
Available online at www.sciencedirect.com

Computer Languages, Systems & Structures 30 (2004) 63–77
www.elsevier.com/locate/cl

Unanticipated integration of development tools using
the classi&cation model

Roel Wuytsa ;∗, St)ephane Ducasseb

aLab for Software Composition and Decomposition, D�epartement d’Informatique,
Universit�e Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe N.8 111,

Bruxelles 1050, Belgium
bSoftware Composition Group, Institut f*ur Informatik und angewandte Mathematik,

Universit*at Bern, Switzerland

Received 25 August 2003; accepted 25 August 2003

Abstract

The increasing complexity of software development spawns lots of specialised tools to edit code, employ
UML schemes, integrate documentation, and so on. The problem is that the tool builders themselves are
responsible for making their tools interoperable with other tools or development environments. Because they
cannot anticipate all other tools they can integrate with, a lot of tools cannot co-operate. This paper introduces
the classi.cation model, a lightweight integration medium that enables unrelated tools that were not meant to
be integrated to cooperate easily. Moreover, the tool integration is done by a tool integrator, and not by the
tool builder. To validate this claim, we show how to integrate several third-party tools using the classi&cation
model, and how it forms the foundation for the StarBrowser, a Smalltalk browser integrating di5erent tools.
c© 2003 Elsevier Ltd. All rights reserved.

Keywords: Tool integration; Software classi&cations; Development environments

1. Introduction

As software systems get increasingly more complicated, developers need to be able to rely on
adequate programming languages and development environments. Therefore lots of specialised tools
exist that help developers to cope with a certain aspect of software development. For example,
development browsers provide sophisticated ways to edit and navigate source code, while UML tools
allow developers to draw class diagrams and sequence diagrams. There is one problem however:

∗ Corresponding author. Fax: +32-2-650-56-09.
E-mail addresses: roel.wuyts@ulb.ac.be (R. Wuyts), ducasse@iam.unibe.ch (S. Ducasse).

1477-8424/$ - see front matter c© 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cl.2003.08.003

mailto:roel.wuyts@ulb.ac.be
mailto:ducasse@iam.unibe.ch

64 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

these tools have to be used together in order to implement the systems that need to be &nished. Hence
they have to cooperate somehow, and this is most of the time problematic, due to the following
reasons:

• Each tool typically uses its own GUI, and its own conceptual model to store and represent
information. It is the tool user who has the responsibility to combine the results from di5erent
tools.

• It is hard to make the tool work on new kinds of items. Suppose, for example that we have
a UML tool in the development environment that knows how to display a class diagram of all
classes in a certain package. Adapting this tool to now take as input the results from another tool
that does not work with packages is a major undertaking.

When tools properly work together, synergy occurs: the output of one tool can be used as input for
another. This is what we call integration of tools in the scope of this paper. For example, integrating
a UML tool in a development environment makes it possible to show a UML diagram of all the
classes in a certain namespace. When integrating a software architecture tool in the same environment
afterwards, it is possible to show UML diagrams of the classes in a layer of the architecture of a
system. These combinations are endless, and allow a developer to navigate and combine the tools
easily to help with the task at hand.

To allow the integration of tools some environments (like Microsoft’s Management Console or
the Open Source Applications Foundations’ Chandler) have an integration architecture that tools
can follow to cooperate with the platform and each other. We call this form of tool integration
anticipated integration: the tool builder has made sure that the tool adheres to a certain integration
platform. While this has the advantage that the tool is not stand-alone anymore, it has the drawback
that it can be very hard to make it compliant to an integration platform (due to the complexity and
to the fact that the code of the tool is needed to make the changes). Moreover, it does not solve
the problem that the tool cannot be integrated with other tools that were not built on the integration
platform.

This paper tackles the problem of unanticipated integration: integrating unrelated tools that do
not adhere to a certain integration platform. As solution we present the classi.cation model, a
lightweight grouping mechanism for objects that are acted upon by services. The design of the
classi&cation model combines a composite and visitor design pattern [1], which makes it easy to
comprehend and extend. It serves as a lingua franca for tools, and provides a clear separation of
concerns between the tools to be integrated, the glue code to do this, and the integration model. This
has the important bene&t that each of these distinct phases is done by di5erent developers (the tool
builder, the tool integrator and the model builder), who are not necessarily aware of each other.

We have implemented the classi&cation model in Refs. [2,3] Smalltalk environments. The most
important user of the model is the StarBrowser 1 that acts as a shell around existing Smalltalk
development tools such as the object inspector, development browsers and UML tools, e5ectively
integrating them.

1 The StarBrowser can be freely downloaded from the StarBrowser Web page at http://www.iam.unibe.ch/∼wuyts/
StarBrowser/index.html

http://www.iam.unibe.ch/~wuyts/StarBrowser/index.html
http://www.iam.unibe.ch/~wuyts/StarBrowser/index.html

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 65

The contributions of this paper are:

• the presentation of the classi&cation model,
• the unanticipated integration of tools by customising the classi&cation model,
• the practical application of the integration by building a concrete development tool, the

StarBrowser.

The rest of this paper is structured as follows. Section 2 introduces the classi&cation model in
detail. Section 3 shows how the model can be customised to accommodate for new kinds of items or
services. Then Section 4 shows how the classi&cation model is used to integrate tools that were not
designed to cooperate. Section 5 shows the StarBrowser, a browser that uses the classi&cation model
to integrate with the Smalltalk environment and other tools. Section 6 discusses several aspects of
the classi&cation model in more detail, while Section 7 discusses related work. Finally, Section 8
concludes the paper.

2. The classi�cation model

The classi&cation model allows to group all kinds of entities and to uniformly manipulate these
entities and groups. Particular about the model is that the grouping is independent of the manipu-
lations, and that the model can be customised to either support particular groupings or to support
particular manipulations or both. The following sections describe the model and discuss its design
rationale.

2.1. Overview

The classi&cation model is built on the following main concepts, shown in Fig. 1:

• Items: An item is anything tangible as an object in the software development environment, such
as a class, a namespace, an image, an HTML &le, etc.

ServicesConfiguration
configuration

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

Item

acceptService:

Classification
name

ExtensionalClassification

acceptService:

IntentionalClassification
itemsDescription
acceptService:

items

1..*

*

item
visitor

parent

ObjectAsItemWrapper
object
acceptService:

Fig. 1. Diagram showing the core concepts of the classi&cation model: items, classi.cations, services and the service
con.guration.

66 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

• Classi.cations: A classi.cation is a group into which items are classi&ed, and basically is a
container for items. Items do not have to be of the same type, and it provides behaviour for
enumerating and managing the items it contains. For example, a classi&cation ‘Popular Classes’
can contain the most browsed classes or the classi&cation ‘My Architecture’ can contain the items
that make up your software architecture.

• Services: A service implements an action that can be performed on items. Depending on the kind
of item, a service can perform a di5erent action. But it should at least provide a default action
that is able to process any kind of item that is passed. Examples of services can be a service that
gets the children of an item, a label for an item, or a preferred editor.

• Service con.guration: This is a registry where services can register under a certain name to be
retrieved by tools.

There are no restrictions on the number of items in a classi&cation and an item may be classi&ed
into more than one classi&cation. Since a classi&cation is an item itself, it can be part of other
classi&cations as well. We di5erentiate between two kinds of classi&cations:

• Extensional classi.cations enumerate items. For example, while browsing the code in a system, a
developer can add classes and methods of interest into an extensional ‘Favourites’ classi&cation.

• Intentional classi.cations compute their items according to a description. For example, we can
de&ne a classi&cation as consisting of a certain class and all its subclasses. Or we can describe
a classi&cation that consists of all the senders of a certain methods in the context of another
classi&cation.

Classi&cations support a full range of set operations (unions, subtractions and intersection) to
make it easy to recompose their elements. For example, suppose that we have two classi&cations:
an extensional classi&cation ‘Favourites’ containing a collection of classes we are interested in, and
an intentional classi&cation ‘My classes’ that calculates all the classes in my namespace. We can
then intersect ‘Favourites’ and ‘My classes’, and obtain a classi&cation ‘My favourite classes’.

Services are registered in a services con&guration under a service name they specify. Anybody in
need of a service retrieves it from the services con&guration by its service name. Di5erent services
can register under the same name, in which case one of them becomes the ‘active’ service. When
asking for a certain service, clients do not know exactly which service implementation they get.
For example, they can ask for a service returning icons for items. If the services con&guration has
di5erent services for returning icons, the active one will be returned. Swapping the active one for
another will result in the clients using di5erent icons without the need to change a single line of
code in the client. Note that the provider of the service has to make sure that services with the
same name are compatible. Unit tests are provided that enforce this compatibility between services
registered with the same name.

2.2. Design rationale

We made two important design decisions for the classi&cation model. The most important one
was to split the behaviour of items in two: the behaviour dealing with managing items (adding,
removing, enumerating, etc.) is implemented on the items themselves. All other behaviour regarding

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 67

items (their icons, labels, editors, etc.) is implemented using the services, using the Visitor design
pattern. There were two motivations for choosing a visitor:

• Keep the interface small: In the Smalltalk implementation, an Item can be any kind of Smalltalk
object. Since we did not want to clutter the interface of the class Object with all kinds of
item-speci&c methods, we only add one method (the method acceptService:) to enable a Visitor
to implement the services.

• Swap services at runtime:The services can be changed at runtime, which is not possible if the
behaviour is directly implemented as methods on the item classes.

A second decision was to wrap objects in a wrapper class ObjectAsItemWrapper, a subclass of
class Item that implements the method acceptService: as follows:

ObjectAsItemWrapper�acceptService: a Service
∧self object acceptService: aService

Therefore any kind of object can be wrapped as an item provided it implements the method
acceptService:, where it determines what method needs to be called on the service to process
that item.

The result of both these design decisions is a lightweight model. The next section describes how
this model can be customised to accommodate for new kinds of items and services.

3. Customising the classi�cation model

The classi&cation model described in Section 2 can be customised in two orthogonal ways: extra
services can be added and new kinds of items can be supported. This section explains both of these
customisations. In the next section we then see how this is used by the tool integrator to support
unanticipated integration of tools.

3.1. Adding new services

Services de&ne the actions that can be performed on items, following the well-known Visitor
design pattern. Because they are de-coupled from the items, new services are added by subclassing
existing services, in the “classical” Visitor scheme. For example, suppose that we are building an
application that needs to show items in some GUI, and that wants to show icons for each item.
Then this application needs to know which icon to use for each item. This is done by adding a new
service as subclass of the existing class Service, and overriding the methods for which icons need
to be returned. Fig. 2 shows the implementation needed.

3.2. Supporting custom items

In Section 3.1 we added an icon service to return icons for items. However, it only supports
three kinds of items: objects, extensional classi&cations and intentional classi&cations. Now suppose
that we want to add support for another item, say a method, so that we can return a speci&c icon

68 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

ChildrenService

doObject:
doExtensionalClassification:
doIntentionalClassification:

IconService

doObject:
doExtensionalClassification:
doIntentionalClassification:
iconFor:

IconSupport

Classifications

doObject: anObject
^self iconFor: #objectItem

doExtensionalClassification: aClassification
^self iconFor: #extentionalClassification

doIntentionalClassification: aClassification
^self iconFor: #intentionalClassification

iconFor: name
^ListIconLibrary visualFor: name

Fig. 2. Adding a new Icon service by subclassing the Service class. IconService is put in its own package (package
IconSupport, in dark grey). Only the service classes are shown in the Classi.cations package (in light grey).

Fig. 3. MethodSupport is a package that extends the Classi.cations and IconSupport packages to add support for methods.
It contains three class extensions.

for it. To do this, we need to do two things: extend the class implementing a method with an
acceptService: method and extending the services that want to take advantages of methods with a
new Visitor method (for example doMethod:). This is shown in Fig. 3.

Note that the implementation of doMethod: on class Service simply calls doObject:. As a result,
all services that do not need to support methods explicitly, will process methods as objects. For
example, there is a service called ItemChildren that returns the ‘children’ of an item. Asking for the
children of a method item by sending doMethod: to an instance of class ItemChildren will result
in sending doObject: to that instance, hence processing a method as a generic object.

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 69

4. Unanticipated tool integration

Sections 2 and 3 introduced the classi&cation model and showed how it can be customised to
support new kinds of services and items. In this section we show how this is used to integrate the
models of tools that were not designed to cooperate together.

4.1. Integration overview

As said in the introduction, we consider tools to be integrated when the output of one tool can
be used as the input for another tool. To solve the problem of unanticipated integration, somehow a
format has to be introduced to integrate tools, but without changing these original tools. The idea is
to use the classi&cation model as a &rst-class glue format to bridge the tools to be integrated. Using
the classi&cation model for this purpose has the advantage that items are manipulated uniformly
(meaning that making the output of one tool ‘compatible’ with the classi&cation model immediately
allows that tool to work with all tools that have compatible input). Another important advantage is
the set operations available on classi&cations, meaning that once a tool is integrated it can be used
to calculate unions or di5erences with results from other tools. While trivial at &rst, this makes it
easy to make semantic operations that combine the output of di5erent tools.

To integrate tools using the classi&cation model, tool output has to be made tangible as items and
a translation has to be provided from items to whatever is needed as input:

• Disguise output as items: The output of a tool, some object, has to be tangible as an item. If the
classi&cation model already knows about that object, nothing needs to be done. If the classi&cation
model has no support for that kind of object, it needs to be customised. For example, suppose that
we have a tool (the Smalltalk system itself) that produces classes as output. Since the classi&cation
model does not know about classes, we extend it. As described in Section 3, this boils down to
adding the method acceptService: on the class ClassDescription, and adding the method doClass:
on the class Service.

• Create service for input: To make a tool work with items as input, we create a service that
translates items to the input needed by the tool. For example, as we will see when integrating the
UML editor Advance, we create a service that maps items to so-called ‘subjects’, used internally
by Advance.

It is important to note that the tools themselves do not need to be changed. It is just the classi&-
cation model that gets customised. Moreover, the responsibility for integrating the tools does not lie
with the tool developer, but with the tool integrator. This is a major di5erence between the approach
allowed by the classi&cation model and an up-front integration architecture that tools should comply
with.

4.2. Example: Integrating Advance and SmallBrother

We illustrate the unanticipated integration of tools with a concrete example showing how to com-
bine the output of SmallBrother, a coding assistant that tracks browsing behaviour, with Advance,
a UML tool developed by IC&C and shipped with the VisualWorks Smalltalk environment [2].

70 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

SmallBrother: SmallBrother tracks the methods browsed by a developer while working. Every-
time a method is selected, this is intercepted and the class, selector, and a time-stamp are kept in
a database. This database can then be queried for information regarding the history and browsing
behaviour. We can for example evaluate the following piece of code to get the 20 most recent
methods that were browsed:

MethodHistory uniqueInstance recentMethods: 20

Other things we can ask for are, for example, the number of times a method was browsed, or
what classes have been used a lot. The results of these queries are collections of objects. Therefore
the mapping is easy in this example: an intentional classi&cation is used that computes its items:

IntentionalClassification name: ‘Recent Methods’
description: [MethodHistory uniqueInstance recentMethods: 20]

Advance: Advance is a UML tool for the VisualWorks Smalltalk environment. To let Advance
work with items, we create a new service, class AdvanceEditor, with the methods shown in
Fig. 4. This class implements methods that visit items (doExtensionalClassi.cation:, that calls
doClassi.cation:, and doParcel:). These methods convert items to an internal Advance represen-
tation, the subject. The other two methods, createSubjectForItem: and doForSubject: are auxiliary
methods that generate a subject (which is a class) on the Ny, and open an Advance diagram tool
on the subject.

We want to stress that we are not the developers of the Advance tool, and that none of the
existing Advance tools had to be changed to make them classi&cation model compatible. As tool
integrators we just implemented some glue code to convert items to subjects, and pass these subjects
to Advance.

5. The StarBrowser

The main application of the classi&cation model is the StarBrowser. The StarBrowser is a Visual-
Works Smalltalk [2] 2 development browser. By itself it provides only a toolbar, an interface to
display classi&cations as a tree, a part where editors for these items can be shown, and a mechanism
to allow a user to switch services using the ServicesCon&guration. It extends the classi&cation model
to support classes, methods, namespaces, packages, bundles, and parcels. All its other functionality
is implemented in a number of services:

• Editor: The editor service is responsible for adding an editor on the currently selected item in
the classi&cations list. This editor is embedded on the right of the classi&cations list. It integrates
tools to edit all kinds of source code entities with the Refactoring Browser [4] and objects with
the Trippy object inspector. The application returned by the editor service is integrated in the
StarBrowser using VisualWorks’ subcanvas technology. The toolbar of the editor (if there is one)
is merged with the toolbar of the StarBrowser.

• Icon: The icon service is responsible for showing the icon of an item in the classi&cations tree.

2 See http://www.cincom.com/scripts/smalltalk.dll//Home.ssp for more information and downloads.

http://www.cincom.com/scripts/smalltalk.dll//Home.ssp

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 71

Fig. 4. The implementation of the class AdvanceEditor that allows one to use the Advance UML tool with items.

• Label: The icon service is responsible for showing the label of an item in the classi&cations tree.
• Menu: The menu service is responsible for returning the operate menu that users get when they

right-click on an item in the classi&cations list.

Fig. 5 shows the StarBrowser in action. The left tree view shows the classi&cations tree that this
browser is opened on. Right of the tree is an editor for the currently selected item, as given by the
editor service. It currently shows a Refactoring Browser on the selected method item in the tree.

Extensional classi&cations are manipulated using drag‘n’drop: items are just dragged from any
kind of Smalltalk tool (stand-alone or embedded in the StarBrowser) and dropped at their desired
location. That way extensional classi&cations are used to group items of interest. The extensional
classi&cation ‘Favourites’ from Fig. 5, for example, groups items we used while working on the

72 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

Fig. 5. StarBrowser in VisualWorks editing a method selected in the classi&cations tree.

ServicesCon.guration class. It contains the Classi.cations bundle, the ServicesCon.guration class,
two methods we were frequently editing at the time of taking the screenshot, the SUnit class with the
unit tests for the class, and an instance of ServicesCon.guration so that we could directly test new
implementations. Keeping all these items together helps to reduce the complexity of the development
process.

Besides being used for constructing working views on a system, classi&cations are also used as
working contexts for some widely used commands. For example, the senders or implementers of a
method can be looked for within the context of a classi&cation.

5.1. Advance and SmallBrother in the StarBrowser

As shown in Section 4, we integrated the Advance UML tool in the classi&cation model. The
reason for doing so was that we could show a class diagram for any kind of item that gets selected
in the classi&cations tree. For example, selecting a namespace shows a class diagram for all the
classes in this namespace. Or showing a classi&cation shows all the classes in that classi&cation.

We also integrated SmallBrother, so that we could add the history information as classi&cations
in the tree. We decided to use intentional classi&cations that calculate their items by querying the
MethodHistory instance, as shown in Section 4. However, we wanted this classi&cation to refresh
itself whenever the user browses a method. So we made a subclass (called ObservingClassi.cation)
that observes models using the VisualWorks dependency mechanism. Since MethodHistory is a
model, it can be observed by an ObservingClassi&cation and it will refresh when needed.

Once the service for Advance is selected as the current editor, and we have added one of the
classi&cations that wraps SmallBrother, the tools are e5ectively integrated. Fig. 6 shows an Advance
diagram of the Popular Classes classi&cation. Of course this means that Advance can be used to
display class diagrams on all kinds of items, and that lots of other tools can take advantage of this.

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 73

Fig. 6. StarBrowser showing the Advance UML Editor on the Popular Classes classi&cation. This shows how the results
from one specialised tool (SmallBrother) can be used by another one (Advance) by integrating them using the classi&cation
model.

5.2. Other tools

We showed how we integrated two external tools, Advance and SmallBrother, in the Star-
Browser. Besides these tools, other tools were integrated in the StarBrowser (by us or by independent
parties):

• CodeCrawler [5] is a language independent tool that combines software visualization and soft-
ware metrics to help with the understanding of software systems. We also integrated a tool that
shows class blueprints [6] (visualising the internals of classes) whenever items containing classes
are edited.

• Conan [7] is a tool that supports concept analysis (a technique to group di5erent objects with
common relationships) in the context of reengineering of software systems. The StarBrowser is
used to browse the concepts and elements found by Conan.

• Intentional Software Views o5er a simple, intuitive and lightweight model that facilitates software
understanding and maintenance. The model is implemented in a logic programming language. To
shield the developers from the implementation details or syntactic peculiarities that this implies,
an intuitive user interface was developed using the StarBrowser [8] .

• Soul is a logic programming language living in symbiosis with its implementation language
(Smalltalk). The novel way of integrating these two languages from di5erent paradigms allows
one to write logic programs that can do full logic reasoning on and using objects [9]. The Star-
Browser was extended with support for showing the results of Soul queries as classi&cations, and
work is in progress to integrate the Soul predicates browser in the StarBrowser as well.

74 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

• Pictures: Another extension integrates a picture viewer in the StarBrowser that shows pictures
graphically when they are selected. This is useful for keeping graphical information in your work
context, or when making presentations.

• SUnit is the Unit testing tool in Smalltalk. Using the StarBrowser, an advanced GUI for SUnit
is being built to ameliorate the built-in platform-independent tool.

6. Discussion

This section we discuss the porting of the StarBrowser to a completely di5erent Smalltalk envi-
ronment (the Squeak environment), and then how the Smalltalk mechanism of class extensions is
essential in the implementation of the classi&cation model.

6.1. The Squeak Port

The VisualWorks implementation was ported to a second Smalltalk environment, the open-source
Squeak 3 system [3]. After doing an initial port, containing the model and a very simple browser,
the Squeak version was taken over by another developer, Ned Konz. In a couple of days, Ned had
signi&cantly extended our initial crude implementation to a level where it nearly provided the same
functionality as the VisualWorks version. Afterwards support was added for Squeak-speci&c items
like Morphs, SqueakMap entries and DVS packages, and tools like an e-mail browser. This is an
indication of the ease with which the lightweight classi&cation model can be put to good use even
by developers who did not know the model before.

6.2. Packaging using method additions

As explained before, we identi&ed three di5erent actors that play a role when integrating tools:
the tool builder, the tool integrator and the model builder. In order to support this separation in
practice, it is absolutely necessary that each actor can package its own code separately. Hence the
tool integration package has to be a separate entity that customises the classi&cation model.

However, customisations of the classi&cation model to support new kinds of items depend on
adding methods to existing Service classes. For example, Fig. 3 showed that the customisation of
the classi&cation model to support methods is done by adding three methods to existing classes.
Hence we need a packaging mechanism that allows us to create a package for these methods.

Smalltalk has a package mechanism that supports method additions. A method addition is a method
that is de&ned in a package, but that belongs to a class that is not de&ned in that package. 4 In
other words, it is a method that can be loaded into a system to extend some existing class, and is
exactly what we need to support the packaging customisations of the classi&cation model.

When a language does not support method additions (such as for example C++ or Java), the
design of the classi&cation model becomes much more complicated. The visitor pattern used for

3 See http://www.squeak.org/ for information and downloads.
4 In VisualWorks we use parcels or bundles and packages. In Squeak we use changesets. They all support class

extensions.

http://www.squeak.org/

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 75

the services then has to be replaced by a design that allows customisations to be made purely by
subclassing or delegation.

7. Related work

Conceptually, the classi&cation model is a direct descendant of the software classi.cation model
[10]. The main di5erence is that the classi&cation model uses a visitor to represent the actions that
can be performed on items, which did not exist in the software classi.cation model. As a result, it
is easier to add operations, and services can be changed on the Ny.

A lot of environments o5er integration features that tools can use to integrate with the environments
and/or each other. For example, the Microsoft Management Console (MMC) 5 integrates management
tools in Windows. The tools have to be developed as snap-ins, and cannot work as stand-alone
applications. Another example is Chandler, 6 a tool to let users store and organise diverse kinds of
information (like e-mails, news, or mp3 &les). It is set up as an extensible platform, where users
can contribute so-called parcels. Parcels are python scripts that can use the facilities of Chandler.
The major di5erence with the approach taken by these environments and our approach is that they
support anticipated integration, and that the tool developers have to make their tools compliant to
the architecture, not the tool integrators.

Regarding unanticipated tool integration, not much work seems to have been done. Apart from
the Eclipse IDE [11], we are not aware of another model that supports unanticipated tool integration
that does not require the tool developers themselves to make changes.

The Eclipse environment follows the same concept as the StarBrowser. It consists of a tiny core
(the plug-in loader), with most of the environment contributed by plug-ins. For example, the Eclipse
IDE and the Java Development Environment together consist of around 60 large plug-ins. Plug-ins
for Eclipse have to conform to certain interfaces, and are glued together through extension points.
These extension points are basically observers, and plug-ins are thus integrated using a synchronous
message passing model. This di5ers a bit from the StarBrowser and the classi&cation model, where
items and services are used, and class extensions allow for the customisation. While intrinsically
there is thus not much di5erence between the two, in practice it is much easier to customise the
classi&cation model than to write a Eclipse plug-in. The reason is that much more coding is needed
to implement extension points, because the events have to be implemented in such a way that they
are not blocked, do not lead to errors, etc. In the classi&cation model, the customisation is much
simpler.

8. Conclusion

This paper tackled the problem of unanticipated integration of tools, where tools that were
not designed to cooperate should be integrated. To solve this problem, the paper presented the
classi.cation model and showed how this model can be used for unanticipated tool integration.

5 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prod-technol/winxppro/proddocs/
sag MMCConcepts0 0.asp.

6 http://www.osafoundation.org/Chandler Compelling Vision.htm.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prod-technol/winxppro/proddocs/sag_MMCConcepts0_0.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prod-technol/winxppro/proddocs/sag_MMCConcepts0_0.asp
http://www.osafoundation.org/Chandler_Compelling_Vision.htm

76 R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77

The advantages of the classi&cation model are that it is lightweight, which make it easy to extend,
and that the integration does not need to modify the tools themselves. This is achieved by ‘glue
code’ that sits between the tools and expresses the mapping to and from items, the foundation of
the classi&cation model.

We showed the Smalltalk implementation of the classi&cation model and its major client, the
StarBrowser, an extensible browser that integrates di5erent tools. By means of concrete examples
we showed how the StarBrowser uses the classi&cation model to integrate with existing Smalltalk
development tools and third party tools like the Advance UML tool or the SmallBrother coding
assistant.

Acknowledgements

We gratefully acknowledge the &nancial support of the Swiss National Science Foundation for
the projects “Tools and Techniques for Decomposing and Composing Software” (SNF Project No.
2000-067855.02) and “Recast: Evolution of Object-Oriented Applications” (SNF 2000-061655.00/1).
We also like to thank Koen De Hondt for valuable comments on classi&cations in general and on
this paper in particular, and the StarBrowser users for their comments and support.

References

[1] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-oriented software. Reading,
MA: Addison-Wesley; 1995.

[2] Visualworks application developer’s guide, Cincom, 2002.
[3] Ingalls D, Kaehler T, Maloney J, Wallace S, Kay A. Back to the future: the story of Squeak, A practical

Smalltalk written in itself. In: Proceedings OOPSLA ’97, New York: ACM Press; 1997. p. 318–26. URL
http://www/cosc.canterbury.ac.nz/∼wolfgang/cosc205/squeak.html.

[4] Roberts D, Brant J, Johnson RE. A refactoring tool for Smalltalk. Theory and Practice of Object Systems (TAPOS)
1997;3(4):253–63.

[5] Lanza M. Codecrawler—lessons learned in building a software visualization tool. In: Proceedings of CSMR 2003,
New York: IEEE Press; 2003. p. 409–18.

[6] Lanza M, Ducasse S. A categorization of classes based on the visualization of their internal structure:
the class blueprint. In: Proceedings of OOPSLA 2001, 2001. p. 300–11. URL http:www.iam.unibe.ch/
∼scg/Archive/Papers/Lanz01bClassBlueprint.pdf.

[7] Ar)evalo G. Understanding behavioral dependencies in class hierarchies using concept analysis. In: LMO
03: Langages et Modeles Va Objets, Paris: Hermes; 2003. URL http://www.iam.unibe.ch/∼scg/Archive/
Papers/Arev03aLM003.pdf.

[8] Mens K, Mens T, Wermelinger M. Maintaining software through intentional source-code views. In: Proceedings of
SEKE 2002, New York: ACM Press; 2002. p. 289–96.

[9] Wuyts R. A logic meta-programming approach to support the co-evolution of object-oriented design and
implementation. PhD thesis, Vrije Universiteit Brussel; 2001. URL http://www.iam.unibe.ch/∼scg/Archive/
PhD/Wuyts-phd.pdf.

[10] Hondt KD. A novel approach to architectural recovery in evolving object-oriented systems. PhD thesis,
Vrije Universiteit Brussel, Department of Computer Science, December 1998. Brussels, Belgium; URL
http://progwww.vub.ac.be/persons/kdehondt/.

[11] Eclipse Platform: Technical Overview, http://www.eclipse.org/whitepapers/eclipse-overview.pdf. (2003)

http://www/cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://http:www.iam.unibe.ch/~scg/Archive/Papers/Lanz01bClassBlueprint.pdf
http://http:www.iam.unibe.ch/~scg/Archive/Papers/Lanz01bClassBlueprint.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Arev03aLM003.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Arev03aLM003.pdf
http://www.iam.unibe.ch/~scg/Archive/PhD/Wuyts-phd.pdf
http://www.iam.unibe.ch/~scg/Archive/PhD/Wuyts-phd.pdf
http://progwww.vub.ac.be/persons/kdehondt/
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

R. Wuyts, S. Ducasse / Computer Languages, Systems & Structures 30 (2004) 63–77 77

Roel Wuyts obtained his Ph.D. at the Vrije Universiteit Brussel (Belgium). The topic of his research was to use declar-
ative meta programming to build a framework to support co-evolution of design and implementation. To validate the
research, he built a logic programming language (called Soul) that lives in symbiosis with its implementation language
(Smalltalk), and allows full logic reasoning about Smalltalk objects and source code. After being a postdoc at the Software
Composition Group in Bern, Switzerland, he recently became Associate Professor at the Universit)e Libre de Bruxelles.
His &elds of interests are: multi-paradigm languages (regarding reNection, language symbiosis, meta-object protocols),
components (composition mechanisms, non-functional requirements, component languages, embedded systems), static and
dynamic program analysis (using declarative meta programming and runtime instrumentation) and integrated development
environments. For most of this research he uses Smalltalk, utilizing the reNective capabilities of the language at its most,
and taking advantage of the simple and clean parse trees. He is co-president of the European Smalltalk User Group.

St*ephane Ducasse obtained his Ph.D. at the University of Nice-Sophia Antipolis and his habilitation at the University
of Paris 6. He is Assistant Professor at the University of Berne. His &elds of interests are: design of reNective systems,
object-oriented languages design, composition of software components, design and implementation of applications, and
reengineering of object-oriented applications. He is the main developer of the Moose reengineering environment. He loves
programming in Smalltalk and is the co-president of the European Smalltalk User Group.

He wrote several books in French and English: La programmation: une approche fonctionnelle et recursive en Scheme
(Eyrolles 96), Squeak (Eyrolles 2001), Object-Oriented Reengineering Patterns (MKP 2002).

	Unanticipated integration of development tools usingthe classification model
	Introduction
	The classification model
	Overview
	Design rationale

	Customising the classification model
	Adding new services
	Supporting custom items

	Unanticipated tool integration
	Integration overview
	Example: Integrating Advance and SmallBrother

	The StarBrowser
	Advance and SmallBrother in the StarBrowser
	Other tools

	Discussion
	The Squeak Port
	Packaging using method additions

	Related work
	Conclusion
	Acknowledgements
	References

