
HAL Id: hal-03647706
https://hal.inria.fr/hal-03647706

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DepMiner: Automatic Recommendation of
Transformation Rules for Method Deprecation

Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, Arnaud Thiefaine

To cite this version:
Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, Arnaud Thiefaine. DepMiner: Automatic
Recommendation of Transformation Rules for Method Deprecation. ICSR 2022 - 20th International
Conference on Software and System Reuse, Jun 2022, Montpellier, France. �hal-03647706�

https://hal.inria.fr/hal-03647706
https://hal.archives-ouvertes.fr


DepMiner: Automatic Recommendation of
Transformation Rules for Method Deprecation!

Oleksandr Zaitsev1,2, Stéphane Ducasse2, Nicolas Anquetil2, and Arnaud
Thiefaine1

1 Arolla, Paris, France
{oleksandr.zaitsev,arnaud.thiefaine}@arolla.fr

https://www.arolla.fr
2 Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

{stephane.ducasse,nicolas.anquetil}@inria.fr
https://www.inria.fr

Abstract. Software applications often depend on external libraries and
must be updated when one of those libraries releases a new version.
To make this process easier, library developers try to reduce the nega-
tive effect of breaking changes by deprecating the API elements before
removing them and suggesting replacements to the clients. Modern pro-
gramming languages and IDEs provide powerful tools for deprecations
that can reference the replacement or incorporate the rules written by
library developers and use them to automatically update the client code.
However, in practice library developers often miss the deprecation oppor-
tunities and fail to document the deprecations. In this work, we propose
to help library developers support their clients with better deprecations.
We rely on the transforming deprecations offered by Pharo and use data
mining to detect the missing deprecation opportunities and generate the
transformation rules. We implemented our approach for Pharo in a proto-
type tool called DepMiner. We have applied our tool to five open-source
projects and proposed the generated deprecations to core developers of
those projects. 63 recommended deprecations were accepted as pull re-
quests.

1 Introduction

Most modern software depends on multiple external libraries [3]. Each one of
those libraries is a separate project that is managed by its own team of develop-
ers. Like any other software, libraries evolve from one version to another, parts
of their Application Programming Interfaces (API) are changed (classes, meth-
ods, or fields get renamed, deleted, or moved around, new functionalities are
introduced, etc. [12]). As a result, developers depending on those libraries must
either update their code or continue having outdated and no longer maintained
dependencies.

! This work was financed by the Arolla software company.

https://www.arolla.fr
https://www.inria.fr


Deprecation is a common practice for supporting library evolution by noti-
fying client systems about the changed or removed features and helping them
adapt to the new API. Instead of removing a feature in release n, it is marked
as deprecated (“to be removed”) and only actually removed in a later release
n+k. Client systems that call a deprecated feature receive a deprecation warning
which gives developers time to update their code.

It is a good practice for library developers to supply deprecations with code
comments or warning messages that suggest a replacement for an obsolete item.
For example, "Method a() is deprecated, use b() instead". To support this prac-
tice, Java provides the @Deprecated annotation as well as the @deprecated Javadoc
tag that can mark a method or class as deprecated while the @link or @see tags
can reference the correct replacement in the source code [18]. Pharo3 has a
powerful deprecation engine called Deprewriter [13]. It allows library developers
to add transformation rules to their method deprecations specifying the replace-
ments. When a deprecated method is invoked, Deprewriter identifies the call-site
at run-time and uses the rule to update the client code without interrupting its
execution [28,31,32].

However, developers of real projects do not always follow good deprecation
practices. They tend to introduce breaking changes to the APIs by renaming
or removing certain classes, methods, or fields without deprecating them first
[5, 40, 41]. Also, several large-scale studies of popular software projects have
revealed that the proportion of deprecations that contain a helpful replacement
message (in a form of comment, string, annotation, etc.) is only 66.7% for Java,
77.8% for C# [7], and 67% for JavaScript [23].

Multiple approaches have been proposed to support client developers by au-
tomatically inferring missing messages. Dig et al., [11] proposed to detect refac-
torings between the two versions of the library based of the textual similarity
of source code and the similarity of references. Schaffer et al. [34], Dagenais et
al., [9], and Hora et al. [15] mined frequent method call replacements in the com-
mit history of a library to learn how it adapted to its own changes. Pandita et
al., [24] and Alrubaye et al., [1] used a similar technique to help client developers
replace dependencies to one library with dependencies to another one. Teyton et
al. [38] and Brito et al., [7] recommend replacements by learning from client
systems that have already updated their code.

In this work, we look at the problem from the perspective of library develop-
ers. We propose an approach and a tool called DepMiner to help them identify
breaking changes before the release, understand when and by whom they were
introduced, and find the potential replacements that could be suggested to the
clients. We generate the recommendations in the form of transformation rules
that can be used by Pharo’s Deprewriter. Inspired by the existing approaches
that were proposed to support the client developers [9, 15, 34], our approach is
based on the frequent method call analysis. The main differences are: (a) we
recommend replacements before the release which makes it impossible to rely

3 Pharo is a dynamically-typed object oriented programming language and IDE: https:
//pharo.org/

2

https://pharo.org/


on the clients that were already updated; (b) Pharo is a dynamically-typed lan-
guage, which means that we can not rely of type information when analyzing
method call replacements; (c) Pharo has no explicit method visibility (i.e., public
or private specifiers), which makes it hard to define the API. DepMiner can be
extended to work with other increasingly popular dynamically-typed languages
such as JavaScript, Python, Ruby, etc.

To evaluate our approach, we applied DepMiner to 5 diverse open-source
projects that were implemented in Pharo and suggested its recommendations
to the developers of those projects. 138 recommendations generated by our tool
were confirmed by developers. 63 generated deprecations were accepted as pull
requests into the projects.

The rest of this paper is structured as follows. In Section 2, we briefly de-
scribe the Deprewriter tool in Pharo. In Section 3, we discuss the problem of
supporting library developers and the challenges that arise when dealing with
this problem in Pharo. In Section 4, we describe our proposed approach and
explain the underlying data mining algorithm. In Section 5, we evaluate our
approach by comparing the generated transformation rules to the ones that are
already present in the source code and by performing a developer study. Finally,
in Section 6, we explain the limitations of our approach.

2 Deprewriter: Transforming Deprecations in Pharo

Pharo allows developers to enrich deprecations with code transformation rules [13].
If a client system invokes the deprecated method, its source code is automatically
fixed during execution to call the replacement:

1 isSpecial
2 s e l f
3 deprecated : 'Renamed to # n e e d s F u l l D e f i n i t i o n '
4 transformWith : ' `@rec i s S p e c i a l '
5 −> ' `@rec n e e d s F u l l D e f i n i t i o n ' .
6 ↑ s e l f needsFullDefinition

Lines 2-5 of the code above demonstrate the syntax of transforming depre-
cations in Pharo: method isSpecial (name in the first line) is deprecated with a
message for the user ’Renamed to #needsFullDefinition’ and a transformation rule
that replaces method calls to isSpectial with calls to needsFullDefinition. The trans-
formation rule consists of two parts: the antecedent, matches the method call that
should be replaced ; the consequent, defines the replacement. ‘@rec and ‘@arg are
rewriting variables matching respectively the receiver of the invocation and its
argument.

Transforming deprecations are a powerful technique that can save time for
client developers. Because now, instead of reading the source code of a library
and looking for the correct replacement, they only need to run the unit tests of
their project to have their code fixed automatically.

3



3 Why Do We Need to Support Library Developers?

To understand the propagation of transforming deprecations, we have extracted
all deprecated methods from v8.0.0 of the Pharo Project4. We discovered that
out of 470 valid deprecations in Pharo 8, 190 deprecations (40%) do not contain
transformation rules. Out of those 190 non-transforming deprecations, 41 (22%)
can have a simple transformation rule that can be generated automatically;
85 deprecations(45%) require developers with project expertise to provide extra
information (additional argument, default value, etc.) and write a rule manually;
the other 64 deprecations (34%) are complex and can not be expressed using
the language for transformation rules that is used in Pharo. This indicates that
developers don’t always write transformation rules for their deprecations. Similar
trends can be observed in other programming languages. For example, according
to large-scale studies of software systems, the proportion of deprecations that
do not contain a helpful replacement message (in a form of comment, string,
annotation, etc.) is 33% for Java, 22% for C# [7], and 33% for JavaScript [23].

Those observations demonstrate the need for an automated tool to recom-
mend the replacement messages for method deprecations. There are two main
challenges when implementing such a tool for Pharo:

Challenge 1: Absence of method visibility. Languages like Java and C++ have
public, private, and protected keywords that can help identify methods that are
meant to be used by clients and can be considered as part of API. However, in
languages like Python or Pharo all methods are public [35]. Sometimes Python
developers use underscores at the beginning of method names to mark them as
“private” but it is more of a good practice than a strict requirement and this
practice is not always followed. Although Pharo developers often adopt different
practices to mark methods as private, none of those practices are universally
adopted by the Pharo community.

Challenge 2: Absence of static type information. Pharo is a dynamically-typed
programming language [21, 37]. The absence of static type information compli-
cates the task of identifying correct method mappings between the old and the
new version because it is not easy to map method calls in the source code to the
actual method implementations. We also do not know the argument types. This
has an important implication that we can get a combinatorial explosion when
analysing a sequence of messages. The research community has proposed type
inference for dynamically-typed languages [14,25–27,36,37] or use dynamic type
information collected by the Virtual Machine to get concrete types [22]. But such
type inferencers often do not cover the full language [37] or are not applicable
4 Pharo is a programming language and an IDE written entirely in itself. This can be a

source of confusion. In this section, we discuss the analysis of how transforming dep-
recations, introduced into Pharo (an open-source project with over 150 contributors),
were used by its developers to deprecate methods in other parts of the same project.
In other words, we study how Pharo developers use the rewriting functionality of
Pharo to deprecate methods in Pharo.

4



to large code bases [36]. In this paper, we do not perform type inference and
consider that the type information is missing, which constitutes a challenge for
the data mining algorithm.

4 DepMiner: Recommending Transforming Deprecations
by Mining the Commit History

We propose to assist library developers in the task of detecting the missed dep-
recation opportunities and finding proper replacements for the deprecated meth-
ods by mining frequent method call replacements from the commit history. Our
approach consists of four steps:

1. Identifying the methods that belong to the old API and the new API of the
project.

2. Collecting the database of method call replacements from the commit his-
tory.

3. Mining frequent method call replacements using the A-Priori algorithm for
frequent itemsets mining.

4. Generating deprecations with transformation rules.

Identifying Methods of the Old and the New API. As we have discussed in Sec-
tion 3 (Challenge 1), all methods in Pharo are public in the sense that clients
can access them, however not all of those methods are meant to be used. To
deal with this challenge, we define several categories of methods in Pharo that
can be considered private: (a) initialize methods — they act like constructors in
Pharo; (b) unit test methods, including setUp, tearDown, and methods of mock
classes; (c) example methods; (d) baseline methods — define project structure
and dependencies; (e) help methods — a form of documentation; (f) methods in
"private" protocols — any protocol that includes the word "private". We imple-
mented heuristics to infer the visibility of methods in Pharo and released them
in a public repository5. With that information, we define two sets of methods:
APIold — "public" methods in the old version, and APInew — "public" methods
in the new version.

Collecting Method Changes from the Commit History. Given the history of com-
mits between the old version and the new version, we extract method changes
from every commit. A method change describes how one specific method was
changed by a given commit. For each method change, we parse the source code
of a method before and after it was changed and extract a set of method calls
from each version. As a difference between those two sets, we get the sets of
deleted and added method calls for every method change. We remove all deleted
method calls that were not part of APIold and all added method calls that are
not part of APInew. Because Pharo is a dynamically-typed language, we do
not know which implementation of a method will be executed (see Section 3,
5 https://anonymous.4open.science/r/VisibilityDeductor-EF86

5

https://anonymous.4open.science/r/VisibilityDeductor-EF86


Challenge 2). As a result, many method calls in our dataset are false positives,
because they call the method with the same name as the one in APIold and
APInew, but in reality that method is called from a different library (e.g., meth-
ods such as add() or asString() can be implemented by different classes). To deal
with this problem and reduce the noise in our data, we choose a threshold K and
remove all method changes that have more than K added or more than K deleted
method calls (by experimenting with different values of K, for this project we
selected K = 3). We also removed all calls to highly polymorphic methods such
as = and printOn:. Finally, we removed all method changes for which either the
set of deleted or the the set of added calls was empty.

Mining Frequent Method Call Replacements. After collecting the dataset of
method changes from the commit history, we apply a data mining algorithm
to find all frequent subsets of method call replacements. This technique was
inspired by the work of Schäfer et al., [34], Hora et al., [15], and Dagenais et
al., [10] who proposed similar history-based approaches to support the clients of
Java libraries. In terms of market basket analysis, each method change can be
represented as a transaction or an itemset. To do that, we merge the sets of added
and deleted calls in a method into a single set. For example, {deleted(isEmpty),
deleted(not), deleted(add), added(new), added(isNotEmpty) }. By selecting a minimum
support threshold minsup, we use a data mining algorithm such as A-Priori,
Eclat, or FP-Growth to find all combinations of method calls that appear in dif-
ferent method changes at least minsup times (frequent itemsets). Then we con-
struct association rules by putting all deleted method calls into the antecedent
(left hand side) and all added method calls into the consequent (right hand side).
We remove the rules with empty antecedent or empty consequent. For each as-
sociation rule I → J , we calculate its confidence — the probability that a set of
deleted calls I appear jointly with added calls J and not with something else:

confidence(I → J) =
support(I ∪ J)

support(I)

We select a confidence threshold minconf and filter out all association rules
that do not reach this threshold. The current implementation of Deprewriter sup-
ports only one-to-one (one antecedent, one consequent) and one-to-many rules
(one antecedent, several consequents) — the ones that define the replacement of
one method call (the method from the old API that is being deprecated) with one
or more method calls. Therefore, we remove all many-to-one and many-to-many
rules from the collection of association rules.

Generating Recommendations. Based on two sets of methods, APIold and APInew,
and the collection of association rules Assoc, mined from the method changes,
we can now provide recommendations to library developers:

1. Proposed deprecations — we find all methods of the old API that were
deleted without being deprecated (every method m such that m ∈ APIold
and m /∈ APInew). If we can find at least one association rule in Assoc

6



that defines the replacement for a given method m, then we recommend
to reintroduce m into the new version of a project with deprecation and a
transformation rule if it can be generated.

2. Transformation rules for existing deprecations — first we identify all
manually deprecated methods from APInew that do not contain a transfor-
mation rule. For every such method m, if we can find at least one association
rule a ∈ Assoc that defines the replacement for m, we recommend to insert
a transformation rule into the deprecation of m either automatically (in case
the transformation rule can be inferred from a, as we will discuss below)
or semi-automatically (in case we can only show the association rule a to
developers and ask them to write a transformation rule manually).

Transformation rules of the form ‘@rec selector1: ‘@arg → ‘@rec selector2: ‘@arg
are generated automatically from the association rule such as {selector1:} →
{selector2:} only if:

– association rule is one-to-one (one deleted method call replaced with one
added method call),

– deleted and added method calls have the same number of arguments,
– deleted and added method calls are defined in the same class of the new

version of the project (and therefore can have the same receiver).

If one of those conditions is not satisfied, the transformation rule can not be
generated and must be written manually by a developer. In those cases, we only
show to developers the association rule together with the examples of method
changes in which those rules appeared and ask them to write a transformation
rule manually.

5 Evaluation

We have implemented our approach in a prototype tool for Pharo called Dep-
Miner.6 Our implementation is based on the A-Priori algorithm for mining fre-
quent itemsets. We have applied DepMiner to several open-source projects and
asked core developers of those projects to review the recommendations produced
by DepMiner.

5.1 Evaluation Setup

Selected projects. For this study, we have selected five open-source projects:

– Pharo7 — a large and mature system with more than 150 contributors,
containing the language core, the IDE, and various libraries.

6 https://anonymous.4open.science/r/DepMiner-0D5B
7 Pharo is an open-source project written in Pharo programming language (see foot-

note in Section 3), https://github.com/pharo-project/pharo

7

https://anonymous.4open.science/r/DepMiner-0D5B
https://github.com/pharo-project/pharo


– Moose Core8 — Moose is a large platform for data and source code analysis.
It consists of multiple repositories, we focus only on the core repository of
Moose.

– Famix9 — generic library that provides an abstract representation of source
code in multiple programming languages. Famix is part of the Moose project.

– Pillar10 — a markup syntax and tool-suite to generate documentation,
books, websites and slides.

– DataFrame11 — a specialized collection for data analysis that implements
a rich API for querying and transforming datasets.

We selected such projects because: (1) we were able to interview and ask
maintainers to validate the proposed deprecations, (2) the projects evolved over
several versions and are still under active development, (3) we wanted to com-
pare the performance of DepMiner on the projects with different maturity and
complexity levels.

For this study, we define three types of projects:

– Tool — a project that is designed for the end users (in the experiment:
Moose, Pillar). For example, a text editor, a website, or a smartphone app.
In many cases, APIs of those projects do not change that much (e.g. poorly
named method that is not called by external projects might not be renamed)
and when they do change, deprecations are rarely introduced.

– Library — a project that is supposed to be used as dependency by other
projects (in the experiment: Famix, DataFrame). For example, a data struc-
ture, a networking library, or a library for numeric computations. Projects of
this type must have a stable API and good versioning. They are most likely
to introduce deprecations.

– SDK — a special type of project that describes Pharo. It is a combination
of multiple different projects. Pharo has many users and even small changes
to API can break software that is built with Pharo. This means that depre-
cations are very important for this type of projects.

Table 1. Selected software projects

Project Type Old version New version Commits
Pharo SDK v8.0.0 af41f85 3,465
Moose Core Tool v7.0.0 v8.0.0 1,519
Famix Library a5c90ff v1.0.1 948
Pillar Tool v8.0.0 v8.0.12 508
DataFrame Library v1.0 v2.0 225

8 https://github.com/moosetechnology/Moose
9 https://github.com/moosetechnology/Famix

10 https://github.com/pillar-markup/pillar
11 https://github.com/PolyMathOrg/DataFrame

8

https://github.com/moosetechnology/Moose
https://github.com/moosetechnology/Famix
https://github.com/pillar-markup/pillar
https://github.com/PolyMathOrg/DataFrame


Two versions of each project. To mine the repetitive changes and propose dep-
recations, we must first select two versions of each project: the new version for
which we will propose the deprecations and the old version to which we compare
the new version of the project. All patterns will then be mined from the slice
of the commit history between those two versions. Table 1 lists the two versions
of each project that we have loaded as well as the number of commits between
those two versions.

Mining frequent method call replacements. We used DepMiner to mine frequent
method call replacements from the histories of those projects and recommend
deprecations with transformation rules. In Table 2, we report the minimum sup-
port and minimum confidence thresholds that were used to initialize the A-Priori
algorithm. The minimum support threshold for each project was selected exper-
imentally. We started with a large support threshold = 15 (meaning that we are
only interested in replacements that happened at least 15 times) and decreased
it until the number of generated recommendation seemed sufficiently large. The
confidence threshold was selected based on the number of method changes and
the number of rules that DepMiner generated for a selected support value. For
Pharo and Famix we can expect rules with confidence of at least 0.4. For other
projects, we limit confidence to 0.1. In the last two columns of Table 2, we present
the number of association rules (frequent method call replacements) that were
found by DepMiner given the settings discussed above, and the number of rules
that can automatically generate the transformation rules of the form ’@rec delet-
edSelector: ’@arg → ’@rec addedSelector: ’@arg (only one-to-one rules where deleted
and added selectors have the same number of arguments).

Table 2. Association rules mined from the commit history

Project Min sup. Min conf. Assoc. rules Transforming
Pharo 5 0.4 377 152
Moose Core 2 0.1 88 40
Famix 4 0.4 149 60
Pillar 2 0.1 49 16
DataFrame 5 0.1 22 7

5.2 Evaluation by Project Developers

We have performed a first developer study of our tool involving the core develop-
ers from each project listed in Section 5.1. We asked 4 developers with different
areas of expertise to validate the recommendations generated for Pharo and one
developer for each of the other 4 projects (two developers had expertise in two
projects each so in total, our study involved 6 developers).

To each developer, we showed the pretrained DepMiner tool with recom-
mended methods to deprecate and recommended transformation rules to insert

9



into the existing deprecations. The developers had to select the changes which,
in their opinion, should be merged into the project. DepMiner allows its users
to browse multiple version of the project as well as the commits history. Each
recommendation is supported by the list of commits in which the given method
call replacement has appeared. This allowed developers who participated in our
study to make an informed decision. For the Pharo project we considered rec-
ommendation accepted if it was accepted by at least one developer (because
different developers might know different parts of the whole system).

Proposed deprecations. Table 3 reports the numbers of deprecations that were
recommended to developers for each project (column Recommended), the number
of those recommendations that were accepted (column Accepted), and the num-
ber of those accepted recommendations that contain an automatically generated
transformation rule (column Transforming). Each recommended deprecation is
a method that was deleted from the project without being deprecated first and
which we propose to re-introduce with the recommended replacement.

Table 3. Number of recommended deprecations accepted by developers

Project Recommended Accepted Transforming
Pharo 113 61 56
Moose Core 33 1 1
Famix 87 68 28
Pillar 1 0 0
DataFrame 11 4 4

One can see that DepMiner was very effective in generating recommendations
for Pharo (113 recommendations, 61 accepted), Famix (87 recommendations,
68 accepted), and DataFrame library (11 recommendations, 4 accepted) but
rather ineffective on Moose Core (33 recommendations, 1 accepted) and Pillar
(1 recommendation, 0 accepted).

The different performance on those projects can not be explained by their
size. For example, the DataFrame project is the smallest one in our list, but out
of 11 deprecations generated by DepMiner, 4 deprecations were accepted. On the
other hand, for the Pillar project, which is 10 times larger in terms of the number
of methods, only 1 deprecation was generated and it was not accepted. Further
study is required to explain the differences between DataFrame and Pillar, but
we can speculate that bad performance on Pillar is caused by the low variability
of API. Methods of DataFrame were often renamed, removed, or reorganised,
which was reflected in test cases and picked up by DepMiner. On the other hand,
the API of Pillar remained stable even though new functionality was added to
it and many bugs were fixed.

Missing rules. The other type of recommendations that we showed to developers
were transformation rules for existing non-transforming deprecations. Table 4 re-

10



ports the number of existing deprecations that are missing a transformation rule,
the number of recommendations that DepMiner managed to generate for those
deprecations, and finally the number of recommendations that were accepted by
developers.

Table 4. Number of missing rules accepted by developers

Project Missing Recommended Accepted
Pharo 189 6 2
Moose Core 2 0 0
Famix 27 2 2
Pillar 0 0 0
DataFrame 0 0 0

Deprecations that are missing the transformation rule (the non-transforming
deprecations) represent either complicated cases for which the transformation
rule can not be provided (e.g. method was deleted without replacement) or
simple cases for which developers forgot to write a rule. As we mentioned in Sec-
tion 3, for 22% of non-transforming deprecations the transformation rule could
be generated automatically (assuming that we know the correct replacement),
the other 78% of non-transforming deprecations require a complex rule that
must be written manually. DepMiner proposed 6 transformation rules for exist-
ing non-transforming deprecations in Pharo (2 of which were accepted) as well
as 2 transformation rules for Famix (both were accepted).

Pull Requests. Out of 5 projects that we used in our study, only Pharo Project
was preparing an upcoming release. We applied DepMiner to the latest commit
of the development version of Pharo and this allowed us to submit the recom-
mendations that were confirmed by developers as pull requests. All 61 confirmed
deprecations and 2 confirmed transformation rules for existing deprecations were
merged into the v9.0.0 release of of Pharo.

6 Limitations of Our Approach

Unused/untested methods. Our approach is based on library’s usage of its own
API. This means that we can not infer anything for methods that are not used
by the library itself but only intended for clients. Test cases play the role of
clients of the library’s API, so for the methods that are well tested, we can have
enough input to identify the correct replacement for them. But if a method is
not used by the library and not covered by test, then its deletion or renaming
will not be reflected anywhere else in the source code.

Reflective operations. Modern programming languages offer reflective opera-
tions [8, 29]. They allow developers to invoke methods programmatically and

11



create generic and powerful tools. However, since some methods can be invoked
reflectively for example passing the name of the method to be invoked in a vari-
able, when a different argument is passed to a reflective call, our tool cannot
identify such change. Most static analysers ignore such case [4].

Unordered set of method calls. Our tool is based on mining method call replace-
ment by comparing the set of calls that were deleted from the source code of
a modified method to the set of calls that were added to it. We do not take
into account the order of method calls, the distance between them or how they
are composed: a().b() or a(b()). This is a limitation of our approach because: (1)
sometimes deleted and added method calls are located far away in source code
and not related to each other; (2) if one method call is being replaced with two
or more method calls, we do not know how they should be composed.

7 Related Work

Breaking changes. Breaking changes are the code modifications in all API el-
ements that break backward compatibility [12]. In their large-scale analysis of
Java libraries, Xavier et al., [40] discovered that 28% of API changes break back-
ward compatibility however, on the median, only 2.54% of clients are impacted
by them. In their follow-up study, Xavier et al., [41] performed a survey of de-
velopers to understand why they introduce breaking changes into their projects.
They identified five reasons: library simplification, refactoring, bug fixes, depen-
dency changes, project policy. This study was later extended by Brito et al., [5]
who reported that 47% of breaking changes are due to refactorings. These re-
sults can be complemented by the previous study by Dig and Johnson [12] who
analysed breaking changes in five Java systems and discovered that 81-100% of
them are caused by refactorings. Those findings are important for our study be-
cause changes that are introduced by refactorings (e.g. renaming, replacement,
spitting, etc.) ofter require simple repetitive fixes in the client code that can be
expressed with transformation rules.

Impact of deprecations. Robbes et al., [30] studied the impact of API changes,
and in particular deprecations, on Pharo and Squeak ecosystems. They report
that the majority of client systems are updated over a day, but in some cases the
update takes longer and is performed only partially. Sawant et al., [33] report
similar results for Java. Hora et al., [16, 17] complemented the previous studies
by analysing the impact of API evolution on Pharo ecosystem, but focusing only
on those changes which are not related to deprecations. They claim that API
changes have large impact on the ecosystem and most of the changes that they
found can be implemented as rules in static analysis tools. Several authors have
also explored the effectiveness of deprecation messages. Large-scale empirical
studies of software written in Java and C# [6,7] as well as JavaScript [23] revealed
that 22-33% of deprecations in those languages are not supported by replacement
messages. In their study of Pharo ecosystem, Robbes et al., [30] also showed

12



that almost 50% of deprecation messages do not help to identify the correct
replacement.

Library migration and update. Mining the commit history to find a mapping be-
tween two versions of API is not a new idea. Similar problems were targeted in
the context of library update (updating client system to depend on a new version
of the external library) and library migration (replacing the dependency on one
library with that on a different library). First approaches in this area were based
on static code analysis and the textual similarity of method signatures [19, 43].
Wu et al., [39] proposed an approach that combined call dependency and text
similarity analyses. Schäfer et al., [34] proposed to mine library update rules
from already updated client systems. The following studies analysed the commit
history between the two versions of a library [10,20] and proposed changes that
should be applied to client systems. Teyton et al., [38] used data mining and pro-
pose rules for library migration by learning from the commit histories of already
migrated clients. Hora et al., [15] proposed a similar approach to find method
mappings between different releases of the same library. Pandita et al., [24] ap-
proached the problem of library migration by analysing textual similarity of
documentation from different libraries. Alrubaye et al., [2] proposed a novel ma-
chine learning approach that inferred the mapping between the API elements of
two different library by extracting various features from library documentation
and solving a classification problem. Our approach of mining the commit history
was inspired by previous works in the domain of library migration and update.
However, instead of proposing migration rules to client developers, we propose
transforming deprecations to library developers.

Recommending deprecations and replacements. To the best of our knowledge,
our study is the first to propose supporting library developers by recommending
deprecations and generating replacement rules. Brito et al., [7] recommend re-
placement messages for deprecations by learning from client systems that have
already identified the correct replacements and updated their code. Our ap-
proach takes information from the history of a library and therefore does not
depend on migrated clients (which might not be available or may not cover the
full API). Xi et al., [42] designed an automatic process for migrating deprecating
API to its replacement in client systems. However, their approach is based on the
replacement messages in code documentation. One of the goals of our approach
is to generate those replacement messages when they are not known.

8 Conclusion

Method deprecation is a powerful technique for supporting the evolution of soft-
ware libraries and informing client developers about the upcoming breaking
changes to the API. We proposed to mine the frequent method call replacements
from the commit history of a library and use them to recommend method depre-
cations and transformation rules. We implemented our approach for Pharo IDE

13



in a tool called DepMiner. We applied our tool to five open-source projects and
asked 6 core developers from those projects to accept or reject the recommended
changes. In total, 134 proposed deprecations were accepted by developers as well
as 4 transformation rules for the existing deprecations. 61 new deprecations and
2 transformations rules for existing deprecations were integrated into the Pharo
project.

9 Acknowledgements

We want to thank all developers who participated in our experiment and helped
us evaluate the recommendations, particularly Guillermo Polito, Pablo Tesone,
Marcus Denker, and Benoît Verhaeghe. We are also grateful to the Arolla soft-
ware company for financing this research.

References

1. Alrubaye, H., Mkaouer, Mohamed Wiemand Ouni, A.: On the use of information
retrieval to automate the detection of third-party java library migration at the
method level. In: ICPC’19 (2019)

2. Alrubaye, H., Mkaouer, M.W., Khokhlov, I., Reznik, L., Ouni, A., Mcgoff, J.:
Learning to recommend third-party library migration opportunities at the API
level. Journal of Applied Software Computing pp. 106–140 (2020)

3. Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G.: An industrial case study
on reuse oriented development. In: 21st IEEE International Conference on Software
Maintenance (ICSM’05). pp. 283–292. IEEE (2005)

4. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In:
Proceedings of the 33rd International Conference on Software Engineering. pp.
241–250. ICSE ’11, ACM, New York, NY, USA (2011)

5. Brito, A., Valente, M.T., Xavier, L., Hora, A.: You broke my code: understanding
the motivations for breaking changes in APIs. Empirical Software Engineering
25(2), 1458–1492 (2020)

6. Brito, G., Hora, A., Valente, M.T., Robbes, R.: Do developers deprecate APIs with
replacement messages? a large-scale analysis on java systems. In: International
Conference on Software Analysis, Evolution, and Reengineering (SANER). pp.
360–369. IEEE (2016)

7. Brito, G., Hora, A., Valente, M.T., Robbes, R.: On the use of replacement messages
in API deprecation: An empirical study. Journal of Systems and Software 137,
306–321 (2018)

8. Callau, O., Robbes, R., Rothlisberger, D., Tanter, E.: How developers use the
dynamic features of programming languages: the case of smalltalk. In: Mining
Software Repositories International Conference (MSR’11) (2011)

9. Dagenais, B., Robillard, M.P.: Recommending adaptive changes for framework
evolution. In: International Conference on Software Engineering (ICSE’08). pp.
481–490. ACM, New York, NY, USA (2008)

10. Dagenais, B., Robillard, M.P.: Recommending adaptive changes for framework
evolution. ACM Transactions on Software Engineering and Methodology (TOSEM)
20(4), 1–35 (2011)

14



11. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated detection of refac-
torings in evolving components. In: ECOOP. pp. 404–428 (2006)

12. Dig, D., Johnson, R.: How do APIs evolve? a story of refactoring. Journal of Soft-
ware Maintenance and Evolution: Research and Practice (JSME) 18(2), 83–107
(Apr 2006)

13. Ducasse, S., Polito, G., Zaitsev, O., Denker, M., Tesone, P.: Deprewriter: On the
fly rewriting method deprecations. JOT (2022)

14. Furr, M., hoon (David) An, J., Foster, J.S., Hicks, M.: Static type inference for
Ruby. In: Symposium on Applied Computing (SAC’09) (2009)

15. Hora, A., Etien, A., Anquetil, N., Ducasse, S., Valente, M.T.: Apievolutionminer:
Keeping api evolution under control. In: Proceedings of the Software Evolution
Week (CSMR-WCRE’14) (2014)

16. Hora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., Valente, M.T.: How
do developers react to api evolution? the Pharo ecosystem case. In: International
Conference on Software Maintenance (ICSM’15). pp. 251–260 (2015)

17. Hora, A., Robbes, R., Tulio Valente, M., Anquetil, N., Etien, A., Ducasse, S.: How
do developers react to api evolution? a large-scale empirical study. Software Quality
Journal 26, 161–191 (Mar 2018)

18. Oracle. how and when to deprecate APIs. java se documentation, https://docs.oracle.
com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html

19. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes
for matching across program versions. In: International Conference on Software
Engineering (ICSE’07). pp. 333–343. IEEE (2007)

20. Meng, S., Wang, X., Zhang, L., Mei, H.: A history-based matching approach to
identification of framework evolution. In: International Conference on Software
Engineering (ICSE). pp. 353–363. IEEE (2012)

21. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17, 348–375 (1978)

22. Milojković, N., Béra, C., Ghafari, M., Nierstrasz, O.: Inferring Types by Min-
ing Class Usage Frequency from Inline Caches. In: International Workshop on
Smalltalk Technologies IWST’16. Prague, Czech Republic (Aug 2016)

23. Nascimento, R., Brito, A., Hora, A., Figueiredo, E.: JavaScript API deprecation
in the wild: A first assessment. In: International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 567–571. IEEE (2020)

24. Pandita, R., Jetley, R.P., Sudarsan, S.D., Williams, L.: Discovering likely mappings
between APIs using text mining. In: International Working Conference on Source
Code Analysis and Manipulation (SCAM). pp. 231–240. IEEE (2015)

25. Passerini, N., Tesone, P., Ducasse, S.: An extensible constraint-based type in-
ference algorithm for object-oriented dynamic languages supporting blocks and
generic types. In: International Workshop on Smalltalk Technologies (IWST’14)
(Aug 2014)

26. Pluquet, F., Marot, A., Wuyts, R.: Fast type reconstruction for dynamically typed
programming languages. In: Dynamic Languages Symposium (DLS). pp. 69–78.
ACM, New York, NY, USA (2009)

27. Ren, B.M., Foster, J.S.: Just-in-time static type checking for dynamic languages.
In: Conference on Programming Language Design and Implementation (PLDI)
(2016)

28. Renggli, L., Gîrba, T., Nierstrasz, O.: Embedding languages without break-
ing tools. In: D’Hondt, T. (ed.) Proceedings of the 24th European Conference
on Object-Oriented Programming (ECOOP’10). LNCS, vol. 6183, pp. 380–404.

15

https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html


Springer-Verlag (2010), http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.
pdf

29. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do: A large-scale
study of the use of eval in javascript applications. In: Proceedings of Ecoop 2011
(2011)

30. Robbes, R., Röthlisberger, D., Tanter, E.: Extensions during software evolution:
do objects meet their promise? In: European Conference on Object-Oriented Pro-
gramming (ECOOP). pp. 28–52. Springer-Verlag, Berlin, Heidelberg (2012)

31. Roberts, D., Brant, J., Johnson, R.E.: A refactoring tool for Smalltalk. Theory and
Practice of Object Systems (TAPOS) 3(4), 253–263 (1997)

32. Roberts, D., Brant, J., Johnson, R.E., Opdyke, B.: An automated refactoring tool.
In: Proceedings of ICAST ’96 (Apr 1996)

33. Sawant, A.A., Robbes, R., Bacchelli, A.: On the reaction to deprecation of 25,357
clients of 4+1 popular java APIs. In: International Conference on Software Main-
tenance and Evolution (ICSME). pp. 400–410. IEEE (2016)

34. Schäfer, T., Jonas, J., Mezini, M.: Mining framework usage changes from instan-
tiation code. In: International Conference on Software Engineering (ICSE). pp.
471–480. ACM, New York, NY, USA (2008)

35. Schärli, N., Black, A.P., Ducasse, S.: Object-oriented encapsulation for dynami-
cally typed languages. In: Proceedings of 18th International Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA’04). pp.
130–149 (Oct 2004)

36. Spoon, S.A., Shivers, O.: Demand-driven type inference with subgoal pruning:
Trading precision for scalability. In: Proceedings of ECOOP’04. pp. 51–74 (2004)

37. Suzuki, N.: Inferring types in smalltalk. In: Symposium on Principles of Program-
ming Languages (POPL’81). pp. 187–199. ACM Press, New York, NY, USA (1981)

38. Teyton, C., Falleri, J.R., Blanc, X.: Automatic discovery of function mappings be-
tween similar libraries. In: Working Conference on Reverse Engineering (WCRE).
pp. 192–201. IEEE (2013)

39. Wu, W., Guéhéneuc, Y.G., Antoniol, G., Kim, M.: Aura: a hybrid approach to
identify framework evolution. In: International Conference on Software Engineering
(ICSE). vol. 1, pp. 325–334. IEEE (2010)

40. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical and impact analysis of API
breaking changes: A large-scale study. In: International Conference on Software
Analysis, Evolution and Reengineering (SANER). pp. 138–147. IEEE (2017)

41. Xavier, L., Hora, A., Valente, M.T.: Why do we break APIs? first answers from de-
velopers. In: International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). pp. 392–396. IEEE (2017)

42. Xi, Y., Shen, L., Gui, Y., Zhao, W.: Migrating deprecated API to documented re-
placement: Patterns and tool. In: Proceedings of the 11th Asia-Pacific Symposium
on Internetware. pp. 1–10 (2019)

43. Xing, ZhenchangandStroulia, E.: API-evolution support with diff-catchup. IEEE
Transactions on Software Engineering 33, 818 – 836 (2007)

16

http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

