is available. An analogous real
world example would be a bank run, where a large number
of customers withdraw their deposits simultaneously due to
concerns about the bank’s solvency. Banks typically counteract
by delaying, stopping, or limiting the amount of withdrawals.
An example contract implementing a withdrawal delay is shown
in Listing 5.

pragma solidity ^0.4.17;
contract SpeedBump {
struct Withdrawal {
uint amount;
uint requestedAt;

}
mapping (address => uint) private balances;
mapping (address => Withdrawal) private withdrawals;
uint constant WAIT_PERIOD = 7 days;

function deposit() public payable {
if(!(withdrawals[msg.sender].amount > 0))
balances[msg.sender] += msg.value;

}

function requestWithdrawal() public {
if (balances[msg.sender] > 0) {
uint amountToWithdraw = balances[msg.sender];
balances[msg.sender] = 0;
withdrawals[msg.sender] = Withdrawal({
amount: amountToWithdraw,
requestedAt: now

});
}

}

function withdraw() public {

if(withdrawals[msg.sender].amount > 0 && now >
withdrawals[msg.sender].requestedAt + WAIT_PERIOD)
{

uint amount = withdrawals[msg.sender].amount;
withdrawals[msg.sender].amount = 0;
msg.sender.transfer(amount);

}
}

}

Listing 5. A contract that delays the withdrawal of funds deliberately.

4) Rate Limit:

RATE LIMIT PATTERN
Problem A request rush on a certain task is not desired and can hinder
the correct operational performance of a contract.

Solution Regulate how often a task can be executed within a period of
time.

A rate limit regulates how often a function can be called
consecutively within a specified time interval. This approach
may be used for different reasons. A usage scenario for smart
contracts may be founded on operative considerations, in order
to control the impact of (collective) user behaviour. As an
example one might limit the withdrawal execution rate of
a contract to prevent a rapid drainage of funds. Listing 6
exemplifies the application of this pattern.
pragma solidity ^0.4.17;
contract RateLimit {
uint enabledAt = now;

modifier enabledEvery(uint t) {
if (now >= enabledAt) {
enabledAt = now + t;
_;

}
}

function f() public enabledEvery(1 minutes) {
// some code

}
}

Listing 6. An example of a rate limit that avoids excessively repetitive function
execution.

5) Mutex:

MUTEX PATTERN
Problem Re-entrancy attacks can manipulate the state of a contract and
hijack the control flow.

Solution Utilize a mutex to hinder an external call from re-entering its
caller function again.

A mutex (from mutual exclusion) is known as a synchro-
nization mechanism in computer science to restrict concurrent
access to a resource. After re-entrancy attack scenarios emerged,
this pattern found its application in smart contracts to protect
against recursive function calls from external contracts. An
example contract is depicted below in Listing 7.
pragma solidity ^0.4.17;
contract Mutex {
bool locked;

modifier noReentrancy() {
require(!locked);
locked = true;
_;
locked = false;

}
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// f is protected by a mutex, thus reentrant calls
// from within msg.sender.call cannot call f again
function f() noReentrancy public returns (uint) {
require(msg.sender.call());
return 1;

}
}

Listing 7. The application of a mutex pattern to avoid re-entrancy.

6) Balance Limit:
BALANCE LIMIT PATTERN
Problem There is always a risk that a contract gets compromised due
to bugs in the code or yet unknown security issues within the contract
platform.

Solution Limit the maximum amount of funds at risk held within a contract.

It is generally a good idea to manage the amount of money
at risk when coding smart contracts. This can be achieved by
limiting the total balance held within a contract. The pattern
monitors the contract balance and rejects payments sent along a
function invocation after exceeding a predefined quota, as seen
in Listing 8. It should be noted that this approach cannot prevent
the admission of forcibly sent Ether, e.g. as beneficiary of a
selfdestruct(address) call, or as recipient of a mining
reward.
pragma solidity ^0.4.17;
contract LimitBalance {
uint256 public limit;

function LimitBalance(uint256 value) public {
limit = value;

}

modifier limitedPayable() {
require(this.balance <= limit);
_;

}

function deposit() public payable limitedPayable {
// some code

}
}

Listing 8. A contract limiting the total balance acquirable through payable
function invocation.

TABLE I
PATTERN USAGE EXAMPLES IN PUBLISHED SOURCE CODE CONTRACTS ON

THE ETHEREUM MAINNET.

Category Pattern Example Contract

Security

Checks-Effects-Interaction CryptoKitties

Emergency Stop Augur/REP

Speed Bump TheDAO

Rate Limit etherep

Mutex Ventana Token

Balance Limit CATToken

VI. RELATED WORK

According to Alharby and van Moorsel [17] current research
on smart contracts is mainly focused on identifying and tackling
smart contract issues and can be divided into four categories,
namely coding, security, privacy and performance issues. The
technology behind writing smart contracts in Ethereum is still
in its infancy stage, therefore coding and security are among

the most discussed issues. Unfortunately, a lot of research
and practical knowledge is scattered throughout blog articles
and grey literature, therefore information is often not very
structured. Only relatively few papers focus on software patterns
in blockchain technology respectively on design patterns in the
Solidity language for the Ethereum ecosystem. Bartoletti and
Pompianu [7] conducted an empirical analysis of Solidity smart
contracts and identified a list of nine common design patterns
that are shared by studied contracts. These patterns broadly
summarize the most frequent solutions to handle common
usage scenarios. A paper by Zhang et al. [18] describes how
the application of familiar software patterns can help to resolve
design specific challenges. In particular, commonly known
design patterns such as the Abstract Factory, Flyweight, Proxy,
and Publisher-Subscriber pattern are applied to implement a
blockchain-based healthcare application. The above mentioned
papers do not contain security related design patterns, but show
that design patterns are an interesting topic in smart contract
coding.

VII. CONCLUSION

We have given a brief introduction to Ethereum and Solidity
and outlined six design patterns that address security issues
when coding smart contracts in Solidity. In general, the main
problem that these patterns solve is the lack of execution
control once a contract has been deployed, resulting form
the distributed execution environment provided by Ethereum.
This one-of-a-kind characteristic of Ethereum allows programs
on the blockchain to be executed autonomously, but also has
drawbacks. These drawbacks appear in different forms, either
as harmful callbacks, adverse circumstances on how and when
functions are executed, or uncontrollably high financial risks
at stake. By applying the presented patterns, developers can
address these security problems and mitigate typical attack
scenarios.

In future work, we plan to extend the already collated patterns
to create a structured and informative design pattern language
for Solidity, that can be used as guidance for developers or
find its application in automatic code generating frameworks.
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Abstract—Solidity is a language used for smart contracts on the
Ethereum blockchain. Smart contracts are embedded procedures
stored with the data they act upon. Debugging smart contracts is
a really difficult task since once deployed, the code cannot be re-
executed and inspecting a simple attribute is not easily possible
because data is encoded. In this paper, we address the lack of
inspectability of a deployed contract by analyzing contract state
using decompilation techniques driven by the contract structure
definition. Our solution, SmartInspect, also uses a mirror-based
architecture to represent locally object responsible for the in-
terpretation of the contract state. SmartInspect allows contract
developers to better visualize and understand the contract stored
state without needing to redeploy, nor develop any ad-hoc code.

Index Terms—Blockchain, Inspecting, Solidity, Smart Con-
tracts

I. INTRODUCTION

Blockchain technology has attracted a lot of attention
recently [1]. A blockchain is a distributed database, managed
by a peer-to-peer network that stores a list of blocks or records.
Ethereum [2], and BitCoin [3] are examples of blockchain
technologies. Blockchains can be used for many applications
such as cryptocurrency, digital wallets, ad-hoc networks, remote
transactions, among other uses [1]–[7]. One notable application
of blockchain is the execution of smart contracts [8].

Smart contracts are what embedded procedures are for
databases: programs executed in the blockchain to manage and
transfer digital assets. When used in platforms like Ethereum,
the contract language is Turing-complete [9]. Therefore, smart
contracts can be used in many different scenarios. For example,
there are smart contracts employed to subcurrency [10], and
outsourced computation [1]. Solidity [10] is the predominant
programming language used to specify smart contracts on the
Ethereum blockchain platform.

Smart contracts define a data structure as well as the
operations used to interact with these data [10]. Far from a
typical database, where the primary representation is data, and
the available operations are about the structure and the content,
the principal element of an Ethereum database is not just the
data. In addition, the database stores the behavior provided
to interact with these data, and to trigger other behaviors, by
sending messages to other contracts. Ethereum is a database that
works as a stored environment of contract instance (objects).
Compiled versions of the contract instances are then published
as part of transactions to the blockchain.

One of the challenges faced by developers of smart contracts
is finding and fixing bugs. Indeed, contracts are opaque in the
sense that once deployed in the blockchain it is difficult to

access the value of a given contract attribute. In this paper,
we focus on inspecting a smart contract state as a first step to
support contract debugging.

The difficulty to inspect contract data is not a widely
known problem. Although there are many tools for traditional
databases to access its stored data, Ethereum and Solidity
provide no such tool to inspect contract information. On the
other hand, there are two practices that we can use to access
contract data: (i) introducing getter methods, which requires
the redeployment of the contract (if it is already running in
the blockchain) and a possible data conversion (if the type is
not supported as return); and (ii) using the API to acquire raw
data and applying an ad-hoc decoding of the content.

Both described practices are tedious time-consuming tasks
for a developer. By contrast, nowadays any programming
language offers simpler ways to inspect data. Developers use
such inspection to access run-time data during development
or maintenance activities. Similarly, developers could benefit
from smart contract run-time inspection to verify the currently
stored data. Moreover, from a business perspective, companies
could use contract inspection to help clients better understand
the information that is actually stored in the contract. In fact,
the UTOCAT1 company deemed this interaction with clients
as an important scenario, regarding the complexity to explain
and understand Ethereum technology possibilities.

As a solution, we propose SmartInspect, an inspector
based on pluggable property reflection. The main idea is that
the binary structure of the contract is decompiled using a
memory layout reification. The memory layout reification
is built from the Solidity source code. Our SmartInspect
architecture is based on decompilation capabilities encapsulated
in mirrors [11]. Such mirrors are automatically generated from
an analysis of Solidity source code. This approach allows us
to access unstructured information from a deployed contract
in a structured way. Therefore, our SmartInspect approach
can introspect the current state of a smart contract instance
without needing to redeploy it nor develop additional code for
decoding.

The remainder of this paper is organized as follows.
Section II starts with an example of a smart contract. In
Section III, we detail the main problem our proposed approach
aims to address. Section IV describes our proposed solution,
SmartInpect. Section V shows a preliminary evaluation of
the SmartInspect approach by comparing to other practices.

1https://www.utocat.com/en/, verified 2018-02-22.
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Section VI provides a brief discussion on contract inspection. In
Section VII, we describe the related work. Finally, Section VIII
presents our conclusions and outlines possible future work
ideas.

II. SMART CONTRACT BY EXAMPLE

In this section, we present an example of a smart contract
written in Solidity (Section II-A), and we also describe a client
application in Pharo Smalltalk to interact with it (Section II-B).
We use this example throughout the paper to explain the opacity
problem.

A. Poll Smart Contract

In this example, the contract manages a poll where users
are allowed to vote a single time. Only the contract owner is
allowed to modify the list of voters. The poll is managed with
a contract because it is used for management decisions that
rely on the veracity of the information.

The following listing contains the code of this contract:

Listing 1. Solidity Poll Contract Example
1 pragma solidity ^0.4.16;
2

3 contract Public3StatesPoll {
4 /* Type Definition */
5 enum Choice { POSITIVE, NEGATIVE, NEUTRAL }
6 struct PollEntry { address user; Choice

choice; bool hasVoted; }
7

8 /* Properties */
9 PollEntry[] pollTable;

10 address owner;

This contract defines two user types Choice (line 5) and
PollEntry (line 6). A Choice models the answers to the poll
(whether the vote was positive, negative or neutral). A PollEntry
is a record representing a vote, i.e., the voting user, the selected
option, and if he/she has voted or not. Note that to refer to
the user we need an account address (using the primitive type
address) that refers to an external account.

The contract stores internally a poll table (an array of
PollEntry) (line 9) and an address to the contract’s owner account
(line 10). The poll table is an empty array where the contract
owner will eventually store the poll information (i.e., the array
will have an entry for each user that is allowed to vote). The
contract owner’s address is used for security checks.

11 /* Constructor */
12 function Public3StatesPoll () {
13 owner = msg.sender;
14 }

Lines 11-14 define the contract constructor. This constructor
is executed when the contract is deployed in the blockchain. It
keeps track of the user who owns the smart contract for future
reference.

15 function isRegistered (address voterAccount)
returns (bool) {

16 return (voterIndex (voterAccount) > -1);
17 }

18

19 function voterIndex (address voterAccount)
returns (int) {

20 for (uint x = 0; x < pollTable.length;
x++) {

21 if (pollTable[x].user == voterAccount)
{

22 return int(x);
23 }
24 }
25 return -1;
26 }

We define the helper function voterIndex (lines 19-26),
which returns the index of the voter in the poll table. We also
created the function isRegistered (lines 15-17) to determine
whether the user was registered to vote by using the voterIndex
function. Since array indexes in Solidity are unsigned integers
(uint), we need to explicitly convert it to a regular integer
(line 22).

27 function addVoter(address voterAccount)
returns (uint) {

28 assert( owner == msg.sender );
29 assert( !isRegistered(voterAccount) );
30 pollTable.push(PollEntry(voterAccount,

Choice.NEUTRAL, false));
31 return pollTable.length -1;
32 }
33

34 function vote (Choice choice) {
35 assert( isRegistered(msg.sender) );
36 uint index = uint(voterIndex(msg.sender));
37 assert( !pollTable[index].hasVoted );
38 pollTable[index].choice = choice;
39 pollTable[index].hasVoted = true;
40 }
41

42 function votesFor(Choice choice) returns
(uint) {

43 uint votes = 0;
44 for (uint x = 0; x < pollTable.length;

x++) {
45 if (pollTable[x].hasVoted &&

pollTable[x].choice == choice)
46 votes = votes +1;
47 }
48 return votes;
49 }
50

51 function allParticipantsHaveVoted () returns
(bool) {

52 for(uint x = 0; x < pollTable.length;
x++) {

53 if (!pollTable[x].hasVoted) return
false;

54 }
55 return true;
56 }
57

58 } //end of contract

The rest of the contract defines the following functions:
• addVoter (lines 27-32). This function registers a voter

into the poll table. It tries to assert2 that the caller is the
contract owner and the voter is not already registered.

2The assert function checks for a condition and throws an exception if such
condition is not met. In Solidity, exceptions undo all changes made in the
invoked method.
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• vote (lines 34-40). This function assigns the given choice
to the entry related to the calling user. The user must be
registered and not voted yet.

• votesFor (lines 42-49). It returns the number of users that
voted for the given choice.

• allParticipantsHaveVoted (lines 51-56). It returns true if
all the registered users have voted.

B. Client Side

Once our poll contract is deployed in the blockchain, we
need a client application to interact with it. For example, we
can implement a web application providing a user interface
or a web service as a means to invoke the functions in the
contract and vote or get the poll results. The following listing
illustrates the code of a Poll class implemented in Pharo for
our client application that will act as a façade to our contract:

Listing 2. Client side for the Voter Smart Contract
1 Object subclass: #Poll
2 instanceVariableNames: ’deployedContract’
3 package: #PollContract.

Lines 1-3 declare a Poll class with a deployedContract instance
variable. This instance variable refers to a proxy to the deployed
contract. This is a common implementation used for Ethereum
clients coded in other languages.

4 Poll class>> config
5 ^{#fromAccount →self systemAccount.
6 #gas →30000. #etc}.
7

8 Poll class>> deployNewContract: src
9 accounts: accounts

10 connection: conn
11

12 deployedContract := conn deploy: source
13 configuration: self config.
14 accounts do: [ :account |
15 deployedContract addVoter: account

configuration: self config ].

The class method3 deployNewContract:accounts:connection:
(lines 8-15) receives the contract source code, a list of user
accounts that are allowed to vote and a connection to the
blockchain. It first deploys the contract in the blockchain
using the contract source code, and then calls the ad-
dVoter:configuration: function of the new contract for each of the
given user accounts. When we call functions from a deployed
contract, we need to provide configuration information as well.

16 Poll>> config: usr
17 ^ {#fromAccount →usr account.
18 #gas →30000. #etc}.
19

20 Poll>> user: usr votes: aValue
21 deployedContract vote: aValue configuration:

(self config: usr).

3A class method is comparable to a static method in the Java jargon. In
Pharo method call with multiple parameters place arguments in between the
method name. Hence this.foobar(arg1, arg2) is expressed as this foo: arg1 bar:
arg2.

22

23 Poll>> isFinished
24 ^ deployedContract allParticipantsHaveVoted

configuration: (self class config).
25

26 Poll>> results
27 ^ { #POSITIVE . #NEGATIVE . #NEUTRAL }

collect: [ :value | value →
deployedContract votesFor: value
configuration: (self class config) ].

The method config: (lines 16-18) provides configuration data
with the user’s account. The method user:votes: (lines 20-22)
invokes the function vote:configuration: from the contract using
the user’s configuration. Likewise, the method isFinished (lines
23-25) invokes the function allParticipantsHaveVoted() of the
contract. The method results (lines 26-28) invokes repeatedly
votesFor() for each of the contract choices and returns a map
relating each choice to the number of people that voted for it.

It is noteworthy that the Poll class works as a thin layer
over the remote contract performing remote calls to it. In the
scenario of a real business application, this layer may define
the complete process of a large business and its logic.

III. THE PROBLEM: CONTRACT OPAQUENESS

Contrary to traditional SQL databases such as Oracle or
PostgreSQL which have a multitude of tools (e.g., DBeaver,
Navicat, SQL Maestro, Toad, PgAdmin, etc.) to access the
database schema and the actual data stored in a given column
or row, Ethereum/Solidity does not provide any tool to inspect
contract state in the referential model of the application. Since
the contract is an arbitrary data type, the offered API to interact
and inspect is both restricted and at a low-level of abstraction.

Contract state is read-only in the sense that unauthorized
clients cannot interact with it. Finally, contract state is opaque:
since it is encoded there is no simple way for a software
developer to know the actual value of a contract specific
attribute effectively stored in the blockchain. The remote
architecture of deployed solutions should also be taken into
account.

A. Contract Remote Structure

A contract is stored in the blockchain database and its object
representation can be accessed in the application client layer.
The Ethereum platform employs proxies based on the contract
ABI4 for covering the gap introduced by the physical location
of the object (which is stored remotely in the blockchain). For
example, when we invoke the method vote: configuration: in a
Pharo client, the method call will be sent to a proxy that will
connect through RPC (Remote Procedure Call) to the remote
ABI object. The result of this method is a transaction receipt
hash and, if applicable, the client will also receive any returned
values of the method call. It is noteworthy that method calls
to blockchain objects may have a transaction cost related with
them.

4Application Binary Interface (ABI) is the Ethereum standard to interact with
contracts. This standard encodes contract data according to its specification.

11



By proxying the remote contract, a client application can
use the contract methods just as any other object. Moreover,
the client can activate methods that will be executed elsewhere
in the blockchain (by paying the transaction cost if applicable)
and it will return values that we can use (as any other values for
other methods and objects). This simple way to interact with the
contract is unsatisfactory, since the objects cannot be inspected.
Since there is no simple way to access contract properties, it
makes debugging session tedious or even impossible.

B. Opaqueness problem example

We use the poll contract example (Section II) to illustrate
the opaqueness problem. Let’s suppose that a new user arrives
a couple of days before the poll expiration date. When he
tries to vote, the client system executes a routine that calls
the contract’s vote function and reports whether the call was
successful (Listing 3). More specifically, the routine calls our
method user: votes: defined in the Poll class (Listing 2, lines
16-17) that uses a proxy to remote call the vote function in
the deployed contract.

Listing 3. Client voting routine
1 UserSession >> vote: aValue
2 transactionReceipt := poll user: user votes:

aValue.
3 transactionReceipt
4 onSuccess: [ :t | self informToUser ];
5 onError: [ :e | self informError: e ].

The call will fail because the user was not a registered voter.
We can see in the client code that the only point where there
is a setup of users in the contract is during its deployment
(Listing 2, lines 8-15). Therefore, the contract will not encounter
the user and it will throw an exception. In the client, the details
that caused the exception will be hidden, it will only know
that the invoked method failed. Moreover, since the error is
being thrown by the remote object, inspecting the contract code
could identify the problem. However, a regular user does not
have access to the contract code, only the people in charge of
the contract have such access. For this reason, the user’s only
option is to submit a bug report stating that he cannot vote.

Listing 4. Contract vote function highlithing the asserts
1 function vote (Choice choice) {
2 assert( isRegistered(msg.sender) );
3 uint index = uint(voterIndex(msg.sender));
4 assert( !pollTable[index].hasVoted );
5 pollTable[index].choice = choice;
6 pollTable[index].hasVoted = true;
7 }

The person in charge (let’s call him Bob) of solving this
issue, will go and check the contract code (Listing 4), and
deduce that there are two possible reasons for the code to fail:
(i) the user is not authorized, i.e., he/she was not registered
into the contract; or (ii) the user already voted.

However, Bob cannot know for certain what caused the issue
without analyzing the contract data. In this specific case, since
we know the problem was caused by the unregistered voter, the

easiest solution would be to change the contract state manually
by calling the function addVoter to add the new user.

Bob will face many difficulties to find the issue. As we
can see, we did not define the contract properties as public5

(Listing 1, lines 9-10). Therefore, if Bob wants to find the nature
of the error, he will need the contract instance’s current state to
inspect it. Bob has two possibilities then: (i) re-instantiate the
contract to add a new function to return the data (i.e., create
a getter method); or (ii) develop a costly, ad-hoc decoder for
reading the binary content of the contract.

If Bob takes the first possibility, he will add a new function
to analyze the content of the contract. Since Solidity functions
cannot return arrays or structs, Bob will need to adapt its
function accordingly to acquire the poll data. Moreover, the
contract will have to be redeployed, creating a new instance of
it. Therefore, Bob will be able to analyze the new instance data
with his function, but not the previous one (which was the one
that presented the issue). Besides, there are the transactional
costs to redeploy the contract to be considered, as well as the
inconvenience to ask the users to vote again (since it is a new
instance). In our example, where there is only a few days left
to close the poll, it would not be feasible for Bob to ask all
users to vote again.

The second possibility is for Bob to spend time into creating
an add-hoc decoder. The main advantage on this possibility is
that Bob does not need to redeploy the contract. The decoder
could access the complex binary slots of the contract’s related
storage and converted them into the desired content that Bob
is trying to analyze. Since the Solidity documentation for its
binary encoding is incomplete, Bob will have a difficult time
to create the decoder. Moreover, this decoder is a one time
solution, as it is designed for a specific data in a particular
contract, i.e., Bob will not be able to easily reuse this solution
to another contract. In our example, Bob might not have the
time required to create such decoder before the poll expiration
date.

This scenario illustrates a simple aspect of the impact of the
opacity of contracts. The general concern is that the developer
should be able to understand the value of a given contract
attribute.

C. Challenges

There are many challenges to pierce through the opaqueness
problem and reveal contract information.

• Binary and incomplete specification. From the technical
aspects we only have the Ethereum API to access a binary
representation of the contract. The first challenge we faced
is an incomplete specification of the contract encoding
performed by the Solidity compiler [10].

5In Solidity, when a contract attribute (state variable) does not specify its
visibility, it assumes the default “internal”. Internal members can only be
accessed from within the current contract or contracts deriving from it. It is
noteworthy that everything inside a contract can be visualized by external users.
Restricted visibilities (e.g., internal, private) only prevents other contracts from
modifying the information [10].
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• Inconsistent specification of hash computation. An-
other challenge related to the specification is the hash
computation for dynamic types. Static types use text as
input for the hash calculation. However, dynamic types
follow a different standard that it is not clearly specified
in the documentation. For dynamic types, it is necessary
to use binary data packed specifically for each type. For
example, to access an array it is necessary to pack the
index number and the array position (offset) into a binary
representation to obtain the correct hash. Other dynamic
types would require a different input to get its hash.

• Packed and ordered data. We also highlight the chal-
lenges on decoding types, as the compiler packs as much
data as possible into contiguous memory. Therefore, we
need to know the specific types in the correct order to
acquire the contract data, and that is not an easy task
when we have an incomplete specification.

We acknowledge as a problem the challenges and difficulties
of analyzing our own objects which are deployed in the
Ethereum blockchain database. To solve this problem we
propose an inspector that allows the user to perceive a clean
representation of the object he/she is dealing with.

IV. SMARTINSPECT: CONTRACT INSPECTOR

SmartInspect is a local pluggable mirror-based reflection
system for remotely deployed objects on a reflection-less system
(the Ethereum platform). The goal of SmartInspect is to allow
the inspection of known contracts based on its source code
focusing on the debugging properties of interactiveness and
distribution [12]. This reflective approach allows a user to see
the contents of any contract instance of the given source code,
without needing to redeploy, nor develop any ad-hoc code.

SmartInspect is implemeted in Pharo and it is publicly
available as part of the SmartShackle tool suite.6

A. The Basics
The general idea of the Smart Inspector is to decompile

the storage layout encoded by the Ethereum API (Figure 1).
The decompilation employs a local pluggable mirror-based
reflection architecture for remotely deployed objects on an
Ethereum network.

Figure 2 shows the process to inspect contract, the pluggable
reflective architecture generates a mirror for a given contract’s
source code by using its AST (Abstract Syntax Tree). Then, we
use this mirror to extract information from a remote contract
instance deployed in the blockchain (which is encoded as
a binary memory layout). The contract data we gathered is
exposed in four different formats: (i) data proxy object (REST),
(ii) Pharo widget user interface, (iii) JSON, and (iv) HTML.

This approach allows us to access remote structureless
information in a structured way. Our solution meets most of the
desirable properties that are important for remote debugging
namely: interactiveness and distribution [12].

6https://github.com/RMODINRIA-Blockchain/SmartShackle,
http://smart-shackle.io/, verified 2018-02-22.
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Fig. 2. SmartInspect building process.

B. Discovering the Memory Layout

First we needed to decompile the binary representation of
a deployed contract (i.e., a contract ABI) to discover the
information inside the contract instance. That would resolve
the opaqueness problem we described earlier, since we would
be able to understand contract attributes.

The Ethereum API provides only one way to access memory
layout of a contract: getStorageAt calls. This call gives access
to a tree where information is encoded into slots accessible
through contiguous indexes, for statically allocated memory
(static types), and accessible by Keccak hash for dynamically
allocated memory (variable sized arrays and mappings) [10]. It
was a big challenge to decompile the memory layout because
the Solidity documentation is incomplete. We had to reverse
engineer some of the encoding performed by the compiler by
ourselves.

There are two key restrictions in memory access: types and
order. Each memory slot stores up to 32 bytes. As general
policy, the compiler tries to pack as much data as possible for
basic types. For example, two booleans and one int128 occupy
18 bytes from a slot, one byte for each boolean plus 16 bytes
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Fig. 3. Memory Layout Representation: (a) Static, (b) Dynamic.

for the int128. If we add another type that can not fit into the
current slot, then the compiler places it in a new memory slot.

In the case of structs, they always start in a new slot and their
data may take as many slots as needed. Any data after the struct
will be encoded to start in a new slot, no matter if it could fit
into the remaining struct slot. We show some of these encoding
details for static types in Figure 3a.7 Then, transversally, all
the static representation of the different variables is available
contiguously in the first slots of the binary representation, from
0 to N.

Dynamically allocated data types (e.g., arrays, mappings)
are encoded in other hashed addresses, as shown in Figure 3b.8

Therefore, the decompilation has to dive into a sometimes
contiguous, sometimes indexed slots, with arbitrary allocations
of space that may depend on the size of the type or in the next
and/or previous type, to be able to read the stored content.

Therefore, we were successful in addressing our concern to
introspect a deployed contract data, as we resolved the contract
opaqueness problem by decompiling the binary representation
and decoding the memory layout.

C. Building the Mirror

After we decoded the memory layout, we still needed to
apply our solution to any contract for a general reusable

7The figure shows contract attributes definitions with the arrows pointing
to the memory representation. In this particular case, we first defined two
booleans and one int128, which occupy 18 bytes from the first memory slot.
Next, we define another int128, one uint (256 bits), and an int8 that will
occupy the second, third, and fourth memory slots respectively. The struct
encoding places it in the fifth and sixth slot. Finally, even though the last
variable (int8) could fit in the struct slot, the encoding places it in the next
available slot (the seventh).

8We decided to represent the slot as contiguous data to facilitate its
representation. In this case, we first defined three static variables (two booleans
and one int128) to show they are placed in the first available slots. Then, we
defined two dynamic types: one variable size array, and a mapping (which is
similar to a hash table). Unlike static types, they are not encoded into the first
memory slots but placed elsewhere in the memory.

solution. We employ a mirror-based architecture [11] that
mimics the structure of any contract for us to access the memory
layout that we can decode. A mirror works like an independent
meta-programming layer which splits the concern of reflection
capabilities into a mirror object.

First, we require the contract source code as input to start
building the mirror. Then, we parse the source to create an
AST (Abstract Syntax Tree). By interpreting the AST, we are
able to know every type declared in the contract in the correct
order. As described earlier (Section IV-B), we need know the
types in order to decoded the memory layout and access the
contract data.

Aiming at a general solution, we model configurable mirror
objects that allow us to interact with deployed contract instances
of the same configuration (usually meaning the same contract
deployed in the blockchain). Our approach builds a composite
mirror object, called ContractMirror, whose each component
knows how to decode, in order, the contract state (Figure 4,
the left side of the diagram). For each variable or struct a
corresponding elementary mirror is added to the composite.

At this point we have a mirror with the structural represen-
tation of the AST that knows, in order, each contract property
with its related type. Now our approach builds a representation
of the memory layout to access the stored data. By using static
code analysis provided by the AST, we can find the exact place
of storage of every contract property. Moreover, we map the
contract properties to its corresponding memory slot. Therefore,
the mirror uses this mapping to gather the contract data for
inspection. Figure 4 (on the right part) shows the mirror’s
memory mapping as a class diagram.

D. Inspection Example

Getting back at our problem example (Section III-B), where
the person in charge (Bob) needed to verify the data in a
deployed poll contract instance. Back then, Bob had only
two possibilities to address an user’s issue, and both were
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Fig. 4. Contract Mirror UML Diagram

not feasible. Now, let’s suppose that Bob just learned about
SmartInspect, which gives him a third possibility, inspect the
contract data using our tool. Since Bob is the person in charge
he has access to both the contract source code and its deployed
binary representation. Bob executes SmartInspect on its poll
contract and he is presented with the data from the pollTable
property (Figure 5). Finally, Bob can see that the user was not
registered, and he can now easily fix the problem by executing
the addVoter function on his client application. This simple
example illustrates the importance of contract inspection.

Fig. 5. SmartInspect Pharo User Interface Screenshot

V. PRELIMINARY EVALUATION

In this section, we present a preliminary evaluation of the
SmarInspect approach. The goal of this evaluation was to
investigate whether SmartInspect implements the necessary and

desirable features for an inspector. We used the following four
characteristics used for remote debugging by Papoulias [12]:
Interactiveness, Distribution, Security, and Instrumentation. We
also analyzed other five characteristics that are important for
a blockchain remote inspector: Privacy, Pluggability, Consis-
tency, Reusability, and Unrestricted types. We detail the nine
characteristics as follows:

• Interactiveness: the inspector shows the object’s state in
real time. A lack of interactiveness could be a problem in
blockchain platforms because of the contract’s state may
change during inspection and the user would be presented
with outdated information.

• Distribution: the inspector can be extended for other
technologies. Ideally, a debugger or inspector should rely
on a middleware that is extensible. For smart contracts,
the inspector should be extensible over different smart
contract languages and blockchain technologies.

• Security: since remote debugging access a target through
a network, it is important to ensure security from both
ends. On the target side, the inspector should not have
unrestricted access to its device; this is already ensured
by the blockchain platform.

• Instrumentation: the inspector can alter the semantics of
a process to assist in debugging. Basically, this is the
mechanism to halt the process and inspect it at that point
(e.g., breakpoints and watchpoints). This characteristic is
not possible in blockchain platforms, as we cannot modify
the deployed contract code to halt a function in the middle
of its execution in the blockchain.

• Privacy: inspection should not breach or compromise data
privacy by exposing data to unauthorized users. When
considering smart contracts, a lack of privacy is dangerous
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as it could be exploited by malicious users to acquire illicit
advantages and resources.

• Pluggability: the inspector can be used on existing
objects without the need to re-instantiate the objects or
the system. For contracts, this means we can inspect
existing deployed contracts without any dependency on
the contract side, or the need to redeploy the contract. An
unpluggable approach has the disadvantage of requiring
the redeployment of a contract, which has non-trivial
transactional costs.

• Consistency: the representation used by the inspector must
reveal the information in a consistent manner, i.e., the
inspection must reflect the current state of the deployed
contract.

• Reusability: the inspector can be reused for different
contracts. Lack of reusability would require a developer
to spend time redefining the inspection for each individual
contract.

• Unrestricted Types: the inspection can handle all types of
objects. In contrast, a type-restricted inspector supports
only a subset of data types (e.g., primitive types, static
types).

We analyzed SmartInspect according to the characteristics
of inspection tools just presented. Even though we wanted to
compare SmartInspect against related approaches, as far as we
know, there are no other inspectors available for Solidity smart
contract. Therefore, we compared our approach against two
other practices to access contract data: Getter methods, and
ad-hoc Decoder (Table I).

TABLE I
RELATED TECHNIQUES COMPARISON

Characteristic SmartInspect Getter Decoder
Interactiveness Yes Partial Partial
Distribution Yes No No
Security Yes Yes Yes
Instrumentation No No No
Privacy Yes No Yes
Pluggability Yes No Yes
Consistency Yes Yes Yes
Reusability Yes No No
Unrestricted Types Yes No Yes

As we can see from Table I, SmartInspect’s only character-
istic flaw is related to instrumentation for remote debugging.
However, this is a limitation imposed by the Ethereum
blockchain technology rather than a design flaw in our
approach.

Getter methods are a simple solution, since they are cheap
to implement and easy to test. The developer does not need to
know the memory layout of a contract to create getter methods.
However, if the developer forgets to make a getter for a given
attribute, he/she will need to re-deploy the contract and, most
often, lose the data from the previous instance. Solidity does
not support the return of many complex types (e.g, structs,
mappings) on its functions. Therefore, a developer might need

to adapt his/hers data or function to provide access to a complex
type. Moreover, the easy access to the data may cause a loss of
privacy, since getter methods are a public part of the contract
binary encoding.

Another practice is the ad-hoc Decoder that uses the
Ethereum API on the memory slots. This is a complex task
since it demands a deep understanding of the memory layout
of each contract a developer plans to inspect. It also requires
a developer to know the type of each attribute and code the
ad-hoc decoder accordingly. Its advantages are that it allows
access to data without loss of privacy and without the need to
redeploy the contract. In fact, SmartInspect uses this concept
of decoding memory layouts as a part of its inspection process.

VI. DISCUSSION

In this section, we discuss our evaluation (Section VI-A)
and the possible benefits for inspecting smart contracts (Sec-
tion VI-B).

A. Evaluating the Inspector

In our preliminary evaluation, we compared SmartInspect
against two practices that can be used to access contract data
(Section V). We acknowledge that we need other inspectors for
a better comparison, since practices are a less polished solution
than a fully designed approach for inspection. However, as
far as we know, there is no other inspector tool available for
Ethereum blockchain.

In the future, we plan to improve the evaluation by comparing
with other inspectors, and performing an user driven evaluation.

B. Benefits from Inspecting a Contract

There are several benefits for inspecting a smart contract on
a blockchain platform. We highlight the following:

• Easier to Understand. Blockchain provides a mechanism
that can be used to build trust between entities without
a middleman [2], [3]. In the blockchain environment,
smart contracts became a popular way to transfer digital
assets among such entities [8], [9]. From a beginners
perspective, it is better to work with concrete examples to
understand a new concept. Thus, an inspector provides a
simple way to access the contract state, which facilitates
its understanding.

• Find Bugs. Contract inspection can help developers to
find bugs more easily (as we illustrated in Section III-B).

• Transparency. Supporting inspection of contracts can
increase transparency and improve overall trust among
entities dealing with blockchain. For instance, it is possible
for two entities to show the current state of their contracts
to each other promoting transparency in their interactions.

• Encourage the adoption of Contracts. By allowing
contract inspection, we can promote trust and transparency
on blockchain platforms to companies and institutions.
This will encourage more people to adopt smart contracts
for their business or academic activities.
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VII. RELATED WORK

We organized the related work into three groups: (i) in-
specting and debugging, (ii) reverse engineering, and (iii)
blockchains and smart contracts.

A. Inspecting and Debugging

Chis et al. [13] performed an exploratory research to better
understand what developers expect from object inspectors, and
based on that feedback they propose a novel inspector model.
The authors interviewed 16 developers for a qualitative study,
and a quantitative study conducting an online survey where
62 people responded. Both studies were used to identify four
requirements needed in an inspector. Then they propose the
Moldable Inspector, which indicates a new model to address
multiple types of inspection needs. We followed the lessons
taken by the Moldable Inspector when creating SmartInspect.
We deem noteworthy the multiple views aspect, as SmartInspect
can present its inspected data in four different views (REST,
Pharo U.I., JSON, and HTML).

Papoulias [12] gives a deep analysis on remote debugging.
As discussed by the author, remote debugging is specially im-
portant for devices that cannot support local development tools.
The author identifies four important characteristics for remote
debugging: interactiveness, instrumentation, distribution, and
security. Based on the identified properties, Papoulias proposed
a remote debugging model, called Mercury. Mercury employs a
mirror based approach and an adaptable middleware. We used
Papoulias research as an inspiration to create SmartInspect,
specially relying on mirror for the remote inspection.

Salvaneschi and Mezini [14] propose a methodology, called
RP Debugging, to debug reactive programs more effectively.
The authors discuss that reactive programming is more cus-
tomizable and easier to understand than its alternative the
observer design pattern. The authors also present the main
problems and challenges to debug reactive programs, and
the main design decisions when creating their methodology.
Although our inspector is from a different application domain,
the RP Debugging design served as inspiration to plan our own
inspecting approach.

B. Reverse Engineering

Srinivasan and Reps [15] developed a reverse engineering
tool to recover class hierarchical information from a binary
program file. Their tool also extracts composition relationships
as well. They use dynamic analysis to obtain object traces and
then they identify the inheritance and composition information
among classes on those traces. The authors experiments show
that their recovered information is accurate according to their
metrics. The author’s tool contrasts with SmartInspect as, we
use static analysis and they use dynamic analysis.

Caballero et al. [16] propose an approach to reverse engineer
protocols by using dynamic analysis on program binaries. As
stated by the authors, this approach differs from others that
extract protocol information purely from network traces. The
authors argue the importance to extract the protocol information,
specially when there is no access to its specification, for

network security applications. They used 11 programs that
implemented five different protocols for their evaluation. The
authors’ technique also contracts with SmartInspect since they
use dynamic analysis.

Fisher et al. [17] propose a multi phase algorithm to process
ad-hoc data without human interaction. The authors describe
ad-hoc data as semistructured information that does not have
tools easily available. Basically, their algorithm reverse engineer
the ad-hoc data into a domain specific language, which is used
to generated a set of tools such as parsers, printers, query
engine, and others. The authors evaluate the performance and
correctness of their approach by using different benchmarks.

Lim et al. [18] designed an analysis tool called File Format
Extractor for x86 (FFE/x86). They extract information from
an executable file to perform several process, including static
analysis. Their evaluation consists in applying their tool in
three systems: gzip, png2ico, and ping. The authors work is
similar to SmartInspect in a way that both approaches use static
analysis in one of its steps to enhance the reverse engineering.

C. Blockchain and Smart Contracts

Dinh et al. [7] describe a benchmarking framework to
analyze private blockchain platforms. The authors contrast the
different among public blockchain platforms (e.g., Ethereum)
and private ones. For instance, private blockchain show more
focus towards secure authentication. Although, their framework
was designed for private blockchains, they evaluate it using
public ones as well. Their evaluation measured four aspects
(throughput, latency, scalability, and fault tolerance) in two
blockchains (Ethereum and Hyperledger) and the Parity tech-
nology. The benchmark framework provided an in dept analysis
of blockchain platforms that we used when we designed
SmartInspect.

Luu et al. [8] investigates the security problems of executing
smart contracts on the Ethereum platform. They also propose
solutions to make the contracts more secure. The authors
presents several scenarios and the possible malicious exploits
for those scenarios. Based on the presented vulnerabilities, they
propose solutions to make contracts more secure. The authors
also propose a tool, called Oyente, that flags potential security
flaws when coding smart contracts. Similarly to SmartInspect,
Oyente also uses the contract bytecode to makes its security
recommendations. However, our tool uses the memory layout
to access the data, and Oyente uses the bytecode for a symbolic
execution and security analysis.

Bhargavan et al. [9] proposed a framework to convert
contracts to F* and then improve their security. F* is a
functional programming language proposed by the authors
in their work. According to them, F* was designed to better
verify correctness of contracts. Their approach decompiles the
contract bytecode into a special F* code to verify low-level
properties; similarly it also compiles a contract source into an
F* version to verify high-level properties. The authors did a
preliminary evaluation where 46 contracts were translated to
F*. Their approach also employs decompilation of contract
bytecode and parses source code, similar to our SmartInspect.

17



VIII. CONCLUSION

In this paper, we present the specific problems of inspecting
Solidity smart contracts. Smart contract opaqueness added to
the problems of reverse engineering compiler encoding and
packing on different entity types makes the inspecting of values
in smart contracts almost impossible for regular developers.

Our approach implementation, SmartInspect, is a local
pluggable mirror-based reflection system for remotely deployed
objects on reflection-less systems (the Ethereum platform).
SmartInspect allows the inspection of known contracts based
on its source code focusing on the debugging properties of
interactiveness and distribution. This reflective approach allows
a user to see the contents of any contract instance of the given
source code, without needing to redeploy, nor develop any
ad-hoc code to decode the memory representation.

We planned the following ideas for future work: (i) ex-
tend SmartInspect to inspect other smart contract languages
employed in the Ethereum platform besides Solidity (e.g.,
Serpent, Viper, LLL); (ii) extend SmartInspect to support other
blockchain platforms (e.g., Hyperledger); (iii) improve the
introspection capabilities to support full debugging on smart
contracts; and (iv) improve the evaluation by using SmartInspect
on a big contract database, defining metrics for evaluating
contract inspectors, comparing it with other inspectors, and
performing an extensive user evaluation.
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Abstract—Smart Contracts have gained tremendous popularity
in the past few years, to the point that billions of US Dollars
are currently exchanged every day through such technology.
However, since the release of the Frontier network of Ethereum in
2015, there have been many cases in which the execution of Smart
Contracts managing Ether coins has led to problems or conflicts.
Compared to traditional Software Engineering, a discipline of
Smart Contract and Blockchain programming, with standardized
best practices that can help solve the mentioned problems and
conflicts, is not yet sufficiently developed. Furthermore, Smart
Contracts rely on a non-standard software life-cycle, according to
which, for instance, delivered applications can hardly be updated
or bugs resolved by releasing a new version of the software.

In this paper we advocate the need for a discipline of
Blockchain Software Engineering, addressing the issues posed by
smart contract programming and other applications running on
blockchains. We analyse a case of study where a bug discovered in
a Smart Contract library, and perhaps “unsafe” programming,
allowed an attack on Parity, a wallet application, causing the
freezing of about 500K Ethers (about 150M USD, in November
2017). In this study we analyze the source code of Parity and the
library, and discuss how recognised best practices could mitigate,
if adopted and adapted, such detrimental software misbehavior.
We also reflect on the specificity of Smart Contract software
development, which makes some of the existing approaches
insufficient, and call for the definition of a specific Blockchain
Software Engineering.

Index Terms—smart contracts; blockchain; software engineer-
ing;

I. INTRODUCTION

Smart contracts are becoming more and more popular
nowadays. They were first conceived in 1997 and the idea was
originally described by computer scientist and cryptographer
Nick Szabo as a kind of digital vending machine. He described
how users could input data or value and receive a finite item
from a machine (in this case a real-world snack or a soft drink).

More in general, smart contracts are self-enforcing agree-
ments, i.e. contracts, as we intend them in the real world, but
expressed as a computer program whose execution enforces
the terms of the contract. This is a clear shift in the paradigm:
untrusted parties demand the trust on their agreement to the
correct execution of a computer program. A properly designed

smart contract makes possible a crow-funding platform with-
out the need for a trusted third party in charge of administering
the system. It is worth remarking that such a third party makes
the system centralized, where all the trust is demanded to a
single party, entity, or organisation.

Blockchain technologies are instrumental for delivering the
trust model envisaged by smart contracts.

In the example of a crowd-funding platform for supporting
projects, the smart contract would hold all the received funds
from a project’s supporter (it is possible to pay a smart
contract). If the project fully meets its funding goals, the smart
contract will automatically transfer the money to the project.
Otherwise, the smart contract will automatically refund the
money to the supporters.

Since smart contracts are stored on a blockchain, they are
immutable, public and decentralised. Immutability means that
when a smart contract is created, it cannot be changed again
and no one will be able to tamper with the code of a contract.

The decentralised model of immutable contracts implies that
the execution and output of a contract is validated by each
participant to the system and, therefore, no single party is in
control of the money. No one could force the execution of the
contract to release the funds, as this would be made invalid
by the other participants to the system. Tampering with smart
contracts becomes almost impossible.

The first Blockchain to go live was the Bitcoin’s Blockchain
[1] in 2009. It introduced the idea of programs used to validate
agreement amongst untrusted parties: Bitcoin transactions are
subject to the successful termination of a non-Turing complete
program in charge of validating things like ownership and
availability of the crypto money. The biggest blockchain that
currently supports smart contracts is Ethereum, which was
specifically created and designed with an extended execution
model for smart contracts in 2014 [2]. Contracts in Ethereum
can be programmed with Solidity, a programming language
developed for Ethereum.

A few years down the line, several detrimental software
misbehaviors, which caused considerable monetary loss and
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community splits, have posed the problem of the correct
design, validation and execution of smart contracts.

In this paper we advocate the need for a discipline of
Blockchain Software Engineering, addressing the issues posed
by smart contract programming and other applications run-
ning on blockchains. Blockchain Software Engineering will
specifically need to address the novel features introduced
by decentralised programming on blockchains. These will be
discussed in more detail in the rest of this paper.

We consider a case study, the recent attack to the Parity
wallet (2017). A bug discovered in a smart contract library
used by the Parity application, caused the freezing of about
500K Ethers (see [3] for a summary).

We analyze the source code of Parity and the library, and re-
flect on the specificity of smart contract software development,
noting some shortfalls of standard approaches to software
development. We then discuss how recognized best practices
in traditional Software Engineering could have mitigated, if
adopted and adapted, such detrimental software misbehavior.

This paper aims to contribute a first step towards the
definition of Blockchain Software Engineering.

II. BACKGROUND

In this section we briefly introduce the blockchain and smart
contracts technology, their execution environment and model.
Since our study is focused on the Ethereum platform we will
use it as example but the concepts presented here are of general
validity.

A. Decentralized Ledgers

A blockchain is essentially a shared ledger that stores
transactions, holding pieces of information, in a decentralized
peer-to-peer network. Nodes are called miners and each one
maintains a consistent copy of the ledger. Transactions are
grouped together into blocks, each hash-chained with the pre-
vious block. Such a data structure is the so called blockchain,
shown in Figure 1.

Fig. 1. Blockchain and Ethereum architecture. Each block of the chain
consists of a large number of single transactions.

Miners use a consensus protocol in order to agree on the
validity of each block, called Nakamoto Consensus Protocol
[1]. At any time miners group their choice of incoming new
transactions in a new block, which they intend to add to the
public blockchain. Nakamoto consensus uses a probabilistic al-
gorithm for electing the miner who will publish the next valid
block in the blockchain. Such a miner is the one who solves
a computationally demanding cryptographic puzzle. Such a
procedure is called proof-of-work. All other miners verify that
the new block is correctly constructed (e.g. no virtual coin
is spent twice) and update their local copy of the blockchain
with the new block. Bitcoin transactions essentially record the
transfer of coins from one address, a wallet say, to another
one. Differently, Ethereum transactions also include contract-
creation transactions and contract-invoking transactions. The
former ones record a smart contract on the blockchain, and
the latter ones cause the execution of a contract functionality
(which enforces some terms of the contract). We refer the
reader to the original white papers of Bitcoin and Ethereum
[1], [2] for further details.

B. Ethereum Smart Contracts
A Smart Contract (SC) is a full-fledged program stored

in a blockchain by a contract-creation transaction. A SC is
identified by a contract address generated upon a successful
creation transaction. A blockchain state is therefore a mapping
from addresses to accounts. Each SC account holds an amount
of virtual coins (Ether in our case), and has its own private
state and storage. An Ethereum SC account hence typically
holds its executable code and a state consisting of:

• private storage
• the amount of virtual coins (Ether) it holds, i.e. the

contract balance.
Users can transfer Ether coins using transactions, like in

Bitcoin, and additionally can invoke contracts using contract-
invoking transactions. Conceptually, Ethereum can be viewed
as a huge transaction-based state machine, where its state is
updated after every transaction and stored in the blockchain.

A Smart Contract’s source code manipulates variables in the
same way as traditional imperative programs. At the lowest
level the code of an Ethereum SC is a stack-based bytecode
language run by an Ethereum virtual machine (EVM) in
each node. SC developers define contracts using high-level
programming languages. One such language for Ethereum is
Solidity [4] (a JavaScript-like language), which is compiled
into EVM bytecode. Once a SC is created at an address X, it is
possible to invoke it by sending a contract-invoking transaction
to the address X. A contract-invoking transaction typically
includes:

• payment (to the contract) for the execution (in Ether).
• input data for the invocation.
1) Working Example: Figure 2 shows a simple example

of SC reported in [5], which rewards anyone who solves a
problem and submits the solution to the SC.

A contract-creation transaction containing the EVM byte-
code for the contract in Figure 2 is sent to miners. Eventually,
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1contract Puzzle {
2
3address public owner ;
4bool public locked ;
5uint public reward ;
6bytes32 public diff ;
7bytes public solution ;
8
9function Puzzle () {// constructor
10owner = msg.sender ;
11reward = msg.value ;
12locked = false ;
13diff = bytes32 (11111); // pre-defined

difficulty
14}
15
16function (){ // main code , runs at every

invocation
17if ( msg.sender == owner ) { // update reward
18if ( locked )
19throw ;
20owner.send(reward);
21reward = msg.value ;
22} else if ( msg.data.length > 0) {
23// submit a solution
24if ( locked ) throw ;
25if ( sha256 ( msg.data ) < diff ) {
26msg.sender.send(reward); // send reward
27solution = msg.data ;
28locked = true ;
29}
30}
31}
32}

Fig. 2. Smart Contracts example.

the transaction will be accepted in a block, and all miners
will update their local copy of the blockchain: first a unique
address for the contract is generated in the block, then each
miner executes locally the constructor of the Puzzle contract,
and a local storage is allocated in the blockchain. Finally the
EVM bytecode of the anonymous function of Puzzle (Lines
16+) is added to the storage.

When a contract-invoking transaction is sent to the address
of Puzzle, the function defined at Line 16 is executed by
default. All information about the sender, the amount of
Ether sent to the contract, and the input data of the invoking
transaction are stored in a default input variable called msg.
In this example, the owner (namely the user that created the
contract) can update the reward (Line 21) by sending Ether
coins stored in msg.value (if statement at Line 17), after
sending back the current reward to the owner (Line 20).

In the same way, any other user can submit a solution
to Puzzle by a contract-invoking transaction with a payload
(i.e., msg.data) to claim the reward (Lines 22-29). When a
correct solution is submitted, the contract sends the reward to
the sender (Line 26).

2) Gas System: It is worth remarking that a SC is run on the
blockchain by each miner deterministically replicating the exe-
cution of the SC bytecode on the local copy of the blockchain.
This, for instance, implies that in order to guarantee coherence
across the copies of the blockchain, code must be executed in

a strictly deterministic way (and therefore, for instance, the
generation of random numbers may be problematic).

Solidity, and in general high-level SC languages, are Turing
complete in Ethereum. In a decentralised blockchain archi-
tecture Turing completeness may be problematic, e.g. the
replicated execution of infinite loops may potentially freeze
the whole network.

To ensure fair compensation for expended computation
efforts and limit the use of resources, Ethereum pays miners
some fees, proportionally to the required computation. Specif-
ically, each instruction in the Ethereum bytecode requires a
pre-specified amount of gas (paid in Ether coins). When users
send a contract-invoking transaction, they must specify the
amount of gas provided for the execution, called gasLimit, as
well as the price for each gas unit called gasPrice. A miner
who includes the transaction in his proposed block receives
the transaction fee corresponding to the amount of gas that
the execution has actually burned, multiplied by gasPrice. If
some execution requires more gas than gasLimit, the execution
terminates with an exception, and the state is rolled back to
the initial state of the execution. In this case the user pays
all the gasLimit to the miner as a counter-measure against
resource-exhausting attacks [6].

III. CASE STUDY AND METHODOLOGY

Recently Ethereum suffered a supposedly involuntary hack,
in which an inexperienced developer froze multiple accounts
managed by the Parity Wallet application. The hack has
suddenly risen to the news since the amount of Ether coins
in the frozen account was estimated to be 513,774.16 Ether
(equivalent to 162M USD at the time). In November 2017 the
hack became (in)famously known as the Parity Wallet hack.
This was the result of a single library code deletion.

This case replicated a similar problem exploited by another
hacker on the same Parity Wallet code, a few months earlier
(July 2017). In that case, a multi-signature wallet was hacked
and set in control of a single owner, who acquired all the Ether
coins of that single wallet.

The Parity Wallet hack represents a paradigmatic example of
problems that may currently occur in the development of smart
contracts and blockchain-related software in general. Such
problems are associated to the lack of suitably standardised
best practices for blockchain software engineering.

In the rest of this paper, we will analyse the Parity Wallet
hack case by applying static code analysis to the Parity
library. We aim to understand the code structure and, more
importantly, the link between smart contracts and the functions
defined in smart contract libraries. After analyzing the Solidity
code of the Wallet, we will outline the events that ended up
with more than 500k Ether frozen. Then, we will elaborate on
viable solutions from the perspective of Software Engineering.
These represent potential general solutions for cases analogous
to the Parity Wallet hack.

IV. STRUCTURE AND FUNCTIONALITY OF PARITY

Parity is an Ethereum client that is integrated directly
into web browsers. It allows the user to access the basic
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Ether and token wallet functions. It is also an Ethereum GUI
browser that provides access to all the features of the Ethereum
network, including DApps (decentralised applications). Parity
also operates as an Ethereum full node, which means that
the user can store and manage the blockchain on his own
computer. It is a complex and critical decentralised application.

Solidity and the EVM provide three ways to call a function
on a smart contract: CALL, CALL-CODE, and DELEGATE-
CALL. The former is a call to a function that will be executed
in the environment of the called contract. The other two calls
execute the called code in the caller environment. Many library
calls on Ethereum are implemented with DELEGATE-CALL,
typically by deploying a contract that serves as a library: the
contract has functions that anyone can call, and these may
be used, for instance, to make changes in the storage of the
calling contracts. Solidity has some syntactic constructs which
allow libraries offering DELEGATE-CALLs to be defined
and ”imported” by other contracts. However, at the EVM
level the library construction disappears, and DELEGATE-
CALLs and other calls are actually deployed as smart contract
functionalities.

1) Statically linked libraries: It is possible to embed all
the library code in a smart contract, e.g. the multi-signature
wallet contract itself, instead of using DELEGATE-CALLs to
an external contract. In a sense, this would be similar to the
standard static linking of libraries. However, statically linked
code increases the gas cost of contract deployment (space also
has a cost).

2) Parity library contract: Parity made the choice to adopt
library-driven smart contract development for their multi-
signature wallets. That is, Parity initially deployed a multi-
signature contract as their library, and all the other Parity
multi-signature wallets referenced that single library contract
for all their functionality. The library itself was actually
a properly working multi-signature wallet. In hindsight, it
probably shouldn’t have been.

All the Parity multi-signature wallets (except for the library
one) reference the library by declaring the following constant1:

1address constant _walletLibrary =
20x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Since it is a constant, it is generated at compile time, meaning
it’s permanently stored in ”code”, not in ”storage”. The value
would be the address of the library to DELEGATE-CALL on.
By running

1eth.getCode(walletAddress)

on one of the affected wallets (walletAddress), it is still
possible to see the address of the now-dead library at the line
code of index 422.

Another observation is that it would probably be better
practice to allow the owners of the wallets to change the linked
library, instead of coding it in the bytecode.

1https://medium.com/crypt-bytes-tech/parity-wallet-security-alert-
vulnerability-in-the-parity-wallet-service-contract-1506486c4160

V. ANALYSIS OF THE ATTACK

In this section we report a summary of the description
of the attack presented on “ethereum.stackexchange.com” at
the link https://ethereum.stackexchange.com/questions/30128/
explanation-of-parity-library-suicide.

Remarkably, the attack that we are discussing was an-
nounced by a post of the supposedly unaware author: ”I
accidentally killed it.”2 The author took control of a li-
brary contract, killed it, obliterating functionality for ∼500
multi-signature wallets and effectively, irreversibly freezing
∼$150M. A hard fork would be required to restore the contract
and/or return funds.

It is important to highlight that the library we are con-
sidering was a working wallet. However, it had not been
initialized since it was a library contract and the variable
only_uninitialized had not been set. The attack could
have been avoided if, after Parity deployed the library contract,
it would have called initWallet-once() to claim the
contract and set the uninitialized variables, including owner.

Anyone could then call the function initWallet on the library
contract. As the ”hacker” did. Such a call, amongst other
things, sets the caller, i.e. the hacker, as the owner of the
contract being initialised. It is worth remarking that such a
call is perfectly legal and it just initializes a wallet which has
not been yet initialized. At this point, the owner of the library
contract (e.g., an hacker), can call any privileged function,
amongst which kill(). The kill function calls suicide(),
which is now being replaced by self-destruct. The
suicide function sends the remaining funds to the owner, de-
stroying the contract and clearing its storage and code. Figure
3 shows the diagram of the functions and their dependencies
for the Parity smart contract library defined at the address
0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Every call to the library will now return false and the
multi-signature wallet contracts relying on the library contract
code would get zero (with DELEGATE-CALL). The contracts
still hold funds, but all the library code is set to zero. The
multi-signature wallets are locked and the majority of the
functionalities depend on the library which returns zero for
every function call.

Indeed, after having killed the library contract, any other
contracts depending on the killed library queried with

1isowner(any_addr)

return TRUE, as a consequence of the delegate call made to
a dead contract (the hacker tried this, to allegedly test the
exploit).

The Ethereum Transaction that tracks the kill call is

10x47f7cff7a5e671884629c93b368cb18f58a
2993f4b19c2a53a8662e3f1482f690

Wallets deployed before July 19 used a different library
contract with a similar initWallet bug, but the library contract

2https://github.com/paritytech/parity/issues/6995#issuecomment-
342409816
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Fig. 3. Parity Wallet Dependency Graph

could not be taken over in a similar fashion as it had already
been initialized by the developers at Parity.

The choice of defining the Wallet library as a contract
instead of as a library, with the actual wallets making simple
DELEGATE-CALLs to this linked smart contract, also needs
to be confronted with the recommended practice of clearly
defining libraries as such. Such a choice, makes the library
contract behave more like a Singleton than a proper Library.

The only way to restore wallets’ functionalities would be
a hard fork in order to re-enable the library code. It is worth
recalling that a hard fork would require an agreement by the
majority of the miner community and their coordinated effort
to develop an alternative branch of the blockchain, where the
hack has basically never occurred. Although there have been
cases in which this has been done, e.g. for the DAO attack [7],
such a recovery strategy is an extraordinary event of extremely
difficult realisation, which bears disastrous consequences - e.g.
the cancellation of ”happened” independent transactions - and
that cannot currently be considered a routine error-correction
practice.

VI. BEST PRACTICES THAT COULD HAVE HELPED

Smart Contracts security is an open research field [5]. The
development of bug-free source code is still an utopia for
traditional software development, after decades of analysis
and development of engineering approaches. Error freedom
is even more daunting for blockchain software development,
which started less then a decade ago. In this section we
discuss approaches that could have helped in mitigating the
effects of the attack, drawing from accepted best practices
in traditional software engineering. It is worth remarking here
that vulnerabilities like the one leading to the Parity attack had
been highlighted in literature, e.g. [8], a fact that strengthens
even more our call for the adoption of standard and best
practices in Blockchain Software Engineering.

A. Anti-patterns

An anti-pattern is a common response to a recurring
problem that is usually ineffective and risks being highly
counterproductive.3 We have identified three anti-patterns in
our case study that are responsible for the issue under analysis.

• The creation of a SM, that serves as full-fledged library,
which is then left uninitialized.

• The creation of SMs that depend on external SM used
as a library, and the address of such external library is
hard-coded in the SMs and cannot be updated.

• The used SM library includes the definition of a public
function that might call destroying functionality, such as
suicide.

On the contrary, a pattern to be used is
• To allow SCs to re-address other SCs code whenever

these are used as a library.
Such a strategy would also enable SCs to reference new
libraries that have been deployed in more recent blocks.
Furthermore, the strategy can be exploited for debugging
purposes, refactoring, introduction of new features, and, in
general, for purposes similar to versioning in traditional soft-
ware engineering.

For example, faults could be so corrected in SC code and
the corrected version of the same SC can be successively re-
deployed and accepted by miners. Once provided with the
address of the debugged contract, the very same contracts that
were calling the faulty version can call the debugged contract.
A similar scenario can be used for any issue resolution as in
traditional versioning systems.

Such a solution applies to the present case study, in the
hypothesis that the Wallet library address would have been
saved into the private storage of each Parity wallet, and

3Definition from https://en.wikipedia.org/wiki/Anti-pattern. The term anti-
pattern was coined in 1995 by Andrew Koenig.
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managed through setter and getter methods, instead of being
hard coded.

B. Testing

Testing smart contract is challenging and critical, because
once deployed on the blockchain they become immutable, not
allowing for further testing or upgrading. At present, to the
best of our knowledge, there is not a testing framework for
Solidity, like e.g. JUnit for the Java language, meaning that
every smart contract has to be tested manually.

The nature of smart contracts introduces at least two com-
plications to testing: an application may be critical and it is
very difficult to update an application once deployed. As a
result, it is desirable to use robust testing techniques. Manual
test generation is likely to form an important component but
inevitably is limited; there is a need for effective automated
test generation (and execution) techniques.

Currently available options to test contracts are:
• Deploy the contract to live (the real) Ethereum main net-

work and execute it. This costs about 5 minutes and real
money to deploy and execute (slow, public(dangerous),
$$$).

• Deploy the contract to the test-net Ethereum network
(for developers usage) and execute it. This costs about 2
minutes to deploy and free ether (slow, public(dangerous),
free(no real money))

• Deploy the contract to an Ethereum network (local)
simulator and execute it. This costs about 3 seconds and
is free (fast, private(nice!!), free), but limited interaction
and no realistic test of network related issues.

There are many automated test generation approaches that
might have value. A number of these use formal approaches,
such as those based on symbolic execution (e.g. [9]), or search-
based methods (e.g. [10]) to produce test cases that provide
code coverage. It is unclear whether such techniques would
have found the attack on Parity since the attack involved a
sequence of operations and code coverage techniques typically
aim to cover smaller structures, such as branches in the code4.
Code coverage approaches may still have value but it appears
that they are not sufficient on their own.

An alternative, and complementary, approach is to base
test automation on a model; an approach that is typically
called model-based testing (MBT) (see [11] for a survey).
Some MBT techniques aim to cover the model but there are
also more rigorous approaches that generate test cases that
are guaranteed to find certain classes of faults (defined by
a fault model) or that are guaranteed to find all faults if
certain well-defined conditions (test hypotheses) hold [12].
Such approaches provide a trade-off: as one weakens the
assumptions or widens the class of faults, the cost of testing
increases. There is also the scope to utilize formal verification
techniques in order to reason about the underlying assumptions
made by these techniques or, indeed, to find faults.

4It is possible to require, for example, the coverage of paths but such
approaches tend not to scale.

We have seen that smart contracts are state-based and so it
would be natural to use state-based models in MBT, allowing
the use of a wide range of test automation techniques. There
appears to be potential for MBT approaches to find faults such
as the one that resulted in the Parity attack. First, the process of
producing a model might have led the developers to consider
what happens if a user calls a library function without it being
initialized. Second, the attack involved a particular (short) se-
quence of operations and state-based MBT techniques focus on
the generation of such sequences. Naturally, the effectiveness
of MBT depends on the model and also the fault model (or
test hypotheses) used. An interesting challenge is to explore
smart contracts and their faults in order to derive appropriate
fault models or test hypotheses.

VII. ROAD-MAP TO BOSE

The Parity wallet case study clearly showed that a
Blockchain-Oriented Software Engineering (BOSE) [13], [14],
[15], [16], [17] is needed to define new directions to al-
low effective software development. New professional roles,
enhanced security and reliability, modeling and verification
frameworks, and specialized metrics are needed in order to
drive blockchain applications to the next reliable level. At least
three main areas to start addressing have been highlighted by
our analysis of a specific case of study:

• Best practices and development methodology
• Design patterns
• Testing
The aim of BOSE is to create a bridge between traditional

software engineering and blockchain software development,
defining new ad-hoc methodologies, fault analysis [18], pat-
terns [19], [20], quality metrics, security strategies and testing
approaches [21] capable of supporting a novel and disciplined
area of software engineering.

VIII. CONCLUSIONS

In this paper, we presented a study case regarding the
Parity smart contract library. The problem resulted from poor
programming practices that led to the situation in which an
anonymous user was able to accidentally (it is not clear if he
did it on purpose) freeze about 500K Ether (150M USD on
November 2017).

We investigated the case, analyzing the chronology of the
events and the source code of the smart contract library. We
found that the vulnerability of the library was mainly due to
a negligent programming activity rather than a problem in the
Solidity language.

The vulnerability was exploited by the anonymous user in
two steps. First the attacker was able to become the owner
of the smart contract library (because it was created and left
uninitialized), then the attacker did nothing more than calling
the initialization function. After that the suicide function was
called, which killed the library, leading to the situation in
which it was not possible to execute functionality on the smart
contracts created with the library, because all the delegate
calls ended up in the dead smart contract library. This case
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clearly demonstrated a need for Blockchain Oriented Software
Engineering in order to prevent, or mitigate such scenarios.

The aim for BOSE is to pave the way for a disciplined,
testable and verifiable smart contract software development.
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Abstract—Initial  Coin  Offerings  (ICO)  are  public  offers  of
new  cryptocurrencies  in  exchange  of  existing  ones,  aimed  to
finance projects in the blockchain development arena. In the last
8 months of 2017, the total amount gathered by ICOs exceeded 4
billion US$, and overcame the venture capital funnelled toward
high  tech initiatives  in  the  same period.  A high  percentage  of
ICOs is managed through Smart Contracts running on Ethereum
blockchain,  and  in  particular  to  ERC-20  Token  Standard
Contract.  In  this  work  we  examine  1387  ICOs,  published  on
December  31,  2017  on  icobench.com  website,  gathering
information  relevant  to  the  assessment  of  their  quality  and
software  development  management,  including  data  on  their
development teams. We also study, at the same date, the financial
data of 450 ICO tokens available on coinmarketcap.com website,
among which 355 tokens are managed on Ethereum blochain. We
define success criteria for the ICOs, based on the funds actually
gathered, and on the behavior of the price of the related tokens,
finding  the  factors  that  most  likely  influence  the  ICO success
likeliness.

Index  Terms—ICO;  Initial  Coin  Offering;  cryptocurrencies;
Ethereum; Smart Contracts.

I.  INTRODUCTION

Recently,  the  cryptocurrencies  phenomenon  has  become
widespread,  in  terms  of  adoption,  number  of  available
currencies  and  market  capitalization.  Made  possible  by
blockchain technology, which ensures trust, security, pseudo-
anonimity and immutability through strong cryptography and a
decentralized, peer-to-peer approach, a cryptocurrency can be
easily dispatched from the initial owner to another person, in
whatever part of the world, in matter of minutes and with no
intermediary, whose behavior can also be modeled using a Petri
Net approach [1]. These features make cryptocurrencies ideal
also for crowfunding purposes,  leading to the so called ICO
phenomenon.

Initial  Coin  Offerings  (ICO)  are  public  offers  of  new
cryptocurrencies in exchange of existing ones, aimed to finance
projects, mostly in the blockchain development arena. Despite
being totally unregulated, and even banned in several countries,
the easiness of sending funds through blockchain transactions,
and the hope to get very high returns even before the business
initiative reaches the market – because ICO tokens are traded
immediately  on  cryptocurrency  exchanges  –  made  the  ICO
phenomenon explode. In the last 8 months of 2017, the total
amount raised by ICOs exceeded 4 billion US$, and overcame
the venture capital funneled toward high tech initiatives in the

same  period  [2].  ICOs  are  usually  characterized  by  the
following features:  a  business  idea,  typically  explained  in  a
white paper, a proposer team, a target sum to be collected, a
given number of “tokens”, that is a new cryptocurrency, to be
given  to  subscribers  according  to  a  predetermined  exchange
rate with one or more existing cryptocurrencies. 

Nowadays, a high percentage of ICOs is managed through
Smart  Contracts  running  on  Ethereum  blockchain,  and  in
particular through ERC-20 Token Standard Contract. Cloning
an ERC-20 contract, it is very easy to create a new token, issue
a given number of tokens, and trade these tokens with Ethers –
the Ethereum cryptocurrency, which has a monetary value –
according  to  a  given exchange  rate.  The contract  stores  the
addresses  of  the  token  owners,  together  with the amount  of
owned tokens, and allows transfers only if the sender shows the
ownership of the private key associated to the address. 

Since the ICO phenomenon had a boom starting from May-
June 2017, only a few research reports, and almost no paper
published on scientific journals, has appeared on the subject so
far. We can just quote the working papers by Zetzsche et al. [2],
and by Adhami et al. [3], that report analyses of ICO features.
The former paper is focused on legal and financial risk aspects
of ICOs, but its second section contains a taxonomy, and some
data  about  ICOs  that  the  authors  claim  are  continuously
updated.  In  the latter  paper  253 ICOs are analyzed,  starting
from 2014 to August 2017, and the significance of some factors
that  influence  the  success  of  an  ICO  is  studied.  Recently,
Subramanian  [4]  quoted  the  ICOs  as  an  example  of
decentralized  blockchain-based  electronic  marketplace.  The
main  source  of  information  about  blockchains,  tokens  and
ICOs is obviously the Web. Here we can find websites enabling
to  explore  the  various  blockchains  associated  to  the  main
cryptocurrencies, including Ethereum's one. We can also find
websites giving extensive financial information on prices of all
the main cryptocurrencies and tokens, and sites specialized in
listing the existing ICOs and giving information about them.
Often, these sites also evaluate the soundness and likeliness of
success of the listed ICOs. X.Wang, F. Hartmann and I. Lunesu
in their work “Evaluation of Initial Cryptoasset Offerings: the
State of the Practice” [5] studied the emergent  websites that
provide  evaluations  of  ICOs  and  identified  28  different
websites as proper ICOs evaluation websites, out of 169 URLs
found  with  a  research  over  specific  keywords  using  a
websearch  engine.  Analysing  the  28  results,  using  Google
Trends  we  found the  five  most  popular  sites  on  ICOs:
icobench,  icorating,  icoalert,  icotracker  and  icodrops.  We
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decided  to  use  icobench.com  mainly  because  it  manages  a
large set  of  ICOs, indeed the biggest  among these five and
moreover  it  provides  a  set  of  API  to  automatically  gather
information on ICOs.

In  this  work  we  examine  1387  ICOs,  published  on
December  31,  2017  on  icobench.com  website,  gathering
information  relevant  to  the  assessment  of  their  quality  and
software development management [6], including data on their
development  teams.  We also  studied,  at  the  same  date,  the
financial  data  of  450  ICO  tokens  available  on
coinmarketcap.com  website,  among  which  355  tokens  are
managed on Ethereum blockhain. We defined success criteria
for the ICOs, based on the funds actually gathered, and on the
behavior  of  the  price  of  the  related  tokens,  and  studied  the
factors that most likely influence the ICO success likelihood. 

We analyzed  some  key  features  of  the  ICOs,  like  their
country, the kind of business they address, the team size, the
ratings  obtained  by  icobench.com  site.  We found  that  more
than  1000  ICOs  are  managed  on  the  Ethereum  blockchain,
mainly following ERC-20 standard. This causes a considerable
stress on Ethereum blockchain,  confirmed by the analysis of
token  transactions  using  the  data  gathered  from ethplorer.io
site.  The  total  number  of  transfer  transaction  is  above  16
million,  and the  total  number  of  token  holders  is  about  5.5
million. After performing a multivariate analysis of the factors
influencing  the  success,  we  also  found  that  the  ratings  of
icobench.com  site  have  a  high  probability  to  predict  the
success,  as  well  as  some of  the  countries  of  origin and  the
platform. 

In the followings, Section II presents the methods used to
gather  the data,  to  evaluate  ICO success  and to  analyze  the
data. Section III presents and discusses the results. Section IV
concludes the paper.

II. METHOD

To perform a massive study of the ICOs characteristics and
success factors, we need to gather ICO data from the Web, to
establish what data are to be analyzed and how ICO success
can be defined, and to analyze the data to draw facts about the
factors that determine success. The following subsections give
insight on these steps.

A. Retrieving ICO Data from the Internet

The main sources of data we used are of three kinds:

 data  about  the  ICOs  themselves,  collected  by
icobench.com site;

 financial  data  about  the  ICO tokens  traded  on  main
cryptocurrency  exchanges,  collected  by
coinmarketcap.com  website;  these  data  include  the
address of the token contract on Ethereum blockchain;

 data  about  token  transactions  and  holders  directly
collected from Ethereum blockchain using a blockchain
explorer (ethplorer.io).

ICO  data  were  massively  collected  from  icobench.com,
which kindly granted us permission to access their API calls.
icobench.com is one of the main sites giving information about

ICOs. As its  name suggests,  icobench.com also performs an
analysis of each submitted ICO. As specified in their website, it
follows a special rating methodology, based on a combination
of:  ICO profile  rating  given  by  its  “Benchy”  ICO analyzer
robot  and  possibly  ratings  on  the  team,  the  vision  and  the
product provided by a pool of indipendent experts. Benchy’s
rating is  based on an algorithm that uses more than 20 different
criteria, described in icobench.com website.

Each ICO shown in the site is provided of a unique integer
progressive identifier. We performed an API query for all of
these numbers, gathering the whole icobench.com database, in
json  format.  The  ICO  data  include  name,  token  symbol,
description,  rating,  country,  start  and  end  dates  of  the
crowfunding, financial data such as the total number of issued
tokens and the percentage that is sold in the offer, initial price
of the token, platform used, hard and soft cap (maximum and
minimum number of tokens to sell), raised money (in US$) if
the ICO has finished, data on the team proposing the ICO, main
milestones and category. Some of these data, such as short and
long  description,  and  milestones  are  textual  descriptions.
Others  are  categorical  variables,  such  as  the  country,  the
platform, the category (which can assume many values), and
variables related to the team members (name, role, group). The
remaining  variables  are  numeric,  with  different  degrees  of
discretization. Unfortunately, not all ICOs record all variables,
so there are several missing data.

Financial  data  were  collected  from  coinmarketcap.com
website, which is one of the most popular sites giving almost
real-time data on the quotation of the various cryptocurrencies
in the world exchanges – an exchange is a website where it is
possible to buy and sell cryptocurrencies against each others,
and against standard currencies. It also has a specific “token”
section  giving  information  about  the  tokens  (usually  ICO
tokens).  This  information  included  the  address  of  the  token
contract in the related blockchain (usually Ethereum).

We  gathered  the  needed  information  from  this  website
using the  Python scraping  library  “Beautiful  Soup” [7].  For
each  listed  token  we  recovered  name,  symbol,  number  of
tokens,  capitalization,  Ethereum  address  (if  it  is  a  token
managed on Ethereum blockchain), price series (daily closing
price in US$, volume and market cap) in a given time interval.

Using  the  Ethereum  address,  when  present,  we  query
ethplorer.io  publicly  available  APIs,  gathering  information
about the total token supply, the number of token transfers, the
number of token holders. Using this website, it is also possible
to obtain information on each transaction, and each holder, but
this is beyond the scope of this paper.

All the recovered data were stored in a database,  linking
data  coming  from  different  sources  (icobench.com  and
coinmarketcap.com)  through  the  name  and  symbol  of  the
tokens. In some cases,  name and/or symbol differ, so it  was
needed  a  more  sophisticated  matching  procedure,  using  the
Levenshtein distance [8] between names in the case the symbol
is the same. The Levenshtein distance is a measure of similarity
between string, also called “edit distance”. It can be rephrased
as  “the  minimal  number  of  insertions,  deletions  and
substitutions  to  make  two  strings  equal”.  After  a  series  of
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empirical tests, we chose as threshold value 0.6. Therefore if
this distance is below 0.6, we assume a match. Anyway, we
checked  by  hand  these  matches,  and  also  other  possible
matches (same name, different symbol; same symbol, names
with Levenshtein distance greater than 0.6).  

B. Defining ICO Success

Since half of the year 2017, the number of ICOs launched
on the market skyrocketed. However, only a fraction of them
was able to gather an amount of money according to the needs
and hopes of their proposers.  Moreover,  all  successful  ICOs
after the end of the sale are quoted on some exchange, where
they are traded against other currencies, usually Bitcoin. Quite
often, in the past, the actual price of the tokens increases a lot
after  their quotation on the exchange,  and this is  one of the
main attraction factors of ICOs – the fact that the token can be
sold with a profit very soon, long before the realization of the
business initiative behind the ICO. 

In our analysis, we used a dichotomous variable to describe
the  ICO's  success:  successful  or  failed.  This  is  the  same
approach of the paper by Adhami et al. [3]. They define an ICO
as “successful” if it reaches at least the soft cap declared by its
proposers. We decided to extend this definition because on one
hand our data may lack the value of an ICO's soft cap, and on
the other hand several ICOs include provisions allowing to go
ahead with the ICO even in the case the soft cap is not reached,
and this happens in many cases. Several ICOs are not eligible
to be considered, typically because they lack data, or are still in
progress. To assess whether an ICO is successful, the criteria
we use are the following:

1. we regard as failed an ICO that raised less than 80.000
US$; we regard as undecided – and did not consider in
the analysis – an ICO that raised between 80.000 and
200.000 US$; ICOs raising more than 200.000 US$ are
considered successful,  except in the case they fall in
criterion 3. The selection of the thresholds is arbitrary;
it  was  done  not  to  create  a  clean  break  between
successes  and failures.  In any case,  the ICOs within
this range are only 11. In future work the results might
be parameterized according to the thresholds;

2. we do not consider ICOs ending in 2018, except the
few ones that raised money in 2017 and were stopped;
we do not consider ICOs that raised no money and that
have no end date;

3. for ICOs with a token provided of a price series long
enough in 2017 (at least prices in the whole month of
December  2017),  we  considered  as  failed  the  ICOs
with a market cap diminished by more than 75% since
the beginning of their quotation; the market caps are
computed as a moving average of 20 consecutive days,
to filter out daily variations.

C. Analysis of the Factors Influencing the Success

Among  the  data  associated  to  an  ICO,  we  chose  some
factors that could possibly influence its success. These factors
are the ratings obtained by icobench.com website, the country
of origin, the team’s size, the opening and closing date, number
of tokens sold, the platform, the category and others. 

To analyze our dataset we resort to multivariate statistical
analysis for dicotomic dependent variables. In fact our target is
to  measure  if  and  to  which  extent  the  collected  variables
contribute to the success or failure of an ICO project. Given the
dicotomic nature of the target variable, success or not, simple
regression  analysis  and predictive  models  cannot  be  applied
directly. 

We set to one the dependent variable in cases  where the
ICO has  been  successful  and  to  zero  otherwise.  Success  or
failure can be so tested against the set of independent variables
which is the set of variables we collected from icobench.com
and the contribution of each variable to success or failure can
be evaluated and compared with other variables. 

The  best  suited  model  is  the  Logit  model,  where  the
logarithm  of  the  odd  ratio  among  success  and  failure  is
modeled  through  a  multivariate  linear  analysis  as  a  linear
combination  of  the  independent  variables  of  interest.  The
model  outputs  the  best  fitting  coefficients  as  well  as  the
statistical  significance of each variable with respect  to ICO's
success or failure. Other models could be used (eg. SVM or
Naive Bayes) for classifying the ICOs but our purpose is, once
it is known that an ICO is successful or unsuccessful according
to  the  above  described  criteria,  to  determine  which  factors
contribute or not, and to which extent, to success or failure. So
we decided to use the Logit model.

In order to simplify our analysis we filtered the raw data for
some variables and concentrated the analysis on part of them.
Specifically, for the multivariate analysis we didn't consider the
raised  founds,  which  has  been  already  chose  as  the
discriminant variable for the success, the token which is simply
a label, the type, whose values are mostly missing or mostly
equals, and all other variables with many missing values.

According to the Logit model we define: 

ln
P

P−1
=a+∑i=1

N
βi x i (1)

the Logit model where P represents the success probability, 1-P
the failure probability, P/(1-P) the odd ratio, and the sum is a
linear combination of all independent variables in the vector x
with  coefficients  in  the  vector  beta.  We  implemented  the
computation using the R packages 'lme4' and 'rms', using the
general regression model provided by the 'lrm' function. 

We  targeted  the  level  of  significance  of  independent
variables with respect  to influencing ICOs success or failure
and how much the single coefficients variation can affect the
odd ratio against failure.

III. RESULTS AND DISCUSSION

We gathered all ICOs listed on icobench.com website on
31/12/2017.  Overall,  they  are  1387.  We  also  gathered
information on 450 tokens listed on coinmarketcap.com, and
on 355 tokens managed on the Ethereum blockchain and whose
data are reported on ethplorer.io site. We found that the success
rate  on  the  studied  ICOs  is  about  35%.  On  these  data  we
performed automated analyses to detect which factors influence
an ICO’s success, reported in the followings.
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A. Descriptive Statistics of the ICO Data

Note that the order of coloring of the figures in every pie
chart  of  this  work  is  the  same  of  the  order  of  the  related
captions.  We report  in  Fig.  1  the  countries  of  origin of  the
ICOs. As you can see, USA and Russia Federation are the most
active countries in proposing ICOs. The country of 139 ICOs is
not declared in icobench.com; the countries with less than 4
ICOs are cumulated under the “Others” tag. We note that some
relatively small countries, like Singapore, Switzerland, Estonia
and Slovenia are very active in proposing ICOs. 

Fig.  2  shows  the  main  business  category  of  the  ICOs
analyzed. Note that icobench.com allows to assign more than
one category to an ICO. Here we report just the first category,
which we assume is the most expressive of the ICO business
target.  Most  ICOs  declares  themselves  as  “platforms”  to
perform decentralized  business.  233 ICOs are  new kinds  of
cryptocurrencies,  whereas  the  remaining  categories  cover
almost all business sectors.

The distribution of the overall ratings given to the various
ICOs is reported in Fig. 3. All considered ICOs have a rating,
in most  cases  given by the robot  of  icobench.com site.  The
ratings  span  between  0  and  5.  In  the  figure  we  report  the
centered moving average of 3 rating values,  to filter out the
noise. As you can see, the distribution is quite regular, with a
steady climbing of the rating from the value of about 1.2, until
the peak at the value of 3.9; then a steep descent follows, with
very few ratings equal or above to 4.5.

In Fig. 4 we report the team size distribution, as declared by
ICOs proposers.  Note that,  in  this analysis,  we consider  the
overall team, including business people and advisors, and not
only the software development team. We have what looks like
an unimodal distribution, with a peak around 7-8 people. Note
that  in  some  cases  the  ICO  team  is  composed  just  by  the
business  and  marketing  people  who  developed  the  business
idea – the developers  will  be hired only in the case of ICO
success.  When the software developers  are part  of the team,
they typically account for a percentage between 20% and 50%.
When a team is very large,  this means that  it  include many
advisors,  who  contribute  suggestions  but  are  not  really
involved in the ICO operations.

Fig. 5 shows the platforms used to deliver and manage the
token or coin offer. As you can see, Ethereum is by far the most
used  platform.  193 ICOs do not  declare  their  platform,  and
Waves  is  the  second  most  popular  platform,  chosen  by  67
ICOs. There are many other platforms or approaches that were
used to deliver the tokens, but overall they cover only 54 cases.
We also analyzed the smart contract standard used to manage
the tokens.  In  787 cases  it  is  ERC-20 on Ethereum,  in  581
cases it is not explicitly declared, and in 12 cases it is the new
standard ERC223, which is an evolution of ERC-20. One ICO
mentions the NEP5 standard, which is the equivalent of ERC-
20 for NEO blockchain.  The Ethereum standard ERC-20 for
token management was developed in 2015. It defines a set of
rules that a contract carried out with an Ethereum token has to
implement [9]. The standard ensures the interoperability of the
assets, making them more useful. Various implementations of
ERC-20 written in  Solidity  language are freely  available.  In

Fig. 1: The countries of origin of the ICOs.

Fig. 2: The main categories of the ICOs.

Fig. 3: The distribution of ICO ratings (mobile average of 3 rating scores).

Fig. 4: The team sizes of the studied ICOs.
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deeper detail, ERC-20 standard includes the following
functions:

• totalSupply(): return the total number of tokens.

• balanceOf(address  owner):  return  the  number  of
tokens available to the given owner.

• allowance(address owner, address spender): return the
amount of tokens approved by the owner that can be
transferred to the spender’s account.

• transfer(address to, uint tokens): transfer the balance
from token owner’s account to ‘to’ account.

• approve(address  spender,  uint  tokens):  token  owner
approves for ‘spender’ to call  transferFrom() function
to transfer ‘tokens’ from the token owner’s account.

• transferFrom(address  from, address  to,  uint  tokens):
transfer ‘tokens’ from the ‘from’ account to the ‘to’
account.

From a software engineering perspective, it is worth noting
that the number of ICOs relying on Ethereum blockchain for
the delivery and management of their tokens is impressive; this
denotes the great capacity of the Ethereum system to withstand
huge workloads. On December 31 2017, this number was equal
to 1082, steadily growing by the day. The overall value of all
tokens overcomes 30-40 billion US$ at the present evaluation!
Despite  this  load,  Ethereum  public  blockchain  looks

performing quite well. Only in mid 2017, Bancor and Status
ICOs clogged Ethereum network, making it unusable for some
hours.

TABLE I. STATISTICS OF NUMBER OF TRANSFERS AND HOLDERS OF 355
ERC-20 ETHEREUM TOKENS.

Data mean median st. dev. min max

# of transfers 46076 13186 132586 89 1311959

# of holders 15515 2872 76938 19 959205

We analyzed the number of transfer transactions and of the
token holders for all 355 tokens managed on Ethereum using
ERC-20 standard, that also enables websites like ethplorer.io to
easily gather and show relevant data. Table I shows the main
statistics.  As you can see,  both data series have mean much
higher than median, a high standard deviation and very large
maximum  values.  This  is  a  typical  behavior  of  fat-tailed
distributions.  Consequently, we analyzed  the distributions of
these data, which are shown in Figs. 6 and 7 in the form of
complementary  cumulative  distribution  function  (CCDF),  in
log-log format. Both distributions tend to follow a straight line
in the right of the plot, which is the typical characteristic of
power-law distributions. 

B. Multivariate Analysis of the Factors Influencing the 
Success

We eliminated the ICOs still in progress, whose end date
was in 2018, except for 5 ICOs that raised a significant amount
of  money  in  2017,  and  were  closed  in  advance.  The  ICOs
ended within 2017 are 971. We also excluded the ICOs with no
raised money according to icobench.com, and with no end date.
We assumed they are ICOs still in progress, registered on the
site,  but  whose end date is  still  to be determined – or even
abandoned ICOs. The considered ICOs were thus reduced to
712.  Among  these  ICO's  tokens,  only  215  are  quoted  on
exchanges  and  their  financial  data  are  reported  on
coinmarketcap.com  site.  We  were  able  to  assess  the  third
success criterion only for these tokens.

In  order  to  perform  the  multivariate  analysis  we  started
including all the variables but those already excluded according
to the described methodology. Those included in the full model

Fig. 5: The platforms used to manage the ICO token offer.

Fig. 6: CCDF of the transfers count of the considered ERC-20 tokens on the
Ethereum blockchain.

Fig. 7: CCDF of the holders count of the considered
ERC-20 tokens.
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are:  rating,  rtTeam,  rtVision,  rtProduct,  rtProfile,  country,
platform, team size and finally category. 

We briefly report the most significant values in Table II.

TABLE II. MOST INFLUENCING COEFFICIENTS IN THE LOGIT MODEL. 

Independent Variable Coeff. S.E. Wald Z Pr(>|Z|)

rating 1.6990 0.442 3.84 0.0001

platform = Ethereum -0.9867 0.2786 -3.54 0.0004

country = Slovenia 1.6493 0.6830 2.41 0.0158

category = Software 1.1393 0.5329 2.14 0.0325

country = USA 0.7895 0.3816 2.07 0.0385

rtProfile -0.7512 0.3858 -1.95 0.0515

rtVision -0.3291 0.2021 -1.63 0.1033

country = Israel 1.2882 0.7912 1.63 0.1035

country = China 1.1639 0.7228 1.61 0.1073

category = CasinoGambling 1.0980 0.6861 1.60 0.1095

rtProduct 0.3379 0.2153 1.57 0.1167

category = Businessservices -0.7462 0.5015 -1.49 0.1367

team.size -0.0225 0.0161 -1.40 0.1614

country = Singapore 0.6228 0.4644 1.34 0.1799

country = UK 0.5578 0.4475 1.25 0.2126

platform = Waves -0.5726 0.5039 -1.14 0.2558

Table II reports the Logit model coefficients, their standard
errors, the Wald normalized Z value and the relative p-value for
all the independent variables in the model, sorted according to
an increasing p-value, up to the case of the ‘Wave’ platform,
which we retained since it is the only one that can be compared
with the most common platform ‘Ethereum’.

The results show that the most significant variable is the
'rating' as reported by icobench.com in a scale between 0 and 5.
In particular the relative p-value in the full model is 0.0001 and
the coefficient value and the Z-Wald value are 1.6991 and 3.84
respectively. This means that the model identifies the variable
relevant  for  influencing  ICO's  success  according  to  the
described criteria and that, in particular, a unit increase of the
'rating' carries a factor of about five in favor of the odd ratio,
meaning that the odds are shifted of a consistent amount for
each unitary increase of the 'rating' provided by icobench.com.
The other way round, icobench.com rating system is a reliable
indicator of the possible success of the ICO and, consequently,
of the quality of the ICO project. 

The other interesting variable related to icobench.com is the
rtProfile with a 95% significance level  (p-value 0.0515) and
coefficient and Z-Wald of -0.7512 and 0.3858. This means that
a  unit  increase  of  this  index,  which  is  in  the  range  0  to  5,
multiplies the odd ratio of a factor of about 0.4. This indication
is  in agreement  with the previous one,  since the rtProfile  is
automatically assigned by a robot on the basis of a combination

of values of the other four icobench.com indexes and is mainly
influenced  by the  rating value,  and  coincides  with  it  in  the
cases where the other indicators are missing. 

The rtVision as well has some incidence on the success of
the  ICO,  having  a  p-value  around  0.1  and  contributing  to
changing the odd ratio of a factor 0.7 for each unit increment. 

Some interesting results concern the countries, the category
and the platform. For the latter the topic case is the Ethereum
platform. Data analysis shows that the Ethereum platform has
high significance level (p-value 0.0004) and changes the odd
ratio of a factor of about 0.4, on average, with respect to the
other platforms. 

It has to be noted that when considering data on platforms
'per-se'  there  are many spurious data,  namely those where a
given platform appears only once or in a very few cases. 

In  these  particular  cases,  even  if  they  are  not  at  all
statistically significant, the odd ratio is exceptionally high or
low, meaning that the variable automatically means success or
failure, given that they appear only twice or three times with
always success or failure.

Not considering the spurious cases of platforms appearing
one or very few times the only comparison can be made with
Waves, another quite common platform, which, on the contrary,
does  not  appear  to  provide  a  significant  contribution  to  the
ICO's success. 

For what concern the countries the best ones where to start
an ICO are Slovenia and USA. Good places are also, but to a
less extent, Israel and China. In particular, Slovenia and USA
have a good statistical significance, of about 0.016 and 0.038
respectively, and they contribute to the odd ratio in favor of
success of about 5.2 and 2.2 respectively. The other countries
have  less  statistical  significance  in  determining  the  ICO’s
success.

Finally  the  category  which  positively  contributes  to  the
ICO’s success  is  ‘software’,  with a p-value of 0.0325 and a
relative contribution to the odd ratio of 3.1. Other categories
which  in  principle  could  be  interesting  are  ‘gambling’ and
‘business’, but with a much lower statistical significance. 

The analysis also shows that ‘team size’ does not seem to
count  for  determining success  or  failure  of the ICO project.
Since we performed the analysis with the basic model using all
available  numerical  data,  we  also  checked  the  possible
contribution of ‘team size’ to success or failure gathering into
different categories the team’s size,  making different choices
for the categories (small, medium, large team’s size or even 5
different  categories),  but  also this  analysis  confirms that  the
variable does not count for ICO’s success or failure.

IV. CONCLUSIONS

In this work we examined 1387 ICOs, from icobench.com
website,  also  gathering  information  from  other  source.
Financial information about the prices of the ICO tokens was
obtained  from  coinmarketcap.com  site,  and  transaction
information coming from Ethereum blockchain was obtained
from ethplorer.io site. An intial analysis gave insights on some
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key features  of  the  ICOs,  showing the  countries  they  come
from,  the  addressed  business  field,  the  team  size  and  the
software  platforms  used  to  manage  the  ICO  tokens.
Unsurprisingly,  we  found  that  most  ICOs  are  managed  on
Ethereum blockchain, using ERC-20 standard. To this purpose,
we  also  found  that  the  distribution  of  token  transfer
transactions and token holders follow a fat-tailed distribution,
resembling a power-law in the tail. This kind of distribution is
very common in technological and financial data. Its meaning
is  that,  though  there  are  many  tokens  managed  on  the
blockchain,  only  a  few  of  them  account  for  most  of  the
workload applied to the blockchain. 

Subsequently,  we  performed  a  multivariate  analysis  to
assess the factors that can influence the success of an ICO. To
this purpose, we divided the considered ICOs in two categories
–  successful  and  failed.  The  analysis  showed that  there  are
some factors that are correlated to an ICO success. They are the
country of origin – it looks that ICOs coming from Slovenia
and USA, and,  to  a  less  extent,  Israel  and  China,  are  more
prone  to  have  success.  Most  other  countries  do  not  bear
significance. The team size does not seem to be relevant to the
success.  A high  overall  rating  on  icobench.com site,  on  the
other hand, looks quite correlated to the success  of an ICO,
though this looks mainly due to the robot's advice rather than to
the human experts' advices. Finally, managing the ICO token
on Ethereum blockchain looks another success factor.

Future work will regard gathering ICO data also from other
sources, to double check their validity, and to perform a deeper
analysis of token transactions on Ethereum blockchain, also to
relate blockchain activity to price and volume information of
the token.
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Abstract—Initial Cryptoasset Offering (ICO), also often called
Initial Coin Offering or Initial Token Offering (ITO) is a new
means of fundraising through blockchain technology, which
allows startups to raise large amounts of funds from the crowd
in an unprecedented speed. However it is not easy for ordinary
investors to distinguish genuine fundraising activities through
ICOs from scams. Different websites that gather and evaluate
ICOs at different stages have emerged as a solution to this issue.
What remains unclear is how these websites are evaluating ICOs,
and consequently how reliable and credible their evaluations are.
In this paper we present the first findings of an analysis of a set
of 28 ICO evaluation websites, aiming at revealing the state of
the practice in terms of ICO evaluation. Key information about
ICOs collected by these websites are categorised, and key factors
that differentiate the evaluation mechanisms employed by these
evaluation websites are identified. The findings of our study could
help a better understanding of what entails to properly evaluate
ICOs. It is also a first step towards discovering the key success
factors of ICOs.

Index Terms—Initial Cryptoasset Offerings, Initial Coin Of-
ferings, ICO, ICO evaluation, Information Richness, Evaluation
Transparency

I. INTRODUCTION

Few phenomena in the last couple of years can be con-
sidered as disruptive and grab the attention of the global
audience as cryptocurrency, blockchain technology behind,
and a closely related fundraising mechanism - Initial cryp-
toasset offering (ICO), also often called Initial Coin Offering
or Initial Token Offering (ITO). ICO is a major and disruptive
trend in the financing of new cryptocurrency and blockchain
startups, and is compared to Initial Public Offerings (IPOs)
and Venture Capitals (VCs) as a state-of-the-art strategy to
finance new ventures. The first ICO dates back to 2013, but
ICOs have experienced an exponential growth in the last two
years, outcompeting and outperforming VC in the financing of
cryptocurrency and blockchain startups in the second quarter
of 2017 for the first time.

ICO offers to the public a fraction of ownership in a new
digital (mostly blockchain) project in the form of tokens/coins.
Even though often described as a hybrid between a grant
and an investment and sharing similar traits with IPOs, ICOs
have distinct features. They consist in the sale of a stake in a
project with the aim to raise funds at an early stage of new
venture development [1]. In the beginning of 2018 nevertheless
we start to observe (more) established companies launching

ICOs (e.g. Kodak and Telegram) to explore this new funding
opportunity. The stake (tokens/coins) could represent an utility,
asset, commodity, currency or collectible. A main distinction
to other forms of early stage venture investments is the fast
liquidity cryptoassets can gain on online secondary markets
(centralized/decentralized exchanges).

The number of ICOs has increased drastically in the last
few years. Unfortunately, the amount of frauds and scams are
also amounting largely due to the emergent nature of ICOs and
a lack of laws and regulations on this brand-new fundraising
mechanism [2]. Stories such as founders disappearing with
the large amount of money collected after ICOs are closed
are eye-catchy meanwhile worrying for genuine investors and
stakeholders1. However, conducting due diligence on an ex-
panding number of ICOs would be extremely time-consuming
and costly, not only for a layman investor, but also for well-
informed analysts equipped with in-depth knowledge about
blockchain and ICOs.

As a solution to this issue, online ICO evaluation platforms
are emerging and gaining the increasing visibility in online
media and forums2. What remains unclear, in addition to some
other aspects, is how these websites are evaluating ICOs, how
reliable and credible their evaluations are, and consequently
how useful they are for investors taking investment decisions.
Based on this observation, we aim at providing a better
understanding of ICO evaluation websites and the evaluation
mechanisms behind them. To start with, in this study we have
attempted to answer the following research question:

RQ: How are initial cryptoasset offerings evaluated in
practice?

To answer the research question, we have studied a set of
websites that not only list ICOs but also provide evaluations
on them. In total we have identified 28 websites that evaluate
ongoing and upcoming ICOs. We have analysed the ICO
information covered by these websites and the evaluation
mechanisms applied by them to produce evaluation results.
The contribution of our study will be an overview of the
state of the practice on how ICOs are evaluated, which can
lead to the discovery of key information that should be

1read the story at https://www.cnbc.com/2017/11/21/confido-ico-exit-scam-
founders-run-away-with-375k.html

2e.g., https://medium.com/@Demien/top-ico-analysis-websites-
1d936f965101, https://bitcointalk.org/index.php?topic=2180784.0;all
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considered when evaluating an ICO, as well as how to evaluate
such information. In this paper we report the initial findings
obtained in our study.

The remaining part of the paper is organised as below.
Section 2 explains ICOs in more detail and reviews the
exisiting studies on ICOs and their evaluation. In Section 3,
we elaborate on how we have collected the set of ICO evalu-
ation websites, following a clearly defined process. Section 4
reports the initial analysis results of these websites, which are
further discussed in Section 5. Section 6 concludes the paper
with reflecting on the limitations of the study and follow-up
research that needs to be done to produce deeper insights on
ICOs and their evaluation.

II. BACKGROUND AND RELATED WORK

A. Introduction to ICO

The multiple applications that the blockchain technology
underpins [3] [4] [5] give the birth of ICOs, which provides
the native support for managing ICOs by Smart Contracts [6]
and for raising founds through tokens sold in a cryptovalue.
Several definitions of ICOs can be found in the very recent
literature. We introduce them by directly extrapolating from
the set of papers published in 2017 about ICO fundraising
method, ICO comparison, ICO characteristics and so on.

According to Conley et al. [7], ICOs are a vehicle for
startups to raise early capital. The tokens of these sales are
intended to cover a widely varied set of roles on different
platforms.

Similarly, Abgaryan et al. [2] consider ICO a fundrais-
ing model largely implemented by startups based on the
blockchain ecosystem. The ICO mechanics represents a pro-
cess of emission of cryptographic tokens to be distributed to
the funders and contributors.

ICOs may be defined as open calls for funding promoted by
project initiators. The main definition of an ICO is very similar
to that of crowfunding [8]. A cryptoasset could represent either
a utility or a security. If it provides a utility on a platform e.g.
to gain access to products or services, the cryptoasset can be
seen as a utility. The ICO in this case shares similarity to the
donation-based crowdfunding mechanisms. On the other hand
many projects are offering cryptoassets without direct utility.
The cryptoasset in this case can be seen as a security in the
first place. The ICO therefore is more similar to the investment
crowdfunding mechanisms.

However ICO takes the crowdfunding concept to a whole
new level. It is claimed as the most efficient means of financing
entrepreneurial initiatives in the history of capital formation.
ICOs minimize transaction costs and democratize finance
while disintermediating banks [9]. Entrepreneurs organize
token sales directly. A token is a representation of a value
unit. In a token sale, the company provides tokens or coins
for investors to buy. The money invested to buy the tokens is
the funding amount. Considering that this is an unregulated
space, the token sales function is out of most national laws or
economic regulations. In this manner entrepreneurs can design
any model of token sales. Tokens bought in a crowd sale are

often markable (like stocks). This allows traders to sell-buy
early and do not have to face a lock-in period.

Some ICOs have also a pre-sale phase, or so-called pre-
ICO, which represents a preliminary offer made to (selected)
investors.

There are two main channels of an ICO implementation:
• through the websites of the blockchain projects,
• through ICO hosting platforms (e.g., KICKICO). Thus,

the main parties involved in the ICO processes are
investors, blockchain startups and ICO hosting platforms.

The advantages of ICO as a fundraising mechanism for star-
tups (especially early stage startups) are evident in comparison
to traditonal funding mechanisms. VC is a traditional way
to fund a startup, but it is very difficult to convince venture
capitalists to invest on startups with unproven track records
or composed of inexperienced teams. ICOs could disrupt the
venture capital fund business model, which plays a key role in
financing innovative startups. ICOs’ advantage compared with
other investment instruments used by venture capital funds is
represented by their capability to form highly cost-effective
and highly liquid assets primarily on the emerging crypto
marketplaces characterized by their economic dynamics. Es-
pecially the fast liquidity of ICO investments differ from the
traditional equity funding model. In fact, given the competitive
elements of ICOs, the venture capital industry is investigating
ways to participate in the ICO market. Venture capital funds
increasingly try to capitalize on the opportunities presented by
ICOs. The disruption of legacy finance by ICOs has triggered
attempts by venture capital funds to capitalize on the source of
disruption within the existing business model to benefit from
its advantage.

IPO is another traditional way to raise funds but too
expensive and unavailable for startups especially due to the
lack of revenue and userbase. An ICO, instead, is easy to
implement for (blockchain) startups. It raises money quickly
and the money comes with few strings attached. Unlike IPOs,
where companies sell stocks via regulated exchange platforms
and are linked to ownership rights (e.g. voting rights) and
investor protection, ICOs sell tokens/coins on unregulated (de-
)centralized platforms that do not confer direct ownership
rights and investor protection. Risks and rewards of tokens
differ from those of equity and other securities [1].

Since often ICOs are seen as unregulated security offerings
for raising capital, many stakeholders are asking for restrictive
regulations. Others however argue that governments should
create an innovation sandbox before implementing too restric-
tive regulations. Restrictive regulations could lead to a massive
outflux of intellectual properties, expertises and capital to
countries with less restrictive regulations.

B. Related Work

As far as the authors are aware of, there are no previous
studies that have investigated the evaluation of ICOs. In
this subsection we have reviewed previous studies on ICOs,
considering them related work in a broad sense.
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Dell’Erba [1] offers a deep study on ICOs. He focuses on
their evolution starting from IPOs and crowdfunding, showing
how they work and their increasing relevance. In contrast,
Conley[7] offers a broad overview of aspects that it needs to
take into account for designing a success token. He explains
the monetary theory, financial economics, and game theory
implications on the token creation process.

ICO mechanism has been studied by Abgaryan et al.[2] who
identified five main characteristics that set ICO apart from
other fundraising mechanisms. They introduced Aimwise, a
platform designed to face up these problems through decentral-
ization of ICO hosting. In the same vein, Barsan[10] proposes
a study where ICOs are defined as a venture capital-raising
tool for startups projects and blockchain applications that try
to escape the constraints of regulation. ICOs are indeed seen
as an alternative form of crowdfunding emerged outside the
traditional financial sector and mostly finance projects on a
public blockchain.

ICO process has also been studied by Kaal et al.[9] who
present an overview about new practices, risk factors and
red flag about the ICO realm. In particular they highlighted
differences with ICOs, IPOs and crowdfunding, arguing also
the importance of ICO roadmap and market features.

Yadav[11] conducts an explorative research to investigate
signals for an ICO and come up with key themes via semi-
structured interviews.The resulting outcomes could then be
used as a basis to improve the survey research study aiming
to gather more diversified research data.

Robinson[12] argues about the coming decentralized world,
providing an overview of both public blockchain technology
as well the Ethereum platform. A particular attention is paid to
the foundational understanding of how the blockchain works,
and the role ICOs play in this new economic ecosystem.

The ICO success rate and success factors start gaining
attention of researchers. Adhami et al.[8] provide the first
comprehensive description of the ICO phenomenon as well as
the determinants of token offerings, analyzing a sample of 253
campaigns occurred from 2014 to August 2017. The results
show a success rate equal to 81.0%; the project objectives
behind these ICOs are mainly related to fintech services, to
the development of a blockchain, or to the issuance of new
cryptocurrencies. The authors point out that, according to
their e “white paper” is not an influential factor for the ICO
success. Instead the code availability, even if only partial,
could influence positively ICO evaluation by investors. The
market of ICO share several aspects of crowdfunding realm,
including low protection of contributors and limited set of
available information. The more evident differences between
crowdfunding and ICO is represented by the fact that crowd-
funding portals collect fiat money through traditional payment
channels (banks, credit cards). ICOs, instead, offer tokens and
rely on blockchains that act as the clearing house, out of
any centralized control. Without a centralized platform (that
usually goes through a selection process), the likelihood of an
ICO success can only rely on factors related to projects. Indeed
there is no proven evidence yet suggesting that a specific

platform for ICOs could increase or rationalize fundraising
volumes.

Flood et al.[13] have also studied the facets that brought a
ICO to be successful. In order to avoid scams, they suggest
to pay attention to three main facets of the project underlying
an ICO: be a response to a real problem and blockchain is
a logical solution, build confidence and trust in solution and
team, and be in accordance with national/international legal
restrictions.

The aspects of ICOs to take into account are many: regula-
tion, technologies and practices, implications, market factors,
etc.. In his study mainly addressing government regulatory
authorities, banking sector and stock markets, Venegas [14]
identifies some factors that affect cash flows in decentralized
applications, to enhance the understanding on whether de-
centralized organizations are perceived as exactly “trustless
entities”, or, if investors are rather forced to “trust in the
design”. He presents a case study and explores risks, costs
analysis and network correlation.

As shown in their work, Enyi et al. [15] perform an analysis
from the perspective of which rules might be applicable to
cryptocurrencies in relation to an ICO. They illustrate also
rules that regulators may apply to cryptocurrencies in the
context of an initial coin offering, this indicates that regulatory
standards are still missing. From this angle, the lack of a
regulatory framework may pose a major threat for those
investors who have to conduct highly complex cryptofinance
investments. Without a legal framework, they are lacking
statutory protection emanating for their risky investments.

III. RESEARCH APPROACH

The nature of this study is exploratory due to the newness
of the research phenomenon and as a consequence of limited
literature on the evaluation of ICOs. To answer the research
question, we decided to study the emergent websites that pro-
vide evaluations of ICOs. The research approach is composed
of two major parts: data collection and data analysis.

A. Data Collection Steps

To identify what are those websites that provide evaluation
of ICOs, we decided to use Google search engine. The
following data collection steps as it is shown by Bajwa et
al. in [16] were followed:

Step 1: Define and refine search keywords: The first step
of the data collection was to define the search keywords that
can be used to capture ICO evaluation websites. Based on the
main research question, we have brainstormed the initial set
of search keywords. Meanwhile, a domain expert has provided
an initial list of ICO tracking and rating websites that he
was aware of. Several trial searches were conducted, and the
search results were observed against the initial list to see if the
search keywords could capture the listed websites. The search
keywords were refined several times based on the feedback
from the trials. The final search keywords used in the study
is as below (as a valid search string within the 32 keywords
limit imposed by Google search engine:
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(“ICO” OR “initial coin offering” OR “ITO” OR “initial
token offering” OR “token sale” OR “cryptocurrency crowd-
sale”) AND (“curated” OR “rating” OR “benchmark” OR
“evaluation” OR “monitor” OR “rank” OR “analysis” OR
“analytics” OR “track” OR “list” OR “report” OR “review”
OR “alert”)

Step 2: Apply the defined search keywords to Google search
engine: This step was conducted using Safari browser on the
laptop of one of the authors. To avoid the potential influence of
search history and personal information on the search results,
before starting the search process, this author deleted the
search history in the browser, cleared browser cache, and made
sure that she logged out from her personal Google account.
In the Google search setting (google.com/preferences), all
options that could potentially influence on search results were
turned off.

The search was conducted on the 28th of December, 2017.
169 results were actually shown and accessible, since Google
search engine omits automatically the results that it considers
similar or duplicates.

Step 3: Export search results: Since it was crucial that
multiple researchers could work on the dataset and crosscheck
the data analysis results, the search results needed to be
exported and shared. Therefore, the author who conducted
the Google search installed SEOQuake plugin to her Safari
browser, which allowed the export of the search results (in the
format of URLs) into an Excel file. We will share the excel
file that contains the collected 169 URLs on Google Drive3.

B. Data Analysis Steps
The following steps were conducted:
Step 1: Decide the relevance of the URLs: Even though the

search keywords were tested and refined to capture the most
relevant websites related to ICO evaluation, it was still needed
to review all the collected URLs manually to decide which
URLs represented a valid ICO evaluation website. The criteria
to decide if a website can be considered an ICO evaluation
website are:

• it contains the information of a set of past, ongoing or
upcoming ICOs;

• it provides some form of evaluation on the listed ICOs
in the format of ranking, scoring, rating, etc..

Through this step, we have identified 28 ICO evaluation
websites that were analysed in the next steps.

Step 2: identify the information relevant to evaluate ICOs:
For each ICO evaluation website identified in Step 1, the
information about each ICO that is listed on the website was
identified, such as project description, team information, social
media channels, etc.

The result of Step 2 is a comprehensive list of information
about an ICO that the identified ICO evaluation website
considered relevant.

Step 3: Identify different evaluation mechanisms applied by
the identified ICO evaluation websites: The focus of this step

3https : //drive.google.com/file/d/1lIZUk −
yMP4pmXhzJxQ5wErEonRjSB43/view?usp = sharing

is to understand what are the key factors that differentiate the
identified ICO evaluation websites, in order to unveil different
evaluation mechanisms employed by different websites.

The result of this analysis step is a list of key factors that
can be used to construct the evaluation strategy of ICOs.

IV. FINDINGS

Following the data analysis process described in Section
III, 28 websites out of the 169 collected URLs have been
identified as proper ICO evaluation websites, as shown in
Table I. The rest are either websites that only provide
basic ICO information without evaluation, such as ICO
TRACKER (https://icotracker.net/), or COINTELEGRAPH
(https://cointelegraph.com/ico-calendar), or links to social me-
dia channels such as Twitter and Reddit. Some websites are
simply not relevant to this study even though they were
captured by the defined search keywords.

A. Key Basic ICO Information

Table II is a summary of the key basic information about
an ICO that an evaluation website could collect, generally
provided by a startup that requests its ICO to be evaluated
by a given evaluation website. It is not clear (and it is not
possible to understand through the data collected in this study)
if due diligence has been done to check the correctness of the
provided information.

As shown in Table II, to be able to understand an ICO
and evaluate it properly, it is not sufficient to have only the
information about the ICO itself and the token offered (see
the information items listed under the “ICO Information” and
“Token Information” categories in Table II). The majority of
the 28 websites also list the information about projects and
the teams behind them.

One key piece of information about a startup project is
the white paper, which most ICO evaluation websites would
provide a link to. However, another piece of key information,
the roadmap (or sometimes called milestones) of a project,
has received much less attention and only about half of the
28 websites include this information when they introduce and
evaluate an ICO.

The importance of the team working on a startup project
that runs an ICO is highlighted by the fact that 26 out of
28 websites list team members and their expertise as key
information of each ICO. In comparison, much less websites
have considered to include information beyond the core team,
including the advisory team, the partners, and the community
built by the project.

One set of information that has received significantly less
focus is “Technical Information” about a startup project that
runs an ICO. Despite the fact that the majority of the 28
websites provide links to software repository (typically hosted
by Github), only one website (ICO Transparency Monitor)
includes specific information about smart contracts. Other
technical information regarding the underlying blockchain
infrastructure that a startup project builds upon is not covered
by any of the identified evaluation website.
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TABLE I
A LIST OF ICO EVALUATION WEBSITES IDENTIFIED IN THIS STUDY

No. Name URL Centralised or crowd-
based evaluation

Evaluation result

1 ICObench http://icobench.com/ crowd-based numeric score
2 ICO

Transparency
Monitor

http://icomonitor.io crowd-based numeric score

3 ICOrating http://icorating.com centralised categorical rating + numeric score
4 cyber fund http://cyber.fund/radar crowd-based symbol rating
5 ICO bazaar http://icobazaar.com crowd-based symbol rating
6 ICO Hot List https://www.icohotlist.com/ centralised categorical rating
7 ICO drops https://icodrops.com centralised categorical rating
8 CoinSchedule https://www.coinschedule.com/ centralised categorical rating
9 Cryptorated https://cryptorated.com/ico-reviews/ centralised numeric score
10 ICOWATCHLIST https://icowatchlist.com/ centralised categorical rating
11 CrushCrypto https://crushcrypto.com/ico-analysis/ centralised assessment report
12 TOKENTOPS https://tokentops.com/rating/ crowd-based symbol rating + numeric score
13 TOP ICO LIST https://topicolist.com/ centralised categorical rating
14 ListICO.io https://www.listico.io/ centralised symbol rating + numeric score
15 ICORanker https://www.icoranker.com/ centralised categorical rating + numeric score + assess-

ment report
16 BitcoinX http://www.bitcoinx.com/ico-list/ centralised categorical rating
17 DIGRATE https://digrate.com/icos/rated centralised categorical rating + assessment report
18 Foundico https://foundico.com/ centralised numeric score
19 Block discover http://www.blockdiscover.com/category/icos/ centralised assessment report
20 Wiser ICO https://wiserico.com/ crowd-based numeric score
21 Foxico https://foxico.io/ centralised numeric score + assessment report
22 VerifiedICOs https://www.verifiedicos.com centralised judgement
23 ICO Jury https://icojury.com crowd-based symbol rating+numeric score
24 CryptoMoon https://docs.google.com/spreadsheets/d/1js-

N4uFteHPAYMAZJRPajDhOkhVCE-
iwHdPnxPtuftU/edit#gid=1430929598

centralised numeric score

25 Picolo Research https://picoloresearch.com/ centralised symbol rating+categorical rating
26 GLOBALHALO https://globalhalo.com/category/ico-

reviews/
centralised assessment report

27 ICOlink https://icolink.com/icos-list.html crowd-based symbol rating+numeric score
28 ICOmarks https://icomarks.com/ico centralised numeric score

TABLE II
A LIST OF BASIC INFORMATION ABOUT AN ICO COVERED BY THE

SELECTED EVALUATION WEBSITES

Category Information Item
Project Information Description

Whitepaper
Roadmap
Video
Website
Social Media Channels

Team Information Team members
Advisors
Partnership
Community

Token Information Token Symbol
Token Type (Asset Class)
Platform
Total Token
Tokens for sale
Token distribution
Initial token price

ICO Information Starting Date
Ending Date
Status
Soft Cap
Hard Cap
Accepted currencies
Pre-ICO

Technical Information Github repository
Smart contract

Overall, how well an ICO evaluation website is providing
key basic information about an ICO can be understood by what
we term as “information richness”, which can be measured
by how many key basic pieces of information are covered
and how detail each piece of information is. In Figure 1, the
horizontal axis indicates the information richness of the 28
websites studied, from low to high.

B. Key Factors of an ICO Evaluation Mechanism

After reviewing how ICOs are evaluated by each of the 28
websites, a set of key factors emerged, which can be used to
classify and differentiate the evaluation mechanisms employed
by different ICO evaluation websites. These key factors are
reported below.

1) Transparency of evaluation process: To understand if
the evaluation given to an ICO is reasonable and trustable, an
evaluation process needs to be described in sufficient detail and
open to scrutinize. The transparency of an evaluation process
is one of the key factor to understand how an ICO evaluation
website works to provide useful guidance to investors and
other stakeholders.

Among the 28 websites analysed, only 6 provided different
levels of detailed descriptions of which key information is
taken into evaluation, how they are evaluated, and how the
final conclusion about and ICO has been achieved. In Figure
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Fig. 1. ICO evaluation websites: information richness vs. evaluation trans-
parency

1, the vertical axis indicates different levels of transparency of
evaluation process the 28 websites demonstrated, from low to
high. Among them, ICO Transparency Monitor, Cryptorated
and CryptoMoon have provided in-depth details on how they
evaluate each ICO.

2) Centralised vs. Crowd-based evaluation: Another key
factor that differentiates the evaluation mechanisms behind the
28 websites is who is evaluating ICOs. Many websites rely
on the task force in house and provide evaluation from their
own teams, which is what we call “centralised evaluation”. In
contrast, interestingly, 8 websites choose to rely on the wisdom
of the crowd and outsource evaluation to a larger pool of
evaluators. In their cases, one ICO typically receives multiple
evaluations from different evaluators and a final evaluation is
achieved through averaging different individual evaluations.
ICObench is a representative case of crowd-based evaluation.

3) Level of clarity of evaluation result: In the end, the
users of an ICO evaluation website need to understand if an
ICO is a trustable and worthy subject to invest or engage in
other manners. More clear the evaluation results, less effort is
needed from the users to make decisions (of course the premise
is that the website provides trustable evaluation results, which
links to the transparency factor). The analysis of the 28 web-
sites revealed different types of representation of evaluation
results, ranging from more vague, subjective opinions of the
evaluators in the format of text report or review (e.g., Block
discover, GLOBALHALO) to less ambiguous, quantifiable
scores/rating/ranking (e.g., ICOmarks, CryptoMoon).

V. DISCUSSION AND CONCLUSION

In this paper we have presented the initial findings from an
exploratory study of 28 ICO evaluation websites, in order to
understand how ICOs are evaluated in practice. It is shown
through the analysis that how ICOs are evaluated varies
from website to website, in terms of the amount of key
information provided about an ICO, the transparency level

of the evaluation process, the source of evaluation and final
representation of evaluation result. The findings reported in
the paper are descriptive and qualitative in nature given the
early phase of our study. In the the next phases of the study
we will define and measure key factors of ICO evaluation in
a quantitative manner. An additional analysis that could be
conducted is to choose a set of ICOs that have been evaluated
on multiple websites listed in Table I and see if the evaluations
are consistent across different websites.

One aspect regarding ICOs that has received little atten-
tion from the identified evaluation websites is the technical
information regarding the project behind an ICO, such as the
underpinning blockchain system, the consensus mechanism
employed by the system, the deeper analysis of software
repository and smart contract to assess their quality, etc.. Of
course this demands much bigger effort from evaluators of an
ICO, but the added value to the evaluation result may justify
the effort spent and pay off eventually.

Since not all the identified websites make explicit how they
evaluate ICOs, in the next steps we need to conduct further
selection, and study those evaluation websites that provide
detailed information on their evaluation processes. This is a
useful analysis to provide deeper insights on how different
evaluation mechanisms working in practice to produce evalu-
ation results.

ICO is at its top point of the hype curve, and there is
a very high amount of volatility primarily due to a lack of
proper due diligence. ICO evaluation websites could help
to elevate this situation to certain extent. The goal of this
research is to provide a better understanding of the state
of the practice of ICO evaluation. Two main contributions
of the study are: 1) Key information about ICOs collected
by these websites are categorized, and 2) key factors that
differentiate the evaluation mechanisms employed by these
evaluation websites are identified. The findings of our study
could help a better understanding of what entails to properly
evaluate ICOs. It is also a first step towards discovering the
key success factors of ICOs.

The research in its current form is by no means conclusive.
More in-depth analysis of ICO evaluation websites is desired.
However the primary aim is to open gates for future research
in the domain of initial cryptoasset offerings. Several next
steps have been laid out as argued previously, in order to
produce more meaningful and significant results in this highly
innovative and growing space.
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[5] A. Pinna, R. Tonelli, M. Orrú, and M. Marchesi, “A petri nets model
for blockchain analysis,” arXiv preprint arXiv:1709.07790, 2017.

[6] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[7] J. P. Conley et al., “Blockchain and the economics of crypto-tokens and
initial coin offerings,” Vanderbilt University Department of Economics,
Tech. Rep., 2017.

[8] S. Adhami, G. Giudici, and S. Martinazzi, “Why do businesses go
crypto? an empirical analysis of initial coin offerings,” 2017.

[9] W. Kaal and M. Dell’Erba, “Initial coin offerings: Emerging practices,
risk factors, and red flags,” 2017.

[10] I. Barsan, “Legal challenges of initial coin offerings (icp),” 2017.
[11] M. Yadav, “Exploring signals for investing in an initial coin offering

(ico),” 2017.
[12] R. Robinson, “The new digital wild west: Regulating the explosion of

initial coin offerings,” 2017.
[13] J. Flood and L. Robb, “Trust, anarcho-capitalism, blockchain and initial

coin offerings,” 2017.
[14] P. Venegas, “Initial coin offering (ico) risk, value and cost in blockchain

trustless crypto markets,” 2017.
[15] J. Enyi and N. Le, “The legal nature of cryptocurrencies in the us and

the applicable rules,” 2017.
[16] S. S. Bajwa, X. Wang, A. N. Duc, and P. Abrahamsson, “failures to be

celebrated: an analysis of major pivots of software startups,” Empirical
Software Engineering, vol. 22, no. 5, pp. 2373–2408, 2017.

39



Checking Laws of the Blockchain with
Property-Based Testing

Alexander Chepurnoy∗, Mayank Rathee†
∗ Ergo Platform and IOHK Research

Sestroretsk, Russia
† Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University)

Varanasi, India

Abstract—Inspired by the success of Bitcoin, many clients for
the Bitcoin protocol as well as for alternative blockchain protocols
have been implemented. However, implementations may contain
errors, and the cost of an error in the case of a cryptocurrency
can be extremely high.

We propose to tackle this problem with a suite of abstract
property tests that check whether a blockchain system satisfies
laws that most blockchain and blockchain-like systems should
satisfy. To test a new blockchain system, its developers need to
instantiate generators of random objects to be used by the tests.
The test suite then checks the satisfaction of the laws over many
random cases. We provide examples of laws in the paper.

I. INTRODUCTION

A blockchain-based cryptocurrency system consists of a set
of policies and protocols, such as the consensus protocol, the
monetary policy for token emission, the rules for transaction
processing, a peer management protocol and network commu-
nication protocols. A node, or a client, is a software imple-
mentation of the protocols. Usually not all the details of all the
protocols are rigorously specified. Instead, typically there is a
reference client implementation that acts as the definition of
the protocols for other implementations. A notable exception
here is Ethereum, where the Yellow Paper [1] tries to define
all the details of a client implementation. In Bitcoin, however,
the reference implementation Bitcoin Core is considered to be
standard, and any alternative implementation is expected to
reproduce its behavior, and even its bugs [2].

Repeated testing of even the most carefully written and
designed system is crucial to expose hidden vulnerabilities
in the developed system which might miss the eye of the
developers. Such tests should be performed regularly in order
help ensure reliability, security and performance of the system.
Furthermore, in the case of Bitcoin and other cryptocurrencies,
an error in a client implementation could be utterly costly
and hard to fix. For example, the famous value overflow bug
in Bitcoin [3] caused a fork of more than 50 blocks (more
than 8 hours) and required a soft fork (for the majority of
miners to upgrade) to be fixed. With an increasing demand
for the development of more clients for existing as well as
new alternative blockchain systems and cryptocurrencies, such
costly bugs can be expected to become more common and
problematic and testing can be expected to become one of the
most important parts of the software development lifecycle for
blockchain systems.

This paper addresses these trends by:
1) proposing a generic property-based testing framework

that can be easily plugged into the implementation of a
concrete client;

2) describing some of the essential properties which ought
to hold true for any cryptocurrency implementation.

A. Property-Based Testing

In this section, we give a formal definition of a property
followed by a discussion on property-based testing in contrast
to conventional testing methodologies.

Within the scope of a data domain D, a property can be seen
as a collective abstract behavior which has to be followed
by every valid member of the data domain. More precisely,
a property is a predicate P : D → {true, false} and it is
desirable that it be valid:

∀X ∈ D, P (X) = true

To illustrate, an example of a property P over the domain of
pairs of strings S× S is shown below:

P ((s1, s2)) = #(s1 :: s2) > #s1

where :: denotes string concatenation and #s denotes the
length of string s. This property is false for any (s1, ε), where
ε is the empty string. Therefore, it is not valid.

In contrast to conventional testing methods, where the
behavior of a program is only tested on some pre-determined
cases, property-based testing [4] emphasizes defining proper-
ties and then testing their validity against randomly sampled
data points. As property-based testing uses a small number of
randomly sampled data points, it still provides only an approx-
imate answer to the question of whether a property is satisfied
on all data points. However, it may provide more confidence
than conventional unit testing, because the randomly sampled
data points may cover problematic cases that were not foreseen
by the developers. There are various popular libraries available
for property testing including QuickCheck for Haskell [5],
JUnit-QuickCheck for Java [6], theft for C, ScalaTest [7] and
ScalaCheck [8] for Scala.

Property-based testing is also advantageous when testing
an application developed on top of a general framework,
as is the case of blockchain systems developed on top of
Scorex, because the framework may provide pre-implemented
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properties that the application should satisfy and the appli-
cation developer just needs to implement application-specific
generators of random data points.

B. The Scorex Framework

The idea of a modular design for a cryptocurrency was first
proposed by Goodman in the Tezos position paper [11]. The
paper (in Section 2) proposes to split a cryptocurrency design
into the three protocols: network, transaction and consensus.
In many cases, however, these layers are tightly coupled and
it is hard to describe them separately. For example, in a proof-
of-stake cryptocurrency a balance sheet, which representation
is heavily influenced by a transaction format, is used in a
consensus protocol.

Plenty of modular open-source frameworks were proposed
for speeding up development of new blockchain systems,
including: Sawtooth [12] and Fabric [13] by Hyperledger,
Exonum [14] by Bitfury Group, and Scorex [15] by IOHK.
We have chosen Scorex, because it has finer granularity. In
particular, in order to support hybrid blockchains as well as
more complicated linking structures than a chain (such as
Spectre[16]), Scorex does not have the notion of blockchain as
a core abstraction. Instead, it provides a more general abstract
interface to a history which contains persistent modifiers1. The
history is a part of a node view, which is a quadruple of
〈history, minimal state, vault, memory pool〉. The node view
is updated whenever a persistent modifier or a transaction
is processed. The minimal state is a data structure and a
corresponding interface providing the ability to check the
validity of an arbitrary persistent modifier for the current
moment of time with the same result for all the nodes in the
network having the same history. The minimal state is to be
obtained deterministically from an initial pre-historical state
and the history. The vault holds node-specific information,
such as a user’s wallet. The memory pool holds unconfirmed
transactions being propagated across the network by nodes
before their inclusion into the history. Such a design, described
in details in Section II, gives us the possibility to develop
an abstract testing framework where it is possible to state
contracts for the node view quadruple components without
knowing details of their implementations.

C. Our Contribution

This paper reports on the design and implementation of
a suite of abstract property tests which are implemented on
top of the Scorex framework to ease checking whether a
blockchain client satisfies the specified properties. A developer
of a concrete blockchain system just needs to implement
generators of random test inputs (for example, random blocks
and transactions for a Bitcoin-like system), and then the testing
system will extensively check properties against multiple input
objects. We have implemented 59 property tests, and integrated
them into a prototype implementation of the TwinsCoin [17]
cryptocurrency.

1In a blockchain-based cryptocurrency, the blockchain can be seen as the
history and every block can be seen as a persistent modifier.

D. Related Work

Verification and testing of software systems [18] is an
integral part of a software development lifecycle. Immedi-
ately after the implementation of the software, and before
its deployment, it has to be verified and tested extensively
enough to ensure that all the functional requirements have
been properly met. Over the course of time, both testing and
verification methods have been becoming increasingly formal,
sophisticated and automated.

Formal verification usually involves constructing an abstract
mathematical model (a.k.a. specification) of the system’s de-
sired behavior. From a logical perspective, the specification
can be regarded as a collection of properties that ought to hold
for the system, although often the specification is not described
directly in logical form, but rather using various mathematical
modeling frameworks, such as finite state machines [19], Petri
Nets, process algebra and timed automata [20]. Once both the
specification and the system are ready, the actual verification
that the program satisfies the specification can be attempted.
If successful, the verification proves that the properties of
the specification are valid for the program. This is a starkly
stronger result than what can be achieved through testing,
where the properties are only checked on a few samples.
However, full verification is hard to achieve automatically, and
expensive to do manually or interactively.

Testing (either conventional or property-based) remains a
less costly and hence more prevalent approach. Since a soft-
ware program is developed at module or class level and is in-
tegrated with other modules or classes along the development
cycle, testing is done at unit level, integration level and system
level [18], before the software is deployed. End-to-end testing
[21] is also performed, usually after system testing, to validate
correct flow spanning different components of the software
in real world use cases. Unit tests target individual modules,
methods or classes and have a small coverage compared to
integration tests which aim towards checking the behavior of
modules when combined together. The two main approaches
to unit testing are black box testing and white box testing. The
former one focuses on designing test instances without looking
inside the code or design, in other words, the black box testing
focuses only on the extensional functionality of the unit under
testing, while the white box testing approach is more inclined
towards code coverage (i.e. ensuring that test instances execute
as many different paths of the code as possible).

Although initially white box testing was considered only as
a method for unit testing, recently it has emerged as a popular
method for integration testing as well. Integration testing
is usually done by one or a combination of the following
approaches:

1) Big-Bang approach: all the components are integrated
together at once and then tested. This method works well
for comparatively smaller systems, but is not well suited
for larger systems. One obvious disadvantage is that the
testing can only begin after all the individual components
have been built.
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2) Top-Down approach: the modules at upper level are
tested first and then we move down until we test the
lowest level modules at the end. Since lower level
modules might not be developed when the upper ones
are being tested, stubs are used in place of such modules.
The stubs try to simulate behaviour of the modules not
yet implemented.

3) Bottom-Up approach: in contrast to the top-down ap-
proach, here the lower level modules are tested first and
then we iteratively move upwards in the hierarchy until
we reach the highest level module. Now as we are testing
lower level modules first, stubs are used to simulate the
behaviour of not yet implemented higher level modules,
in case any sibling interaction is required.

4) Sandwich approach: this combines the Bottom-Up and
Top-Down approaches.

Going beyond conventional unit testing methods, which do
not take any input parameters, parameterized unit tests [22] are
generalized tests that have an encapsulated collection of test
methods whose invocation and behaviour is controlled by a
set of input parameters giving more flexibility and automation
to unit testing as a whole.

The final full scale testing that a software product undergoes
is called the system testing, which includes tests like security
test, compatibility test, exceptions handling, scalability tests,
stress tests and performance tests.

Stress tests are particularly important for electronic pay-
ment systems, even conventional ones that are not based
on cryptocurrencies. Visa, for instance, performed an annual
stress test in 2013 to prepare their VisaNet system for the
peak traffic of the upcoming holiday season. The test results
showed that the system was able to handle 47,000 transactions
per second, a 56% improvement compared to the system’s
capacity in the previous year. Within cryptocurrencies, the
Bitcoin network experienced a spam campaign called "stress
test" [23], which caused the network’s performance to degrade
and essentially resulted in a denial-of-service attack 2. The
intention behind this campaign was to expose vulnerabilities
of the network, particularly when facing spam attacks. The
maximum transaction verification rate of a network under
spam can be improved through clustering of transactions to
differentiate spam and genuine transactions [23] or through
UTXO-cleanup transactions, a new special type of transaction
created by miners to combine spam transactions together,
thereby reducing the UTXO set size and the impact of the
spam attack on the network.

E. Structure of the Paper

In Section II we explain the architecture of the Scorex
framework. We then describe our approach to property-based
testing of blockchain system properties and present many
examples of blockchain property tests in Section III. Finally
we state our conclusions in Section IV.

2a cyber-attack on a system where the attack makes the system’s resources
unavailable or degrades their quality to a point where it becomes difficult or
sometimes impossible for honest users to avail the resource

II. SCOREX ARCHITECTURE

Scorex is a framework for rapid implementation of a
blockchain protocol client. A client is a node in a peer-to-peer
network. The client has a local view of the network state. The
goal of the whole peer-to-peer system 3 is to synchronize on a
part of local views which is a subject of a consensus algorithm.
Scorex splits a client’s local view into the following four parts:
• history is an append-only log of persistent modifiers. A

modifier is persistent in the sense that it has a unique
identifier, and it is always possible to check if the modifier
was ever appended to the history (by presenting its
identifier). There are no limitations on a modifier struc-
ture, besides the requirements to have a unique identifier
and at least one parent (referenced by its identifier). A
persistent modifier may contain transactions, but this is
optional. A transaction, unlike a persistent modifier, has
no mandatory reference to its parents; also we consider
that a transaction is not to be applied to the history
and a minimal state (described below). If a modifier is
applicable to a history instance and so could be appended
to it, we say that the modifier is syntactically valid. As
an example, in a Bitcoin-like blockchain the history is
about a chain of blocks. A block is syntactically valid if
its header is well-formed according to the protocol rules,
and current amount of work was spent on generating it.
However, a syntactically valid block could contain invalid
transaction, see a notion of semantic validity below. We
note that there are alternative blockchain protocols with
multiple kinds of blocks, microblocks, paired chains, and
so on, that is why we have chosen abstract notions of a
persistent modifier and a history, not the block and the
blockchain.

• minimal state is a structure enough to check seman-
tics of an arbitrary persistent modifier with a con-
straint that the procedure of checking has to be de-
terministic in nature. If a modifier is valid w.r.t min-
imal state, we call it a semantically valid modifier.
Thus, in addition to syntax of the blockchain, there is
some stateful semantics, and minimal state takes care
of it. That is, all nodes in the system do agree on
some pre-historical state S0, and then by applying the
same sequence of persistent modifiers m1, . . . ,mk in
a deterministic way, all the nodes get the same state
Sk = apply(. . . apply(apply(S0,m1),m2),mk) if all the
m1, . . . ,mk are semantically valid; otherwise a node gets
an error on the first application of a semantically invalid
persistent modifier. From this more abstract point of view,
the goal of obtaining the state Sk is to check whether a
new modifier mk+1 will be valid against it or not. Thus
the minimal state has very few mandatory functions to
implement, such as apply(·) and rollback(·) (the latter
is needed for forks processing).

3concretely, its honest nodes. For simplicity, we omit a notion of adversarial
behavior further.
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• vault contains user-specific information. For a user run-
ning a node, the goal to run it is usually to get valuable
user-specific information from processing the history.
For that, the vault component is used which has the
only functions to update itself by scanning a persistent
modifier or a transaction and also to rollback to some
previous state. A wallet is the perfect example of a vault
implementation.

• memory pool is storing transactions to be packed into
persistent modifiers.

The history and the minimal state are parts of local views
to be synchronized across the network by using a distributed
and decentralized consensus algorithm. Nodes run a consensus
protocol to form a proper history, and the history should result
in a valid minimal state when persistent modifiers from the
history are applied to a publicly known prehistorical state.

The whole node view quadruple is to be updated atomi-
cally by applying either a persistent node view modifier or
an unconfirmed transaction. Scorex provides guarantees of
atomicity and consistency for the application while a developer
of a concrete system needs to provide implementations for the
abstract parts of the quadruple as well as a family of persistent
modifiers.

A central component which holds the quadruple <history,
minimal state, vault, memory pool> and processes its updates
atomically is called a node view holder. The holder is pro-
cessing all the received commands to update the quadruple
in sequence, even if they are received from multiple threads.
If the holder gets a transaction, it updates the vault and the
memory pool with it. Otherwise, if the holder gets a persistent
modifier, it first updates the history by appending the modifier
to it. In a simplest case, if appending is successful (so if the
modifier is syntactically valid), the modifier is then applied to
the minimal state. However, sometimes a fork happens, so the
state is needed to be rolled back first, and then a new sequence
of persistent modifiers is to be applied to it.

As an example, we consider the cryptocurrency Twin-
scoin [17], which is based on a hybrid proof-of-work and
proof-of-stake consensus protocol. Scorex has a full-fledged
Twinscoin implementation as an example of its usage. There
are two kinds of persistent modifiers in Twinscoin: a proof-of-
work block and a proof-of-stake block. Thus the blockchain
is hybrid: after a Proof-of-Work block it could be only a
Proof-of-Stake block, and on top of it there could be only
a Proof-of-Work block again. Thus a TwinsCoin-powered
blockchain is actually two chains braided together. Only Proof-
of-Stake block could contain transactions. Such complicated
design makes Scorex a good framework to implement the
TwinsCoin proposal. Unfortunately, TwinsCoin authors made
only some particular tests. We got working tests for the
Twinscoin client just by writing generators for transactions
and persistent modifiers.

It could be the case that in a decentralized network two
generators are issuing a block at the same time, or in the
presence of a temporary network split different nodes are
working on different suffixes starting with the same chain, or

an adversary may generate blocks in private and then present
them to the network. In short, a fork could happen. This
is a normal situation once majority of block generators are
honest (see [24] for formal analysis of the Bitcoin proof-of-
work protocol).

Processing forks in a client could be a complicated issue,
making testing of this functionality important. We proceed
by describing the way in which forking is implemented in
Scorex. When a persistent modifier is appended to a history
instance, the history returns (if the modifier is syntactically
valid) progress info structure which contains a sequence of
persistent modifiers to apply as well as a possible identifier of
a modifier to perform rollback (for the minimal state, vault,
memory pool) to before the application of the sequence. By
such a realization of the interfaces, Scorex allows history to
be non-linear (for example, it could be a block tree), but other
components of the node view quadruple have sequential logic.
For efficiency reasons, the minimal state is usually limited in
maximal depth for a rollback, so the rollback could fail (this
situation is probably unresolvable in a satisfactory way without
a human intervention).

III. PROPERTY-BASED TESTING OF A BLOCKCHAIN CLIENT

In this section we report on our approach to generalized ex-
haustive testing of an abstract blockchain (or blockchain-like)
protocol implementation. For extensive testing, we test history,
minimal state and memory pool components separately, and
also do thorough checks for node view holder properties.

In total, we have implemented 59 property tests. They are
using random object generators described in Section III-A.
Most of the tests are relatively simple, others could check com-
plex functionalities where several components are involved.
We provide many examples in Section III-B.

A. Generators

We recall that (unlike unit tests, for example), property-
based tests are checking not an output of a functionality under
test against a concrete input, but rather a relation between
input and output values for an arbitrary input value. Thus, in
order to run a property-based test, an instance of an input
value is needed. To be able to obtain it, a property-based test
is supplied with a random input generator, which provides a
random input domain element upon request. For our testing
framework, a developer of a concrete protocol client needs to
provide implementation for generators of the following types:
• a syntactically valid (respectively, invalid) modifier,

which is valid (respectively, invalid) against given history
instance

• a semantically valid (respectively, invalid) modifier,
which is valid (respectively, invalid) against given min-
imal state instance. The modifier could be syntactically
invalid

• a totally, so both semantically and syntactically, valid
modifier. Respectively, a sequence of totally valid modi-
fiers

• a transaction
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• history instance, for which it should be possible to
generate a syntactically valid modifier

• minimal state instance, for which it should be possible to
generate a semantically valid modifier

• vault instance
• node view holder instance, for which it should be possible

to generate a totally valid modifier
As an example, for the TwinsCoin implementation we pro-

vide concrete implementations for all the generators mentioned
above. To generate a syntactically valid modifier, we generate
a Proof-of-Work block if a previous pair of <Proof-of-Work
block, Proof-of-Stake block> is complete, otherwise we gener-
ate a new Proof-of-Stake block. We recall that in TwinsCoin
transactions can be recorded only in Proof-of-Stake blocks.
A minimal state in the TwinsCoin implementation, similarly
to Bitcoin, is defined as a set of current unspent transaction
outputs. In order to generate a semantically valid modifier,
we generate a Proof-of-Stake block including transactions
based on unspent transaction outputs. A totally valid modifier
generator, based on given history as well as minimal state
instances, produces either an empty Proof-of-Work 4 or a
semantically valid Proof-of-Stake block, depending on the last
block in the history (in order to generate the modifier which
is also syntactically valid).

Interestingly, we implicitly define some properties via gen-
erators. In particular, the existence of a generator for a totally
valid modifier for any given correct history and valid minimal
state instances assumes that it is always possible to make
a progress in constructing a blockchain. To the best of our
knowledge, the need of this property to be hold was first
stated in the formal model of the Bitcoin protocol by Garay
et. al. [24] (see “Input Validity” definition in Section 3.1 of
the paper [24]).

B. Examples of Properties Tests

To explain our approach to the testing of a client in details,
in this section we provide some examples of property tests
which are valid for most blockchain-based systems. We have
grouped the tests based on their similarity.

1) Memory Pool Tests.
Memory Pool (or just mempool in the Bitcoin jargon) is
used to store unconfirmed transactions which are to be
included into persistent modifiers. The following tests are
used to check some general properties of a memory pool
which every blockchain client should pass.
• A memory pool should be able to store enough

transactions: in TwinsCoin implementation, we
are testing that the memory pool which is empty
before the test should be able to store a number of
transactions up to a maximum specified in settings.

4unlike Bitcoin, Twinscoin does not have a notion of a coinbase transaction
rewarding miner, instead, block generator’s public key is included into the
block directly.

• Filtering of valid and invalid transactions from a
memory pool should be fast: we got an impression
from running the Twinscoin client that memory
pool probably spends too much time on filtering
out a transaction. To be certain about that we
have implemented a test which is checking that an
implementation of memory pool is able to filter out
a transaction reasonably fast. As processing time is
platform-dependent, the test during its instantiation
is measuring time to calculate 500,000 blocks of
SHA-256 hash. Time to filter out the transaction
should be no more than that. We found that the
Twinscoin implementation was really inefficient
about filtering.

• A transaction successfully added to memory pool
should be available by a transaction identifier:
the purpose of this test is to ensure that once a
transaction is added to the memory pool, it indeed
is available by a transaction identifier. The test
simply adds the transaction to the memory pool
and then query the transaction by its identifier. The
initial transaction is the only correct result of the
compound operation.

2) History Tests.
A history is an abstract data structure which records all
the persistent modifiers ever appended to it. We recall
that the blockchain structure in the Bitcoin protocol is
the example of a history implementation. Since history is
an integral part of a node view, it is important to check if
an implementation of history acts correctly. A consensus
protocol aims at establishing common history for all the
nodes on the network.
A persistent modifier is the main building block of a
history and is used to update the history and a minimal
state. As soon as a valid modifier got appended to history,
the whole node’s local view is being changed in the
sense that the history is updated, possibly along with
the minimal state.
We have many tests to test history, some examples are
provided below.
• A syntactically valid persistent modifier should be

applicable to a history instance and available by
its identifier after that: by definition, a syntactically
valid persistent modifier should be applicable
to a history instance, and then, once applied to
the history, it should be available by its unique
identifier. The importance of this test comes from
the fact that it is of utmost importance for the client
implementation to tell the difference between the
modifiers that have been appended to the history
from those that have not been added. For this
purpose, the unique identifier of the modifier can
be used to query the history to know whether the
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modifier has been added to the history of not.

• A syntactically invalid modifier should not be able
to be added to history: a syntactically invalid
modifier should not be applicable to a history
instance. The test first checks whether application
of the modifier returns an indication of an error.
Then the test checks that the modifier should not
be available by its identifier.

• Modifier not ever appended to a history instance
should not be available by request: when the
persistent modifier which was never appended to
the history, is queried from the history, it should
always return empty result which shows that the
invalid modifier has not been added to the history.

• After application of a syntactically invalid modifier
to a history instance, it should not be available
in history by its identifier: a syntactically invalid
modifier is one which is inconsistent with the
present view of history. Only syntactically valid
modifier is eligible to be applied to history. To
check how the history is filtering out invalid
modifiers, we propose this test. We generate a
random invalid modifier and attempt to add it to
history. Since it is invalid, history should not add it
and hence, it should not be available by identifier
when queried from history. Some examples of
generated invalid modifiers are ones with false
nonces which do not satisfy the puzzle and ones
with non-valid signatures.

• Once a syntactically valid modifier is appended
to history, the history should contain it: this
test ensures that if valid modifiers are correctly
appended to the history, then they should be then
available by their respectable identifiers. Also,
the test is checking that the history is indicating
success during the application.

• History correctly reports semantic validity of an
identifier: a history instance should be able to
indicate semantic validity of a persistent modifier.
If the modifier is not appended to the history
yet, the history should return on request that
semantic validity of the modifier is not known. The
same result should be returned once the modifier
is appended, but semantic validity status is not
provided by the node view holder (after applying
the modifier to the minimal state). Once semantic
validity status is provided, the history should return
it by request. The test checks all the options,
simulating node view holder with a stub.

3) Minimal State Tests.
Tests for the minimal state component are checking
application of a semantically valid (respectively, invalid)
persistent modifier, and also rollback functionality. In
case of a better version of history (a fork) found, a
rollback has to be performed which essentially rolls the
system back to a common point (from which forks are
started). Known examples of rollbacks performed in the
Bitcoin network are recovery from the SPV mining is-
sue [25], and also recovery from the arithmetic overflow
bug [3].
• Application and rollback should lead to the same

minimal state: in this test, a semantically valid
persistent modifier m is generated and applied to
a current state S. Due to this application of the
modifier, a new minimal state S′ is to be obtained
from S. After the modifier is applied successfully
to the history, a rollback is performed to take the
system back to state S from the current state S′.
The test now checks that the state to which the
system comes after the rollback is indeed the state
S by checking an identifier of the new state after
rollback is the same as the identifier of the original
state.

We now use this test to explain how we generate a
semantically valid modifier for the Twinscoin client.
Before proceeding, we define the structure of a
transaction t. A simple transaction is usually rep-
resented as the map T : UTXO → UTXO, where
UTXO is the set of all the unspent transaction
outputs or boxes. A box can be considered as a
tuple (pubkey, amount) where pubkey is the public
key of the account of the node to which this box
belongs to and amount refers to the monetary (in
case of cryptocurrencies) amount which this box
holds in the name of the pubkey in the first half
of the tuple. A transaction uses some (≥ 0, 0
in the case of the rewarding transaction which is
present at the end of each block and which rewards
the miner) unspent boxes and generates new boxes
with a constraint that sum of the amount of all the
boxes used in the transaction is equal to the sum of
amount of the boxes output by the transaction except
the rewarding transaction for which this constraint
doesn’t apply. Once the new boxes have been added
to the UTXO set, the old boxes which were input
to the transaction are removed from the UTXO
set to prevent double spending. This addition and
removal of boxes from UTXO set has to be done
atomically in order to avoid inconsistencies in the
system. Suppose a node A wants to send x amount
to a node B, then the transaction for this purpose
will use some boxes with As public key on them
which sum up to an amount y ≥ x and output the
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boxes b1 and b2 such that b1 = (B, x) which has Bs
public key and an amount x whereas b2 = (A, y−x)
will have As public key and an amount of y − x,
if y > x. Now B has received a new box b1 which
belongs to him and this box now sits inside the set
UTXO until the point when B uses this box an one
of the inputs to a future transaction. Readers should
note that for more readability we will represent a
transaction T by a tuple ([in1, in2, ...], [o1, o2, ...])
where ini denotes input boxes to the transaction and
oi denotes the output boxes of the transaction.
Along with checking that the ids are same, it also
checks that the components of the new state are also
rolled back and not just the id number got rolled
back. For this, we generate the modifier m in the
following way:
– Generate a pair of transactions (t1, t2) where t1 =

([b1], [b2]) and t2 = ([b2], [b3]). This notation
means that the first transaction t1 uses a box b1 as
its input and then outputs a box b2 which is then
used by the second transaction as its input. In
the above setting, we select the first input box b1
randomly from the set UTXO and finally output
the box b3 from t2 which also just generates a
random box (b3). The generated transaction pair
has to be valid in the sense that it should only use
valid unspent boxes from UTXO and satisfy the
constraint that the sum of amounts of all the input
boxes should be equal to the sum of amounts of
the output boxes. The main caveat here is that
the second transaction of the pair should use the
output box of the first transaction of the pair.

– Now we generate a pair of modifiers (m1,m2)
and include both of these transactions from the
pair above in the respective modifiers.

Once the custom modifiers are generated, m1

(first half of the pair) is appended to the history
and the system moves from state s1 to the state
s2. As mentioned before, the transaction t1 from
the pair uses a random box b1 from the UTXO
of state s1 and when the system moves to the
state s2, the UTXO gets added with the box b2
and b1 is removed from the set. Once the state
change happens, we append m2 (second half of
the modifier pair) to history progressing the system
to state s3. Since m2 contains the transaction t2
which takes as input b2, when the system moves to
s3, b2 is removed from UTXO and b3 is added.

Now it becomes clear why we generate pairs of
transactions and modifiers in the way defined
above. Finally, we perform a rollback from state
s3 to s2 which should mean that once the rollback
is successful, the box b2 should come back to the
set UTXO and should be available by id whereas

the box b3 should now not be present inside the
UTXO set anymore. Both of these checks tell us
that the rollback was performed correctly and the
system indeed came back to the previous state with
all its components. The reason that we generated
the pairs of transactions above is because it helps
us in easily checking by id if b2 has returned to
the UTXO set since we generated b2 ourselves
and know its id already. This makes testing easy
and transparent.

• Application of a valid modifier again after a
rollback should be successful: as the previous test
aimed at checking that the components of a state
are recovered after a rollback happens, it would be
quite wrong to think that it should be the only test
that is necessary to check if the rollback system
performs as expected. It is also equally important
that after rollback the system performs normally,
as it would perform if the rollback would have
never happened. To check this property to certain
degree, we propose this test. It checks that after the
rollback has happened the system becomes stable
again and any new valid modifier which is now
added to the history is actually recorded and hence
should be available if queried from history. This
test ensures that after recovering from a rollback
the system performs normally and can resume its
functioning without any issues. It hence ensures
that a continuity is maintained after a rollback.

• Double application of a semantically valid modifier
should not be possible: this test checks that a
semantically valid persistent modifier should not be
added more than once. For example, if in Bitcoin
a block could be successfully applied twice to the
validation state (UTXO set), all the transaction
inside the modifier will be double spent. We argue
that an implementation of a blockchain system
should prevent addition of a semantically valid
persistent modifier twice in general. In this test,
we generate a semantically valid modifier, then
append it to a generated minimal state once, and
on the second application of the modifier again to
the minimal state an error should be returned.

4) Node View Holder Tests.
As was mentioned in Section II, the node view holder
is the central component of a blockchain client which
is responsible for atomically updating the quadruple
<history, minimal state, vault, memory pool>. The up-
date could be triggered by whether a persistent modifier
of a transaction coming in. Below we provide some
implemented tests for the node view holder.
• A totally valid persistent modifier should
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successfully update the minimal state and the
history: we recall that a totally valid modifier is
a persistent modifier which is valid for both the
history and the minimal state, so it is applicable
to both of them. In this test we are sending a
random totally valid persistent modifier to the
node view holder component and then we are
checking that history contains it and the version of
the minimal state is equal to the modifier’s identifier.

5) Forking tests.
At the moment we have two tests for forking. In both of
them we apply random number of totally valid modifiers
in the first place and remember last block which we call
the common block. One test then is applying two totally
valid modifiers which have the common block as parent.
The test checks that after the application the history con-
tains whether one of these modifiers, and version of the
minimal state is equals to identifier of whether one of the
two modifiers. The logic behind such a check is that we
do not know whether an implementation of a node view
holder will make switching from one prefix (of length
one) to another (of the same length), but anyway the
general property should hold. Another test first generates
a sequence of totally valid persistent modifiers of length
2, applies it to the common block, then the test generates
a sequence of totally valid persistent modifiers of length
4 starting from the common block, and applies the longer
sequence. The test checks that switching takes place, so
minimal state version equals to the identifier of the last
block in the longer sequence, and the history contains
the identifier in the current modifiers which do not have
ancestors (for a blockchain, there is one such a modifier,
for a block tree, there could be more than one modifiers
returned). With the help of the forking tests we have
found few errors in the Twinscoin implementation.

IV. CONCLUSION

In this paper we propose to improve quality of blockchain
protocol implementations via exhaustive property-based test-
ing. For generic abstract modular Scorex framework, we have
implemented a suite of property-based tests. The suite consists
of 59 tests checking different properties of a blockchain
system. To run the suite against a concrete blockchain protocol
client, developers of the client need to provide generators for
random objects used by the protocol. The suite is checking
properties against the implementation by using random sam-
ples. We used Twinscoin implementation provided with Scorex
as an example of a concrete blockchain using our testing kit.
In the paper we provide many examples of the tests.
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