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Abstract

Programming idioms, design patterns and application li-
braries often introduce cumbersome and repetitive boiler-
plate code to a software system. Language extensions and
external DSLs (domain specific languages) are sometimes
introduced to reduce the need for boilerplate code, but they
also complicate the system by introducing the need for lan-
guage dialects and inter-language mediation.

To address this, we propose to extend the structural reflec-
tive model of the language with object layouts, layout scopes
and slots. Based on the new reflective language model we
can 1) provide behavioral hooks to object layouts that are
triggered when the fields of an object are accessed and 2)
simplify the implementation of state-related language exten-
sions such as stateful traits. By doing this we show how
many idiomatic use cases that normally require boilerplate
code can be more effectively supported.

We present an implementation in Smalltalk, and illustrate
its usage through a series of extended examples.

Categories and Subject Descriptors D.3.4 [Programming
Language]: Processors—Interpreters, Runtime environments;
D.3.3 [Programming Language]: Language Constructs and
Features; D.3.2 [Programming Language]: Language Class-
ifications—Very high-level languages

General Terms Reflection

Keywords Smalltalk, Structural Reflection, Metaobject
Protocol, Traits
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1. Introduction

Object-oriented programming languages (OOPL) are highly
effective as modeling languages. Features including classes
and inheritance can be used to model concepts at a high
level of abstraction, normally leading to compact and con-
cise code. Unfortunately there are many situations in which
idiomatic programming constructs nevertheless lead to ver-
bose boilerplate code.

Consider, for example, the need in certain applications
to model first-class relationships between objects. Since no
mainstream OOPL provides first-class relationships as a pro-
gramming construct, they must be laboriously simulated in
code. Even if we were to develop a library to implement re-
lationships, a relatively large amount of boilerplate code will
be required to properly configure the relationships and to en-
sure that all access to the related fields triggers the library.
A possible solution is to extend our programming language
to provide first-class support for relationships [6]. Although
feasible, this is undesirable for various reasons: Language
extensions that change the syntax and semantics of a pro-
gramming language make it harder for programmers to grasp
the entire language. Moreover, language developers are bur-
dened with ensuring that all development tools of the host
language properly support the language extension.

If we look more closely at this use case, we see that all
boilerplate code concerning the management of first-class
relationships is related to field initialization and access. By
intercepting access to the fields that are used to represent
relationships, we can trigger the required behavior and avoid
the need for boilerplate code without the need to modify the
syntax or semantics of the host language.

We argue that boilerplate code is a common problem aris-
ing from idiomatic programming practices that attempt to
compensate for the lack of missing meta-level abstractions.
One such missing abstraction is the reification of the fine-
grained composition of the object layouts as they are known
to the language and its runtime.

In this paper we present as solution a first-class model
of object layouts, layout scopes and slots that combines
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the primitive object representation from the virtual machine
with the implicit representation from the language and reifies
it. The resulting model is sufficiently fine-grained to provide
reflective hooks at all levels of abstraction and allows us to
avoid boilerplate code that results from the lack of sub-class-
level reuse.

The contributions of this paper are:

* proposing the flexible object layouts, our approach to
modelling instance variables through first-class slots,

* presenting a classification and examples of customized
slots and their associated behavior,

* introducing and discussing an implementation of the flex-
ible object layouts in Smalltalk.

Outline In Section 2 we analyze related work and con-
clude that boilerplate code can be avoided by intercepting
field access. Section 3 introduces our approach of flexible
object layouts in which object fields are represented by first-
class slots. In Section 4 we present a series of examples of
different kinds of slots with their associated behavior. Sec-
tion 5 illustrates how first-class layout scopes are used to
control the visibility of slots. Section 6 shows how stateful
traits are implemented using first-class layouts. In Section 7
we shed light on how to build and migrate classes based on
layouts. Finally we sum up our findings in Section 8.

2. State of the Art

Various techniques in software engineering exist to to ad-
dress problems that stem from the lack of appropriate pro-
gramming language abstractions. In this section we list sev-
eral techniques whose raison d’étre is, at least partially, to
address the lack of adequate abstractions for object state ma-
nipulation, access, and composition.

2.1 Language Extensions

When application concerns cannot be properly expressed in
a programming language, this leads to crosscutting boiler-
plate code. External DSLs [14, 16] are often used to ad-
dress this problem. When external DSLs are tightly inte-
grated into our programming language they essentially be-
come language extensions [18, 24]. However, application-
specific extensions to a language limit understandability, us-
ability and portability.

Mixins [9] and traits [4, 11] are language extensions built
for reuse below the class-level. They promote removal of
boilerplate code by extracting it to the introduced reusable
components. Traits improve over mixins by requiring ex-
plicit conflict resolution and avoiding lookup problems re-
sulting from multiple inheritance through the flattening
property. While both approaches support reuse related to
the state of objects, the abstractions themselves are fairly
heavy-weight and they require glue code, another form of
boilerplate code, to configure the final class.
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Aspect oriented programming [17], a language extension
in itself, addresses the problem of cross-cutting concerns re-
lated to behaviour in a system. However, it does not address
the cross-cutting problems regarding state.

2.2 Meta Modeling

As opposed to language extensions meta modeling focuses
on describing data by generally relying on existing language
features. These meta descriptions don’t interfere with the
core language and thus are generally decoupled from the
actual objects they describe. However by only accessing data
only through the meta model it is possible to alter access
using first-class objects.

Magritte [23] is a meta modelling framework mainly used
together with Seaside [5]. Magritte is used to describe at-
tributes, relationship and their constraints. All descriptions
are provided as first-class Smalltalk objects. Unlike the pre-
vious two examples, Magritte provides a complete interface
to read and write attributes of an instance through its meta
descriptions. A favorable property of Magritte is, that it is
meta-descriptions are described in terms of themselves. This
way it is possible to rely on the same tools to work with in-
stances and with the model themselves.

Magritte and meta-modelling tools in general overlap in
many regions with our approach of first-class layouts, scopes
and slots. However these tools are built on top of an exist-
ing language and not into it. For instance Magritte’s meta
description are decoupled from the classes of an object.
Hence the objects themselves won’t directly benefit from
their added meta-descriptions. For instances it is still pos-
sible to use direct instance variable access inside an instance
and assign values which conflict with the well-defined meta-
description. Thus meta-modelling frameworks show only the
same behavior as first-class slots when attributes of objects
are accessed solely trough the meta-descriptions. But due to
the decoupled implementation this is not enforced and rather
relies on the discipline of the programmer.

2.2.1 Annotations

Several programming languages support annotations to at-
tach metadata to program structure. Java annotations, avail-
able since version 5.0 of the language, are probably the most
prominent example. Annotations are generally a way to di-
rectly attach meta information to source elements. Later on
the information in the annotations can be queried using a
reflection API. In this sense annotations cannot be used di-
rectly to alter state access. However it is possible to provide
new tools which use annotation to control access and vali-
date the state of a model. In Java, annotations can be sup-
plied for classes, methods and instance variables. Generally
the annotations are only used for adding meta-descriptions
to the code. This metadata is then later accessed at runtime
using reflection. Example use-cases of annotations include
unit-tests [3] and compile-time model constraints verifica-
tion [12].
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Annotations can be used to avoid manually written boil-
erplate code by generating code from the annotations. Java 6
features pluggable annotation processors that can hook into
the compiler and transform the AST. However it is not pos-
sible to directly modify the annotated sources. Using this in-
frastructure it is only possible to create new class definitions
that take slot definitions into account. Due to this limitation
it would be required to use the generated sources.

2.2.2 Object Relational Mapping

A special case of meta modelling worth mentioning is the
use of structural and semantic meta information to model
object relational mapping [2]. Meta information is needed
to provide a meaningful mapping from the objects to the
database. However generally the objects should stay fully
functional thus some part of the semantics described in the
meta information has to be available.

Several object oriented front ends for relational databases
support slot-like structures to describe the database fields.
Django [10] provides several types of fields to describe and
constrain what kind of data can be stored in the different
instance variables. This metadata is further used to create
the table description. Although the field descriptors could be
directly used to generate getters and setters which dynami-
cally validate the assigned data, this is only done when se-
rializing the object to the database. As such relationship are
only indirectly usable by storing and loading objects from
the database.

In the Active Record implementation used with Ruby
on Rails class-side methods are used to create descriptions
of the fields used in a table. These methods use Ruby’s
reflective capabilities to install getters and setters. In this
sense there are no slots objects but class-side methods to
create slot descriptions.

2.3 First-Class Slots

The Common Lisp Object System (CLOS) [7, 20] provides
support for first-class slots'. Upon defining a class slots are
described as part of the class definition. Internally CLOS
uses this information to decide which slot class to use. Stan-
dard CLOS always relies on the default slot class. In Per-
sistent CLOS (PCLOS) [19] the lookup was customized, to
decide based on an extra keyword whether the default or the
persistent slot class should be used. On accessing slots the
slot-value function is called. This is a generic function
similar to the instVarAt: and instVarAt:put: methods
in Smalltalk which can be used to directly access the fields
of an object using indices. It can be overridden to specialize
slot access for the entire class. Internally this function relies
on a class-side method slot-value-using-class. This
method can finally specialize variable access to the type of
class and the type of slot.

I'What we call fields is called slots in CLOS. Slot is named
slot-descriptor in CLOS.

Flexible Object Layouts

While CLOS already provides slots as one of the main
missing reifications, standard CLOS does not provide a way
to specialize instance variable access. As PCLOS shows
it would however be fairly easy to hook into the protocol
and allow programmers to provide custom slot metaobjects.
CLOS however does not reify any instance structure beyond
the level of slots.

The E programming language [25] provides slots as ob-
jects representing the location where values of instance vari-
ables are stored for specific instances. This model is the clos-
est to what is presented in the paper. However it requires the
system to generate a multitude of objects for each user-level
object, as all instance variables of a single instance need their
own metaobject.

Since C and C++ provide references which can be used to
mimic the availability of first-class slots. However such ref-
erences are simply [values providing direct access to the raw
memory. They cannot influence any access semantics, nor
do they provide a higher-level abstraction that can be reused
by other instance variables by bundling accessor methods.

2.4 Slots as Methods

In Self [26] and Newspeak [8] everything is a message send.
Slots are just special methods that return a value. This forces
the user to always access values through a standardized inter-
face that can flexibly react to change. Even more interesting
is that (Selfs version of subclasses) can change the behavior
of slots just like methods can be specialized. Data becomes
completely public however since objects cannot be hidden.
Since the accessors and initialization code have to be over-
ridden separately, this implies that their specialization has to
be done over and over again for each individual slot. There
is no standard way to bundle these methods in a specialized
metaobject and install them as a single unit.

3. Flexible Object Layouts in a Nutshell

Tools like compilers and class builders are needed to support
programming languages. They are necessarily linked to the
runtime that they target. If they are however too tightly
coupled to the assumptions made in the VM they become
less extensible. By introducing flexible object layouts as a
new layer of abstraction between the programming language
and its runtime, we decouple language tools and the runtime.
This layer consists of three main concepts, directly related to
the low-level view of how classes are constructed: layouts,
layout scopes and slots.

Layouts are the direct reification of the object headers
known to the VM. Just like VMs generally relate an object
header to the class of an object, we relate a single layout in-
stance to each class. A class knows its layout, and the layout
knows the class to which it belongs. As shown in Figure 1,
layouts are installed in Class Behavior, the superclass of
both Class and Metaclass, in the layout instance vari-
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Figure 1. Flexible Object Layouts Overview

able. The layout itself links back to the Class Behavior
through the host instance variable.

The number of available layout types depends on the VM.
Our prototype implementation is implemented in the Pharo
Smalltalk [21] dialect and provides a fairly typical set of
object types: words, bytes, pointers, variable sized, weak
pointers, compiled methods, and small integers [15]. Pharo
additionally relies on compact classes to save memory for
the instances of widely used classes by not keeping a pointer
from an instance to a class. All this information encoded in
the object header, which is normally only available to the
VM, is now directly available in the first-class layout.

Layout scopes  group instance variables that are declared in
the same scope. Apart from a few special cases, most classes
declare a collection of instance variables. Such classes are
related to a layout with slots. A class inherits instance vari-
ables from its superclass and potentially adds several itself.
In our abstraction layer this is directly modeled using layout
scopes. The different layout scopes are nested in a hierar-
chy parallel to that of the class structure. As Figure 1 shows,
layout scopes are contained by layouts with slots.

Slots are a first-class representation of instance variables
and their corresponding fields®>. They are referred to by a
program’s source code when their name is mentioned in
an instance variable access. As such they can modify read
and write access to fields. In our current implementation
the access semantics defined by the slots are directly inlined
by the compiler. As Figure 1 shows, slots are contained by
layout scopes.

Figure 2 illustrates our model using the layout of Dic-
tionary. This particular class builds instances with a to-
tal of two fields, related to the instance variables #tally
and #buckets. Classes that build such instances with a
fixed size have a Pointer Layout. Since this layout is a
subclass of Layout With Slots, it is related to a class
scope. Since Dictionary is a subclass of Hashed Collec-—
tion, the class scope of Dictionary has as parentScope
the class scope of Hashed Collection. Because Hashed
Collection has two direct instance variables #tally and

2 For clarity we refer to the memory location in an object as the field. The
token in source code that refers to the field we call instance variable.
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> nil |
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Figure 2. Scopes related to Dictionary

#buckets, they are linked as slots from the related class
scope. Since Object has no slots, its class scope is empty.
A list of scopes generally ends in the empty scope, just like
lists end in nil.

4. First-Class Slots

While normally it is the compiler that is solely responsible
for mapping instance variables to fields, slots provide an ab-
straction that can assume this responsibility. This allows the
slots to influence the semantics of accessing instance vari-
ables. We distinguish between four types of actions: initial-
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ization, reading, writing and migration. Slots can specialize
the semantics of any of these four actions by overriding the
related method in the slot class definition.

We classify slots as follows:

* Primitive slots are the direct reification of the link be-
tween instance variables and fields.

* Customized slots define custom semantics for the four
main actions related to slots: initialization, reading, writ-
ing and migration.

* Virtual slots have no direct representation in the related
objects but rather read state from an aliased field or derive
their state in another way.

4.1 Primitive Slots

Primitive slots are metaobjects that simply bind an instance
variable to a field index.

Object subclass: #Slot
layout: PointerLayout
slots: {

#index => Slot.
#name => Slot.

Do

Slot >> initializelnstance: anInstance
self write: nil to: anInstance

Slot >> read: anInstance
T anInstance instVarAt: index.

Slot >> write: aValue to: anlInstance
7T anInstance instVarAt: index put: aValue.

Listing 1. Default Slot Implementation

Instance variables are by default replaced by standard Slot
instances. Listing 1 shows the core implementation of the
default Slot with the three actions for slots:

* Initialize: The method named initializeInstance:
is called during object instantiation for all Slots. As in
most languages the fields of newly created object are
initialized with nil.

* Read: The read: takes the object instance as an argu-
ment and uses the low-level instVarAt: to directly ac-
cess the field in the instance.

* Write: The write:to: method works similar to the
write: method and delegates the write access to the low-
level instVarAt:put: operation.

Notice that the slots used by the definition of Slot are such
standard metaobjects, making the S1lot definition a recursive
one. As shown in Listing 1, to read out a standard slot we
need to first access the index slot of the slot. But to access
the index slot, we need to be able to access the index slot,
and so on. 3 This circularity is however easily broken by

3 This is similar to methods. They are conceptually instances of the Method
class. While this class could have a method telling the runtime how to
execute the method, this equally recurses infinitely.
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letting the VM directly execute it. Slots break the recursion
by directly inlining accessor code into the methods that refer
to them.

4.2 Customized Slots

Whereas accesses to primitive slots immediately translate
into accesses to the related field, it is advantageous to be able
to customize the semantics of accessing the slot into some-
thing more elaborate. There are four main types of actions
related to slots: initialization, read, write and migration.

In standard object-oriented code initialization of slots is
handled directly in constructor methods. This implies that
initialization code needs to be duplicated for similar but dif-
ferent instance variables, independent of the instance vari-
ables being present on the same class. By providing an ini-
tialization mechanism on the slot metaobject this initializa-
tion code is shared between all instance variables related to
the same type of slot. The initialization procedure can be fur-
ther customized towards the class and finally the instance.

By customizing the reading and writing of slots we di-
rectly influence all source code that mentions the related in-
stance variable. A slot is read by using it as an rvalue. This
triggers the protocol slot read: anInstance. Slots are
written to by using it as an lvalue, triggering the protocol
slot write: aValue to: anInstance. This allows de-
velopers to create reusable components at the level of in-
stance variables that avoid the need for boilerplate code to
access them.

Finally slots are related to class updates. Whenever in-
stance variables of a class are removed or added this directly
impacts the class and its subclasses, their methods and all
their instances. While full-blown solutions to class updates
are outside the scope of this paper, it is important to men-
tion that our model supports the construction of solutions
for class updates. Slots can determine how instances should
be migrated at the field-level.

4.2.1 Type-checked Slots

As a first example Listing 2 shows how we can easily build
type-checked slots.

Slot subclass: #TypedSlot
layout: PointerLayout
slots: {
#type => TypedSlot type: Class.
o

TypedSlot >> write: aValue to: anInstance
(aValue isNil or: [aValue isKindOf: typel)
ifFalse: [ InvalidTypeError signal ]
T super write: aValue to: anlnstance.

Listing 2. Typed Slot Implementation

Although it is possible to provide the same functionality as
slots by implementing accessor methods, this does not pro-
vide the same level of abstraction. It is not possible to en-
force that all code indirectly accesses the state over a getter
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method. Each instance variable requiring preconditions to be
fulfilled can also be used in a direct way, circumventing the
tests. By relying on slots however, the programmer has only
one single way access the instance variable. Here the guard
can be enforced for all methods.

A second advantage of using typed slots rather than re-
lying on modified setter functions is that the semantics of
the slot are reified. In the case of typed-checked slots this al-
ready provides metadata to gradually add typing to the partly
dynamically-typed application, a technique also known as
hardening [27].

By encapsulating type checks in slots we can avoid code
that would otherwise duplicated. In an untyped language
type checks would either occur at instance variable write or
in setter methods. Since we can even create a specific slot
class for a specific, for example PositivelIntegerSlot,
there is no need to explicitely type check instance variables
anymore.

4.2.2 First-class Relationships

Using slots it is possible to model first-class relationships
that integrate seamlessly into the existing language. We
model relationships by modeling both possible sides of
one-to-one, one-to-many and many-to-many relationships
by defining a One Slot and a Many Slot. To complete the
relationship such slots will then have another one or many
slot as opposite slot.

Listing 3 implements two classes Boss and Clerk that
are in a one-to-many relationship. A boss has a staff of many
clerks, but a clerk just has a single boss. In step 1 of Figure 3
we create one instance of the Boss class and N Clerk
instances. In step 2 we set the boss of c1 and c2. This
makes the boss have two clerks as his staff, and the two
clerks have a boss. All the other clerks are unaffected. In
step 3 we overwrite the staff by the array of clerks c3 till cN.
This breaks the relationship between the boss and c1 and c2
and creates new relationships with the clerks c3 till cN. If
in step 4 we set the staff of the boss to the empty array, all
relationships are broken again.

Object subclass: #Boss
layout: PointerLayout
slots: {
#staff => ManySlot opposite: #boss
class: Clerk.

}

Boss >> staff: aCollection
staff := aCollection

Object subclass: #Clerk
layout: PointerLayout
slots: {
#boss => OneSlot opposite: #staff
class: Boss.

}

Clerk >> boss: aBoss
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Boss new.

Step 1: boss

cl = Clerk new.
cN = Clerk new.
boss : Boss cl : Clerk cN : Clerk
staff = HotSet {} boss = nil boss = nil
Step2: ¢l boss: boss.
c2 boss: boss.
boss : Boss cl : Clerk c2 : Clerk
staff = HotSet { boss = boss boss = boss
cl.c2.
} c3 : Clerk cN : Clerk
boss = nil boss = nil
Step 3: boss staff: {c3. ... cN}.
boss : Boss cl : Clerk c2 : Clerk
staff = HotSet { boss = nil boss = nil
c3....cN.
} c3 : Clerk cN : Clerk
boss = boss boss = boss
Step 4: boss staff: {}.
boss : Boss cl : Clerk cN : Clerk
staff = HotSet {} boss = nil boss = nil
Figure 3. Relationships in Action
boss := aBoss

Listing 3. Many Relationship Usage

The code in Listing 4 shows the full implementation of
the related classes. Both ends of a relationship need to be
typed, so we reuse the Typed Slot class from Listing 2. We
extend it by adding a subclass Opposite Slot that knows
that both slots that occur in a relationship refer back to each
other using the opposite instance variable*. Finally the One
Slot knows that it will contain a single value, while the
Many Slot has many values. To make the picture complete,
in the case of a Many Slot we install a kot collection. This
is a special kind of collection that knows that it has to update
the opposite side on every change. This is required since the
collection itself is a way to avoid having to directly access
the data via the slot.

TypedSlot subclass: #0OppositeSlot
layout: PointerLayout
slots: {
#opposite => OneSlot opposite: #opposite
class: OppositeSlot.
}

4 Notice that #opposite is also declared as a One Slot, referring back to
itself. This is because a slot #y that has slot #x as its opposite, is by itself
the opposite of #x. Slots that are in a relationship at the base-level are also
in a relationship on the meta-level.
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OppositeSlot subclass: #ManySlot
layout: PointerLayout
slots: {
#oppositeHost => Slot.

}

ManySlot >> initializelInstance: anInstance
|set|
set := HotSet new

oppositeSlot: opposite;
myself: anlInstance;
type: self oppositeHost.
super internalWrite: set to: anInstance.

ManySlot >> write: aValueCollection to: anObject
|hotSet |
hotSet := self read: an(Object.
hotSet removeAll.

aValueCollection ensureType: Collection.
hotSet addAll: aValueCollection.

OppositeSlot subclass: #0neSlot
layout: PointerLayout
slots: {}

OneSlot >> write: aValue to: anObject
(self internalRead: anObject)
ifNotNilDo: [:oldValuel
opposite remove: anObject from: oldValuel].

super write: aValue to: anObject.

aValue ifNotNil: [opposite add: anObject to: aValue].

Listing 4. Relationship Slot Implementation

There are several advantages to using slots rather than
specific language extensions. A library encapsulates the
core behavior of relationships but still requires a significant
amount of glue code to invoke all necessary hooks. However
it is possible to dispense with glue code altogether by imple-
menting the first-class relationships directly as a language
extension. But language changes require all the tools to be
changed as well. Hence we argue in favor of an implementa-
tion which solely requires first-class slots that intercept read
and write access. As shown in Listing 3 it is sufficient to
specify the relationship with slots.

4.3 Virtual Slots

Virtual slots do not require a field in the related object but
redirect access the data elsewhere.

Alias slots  are a trivial kind of virtual slot that simply redi-
rect all accesses to the aliased slots. Listing 5 shows the ba-
sic implementation details of the alias slot. The basic ac-
cess operations read: and write:to: are forwarded to
aliasedSlot. This is useful for providing a compatibility
interface for legacy or external code. Wrongly named vari-
able accesses can be redirected by specifying an alias to an
existing slot. Since accesses to the slot are directly compiled
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as accesses to the aliased slot there is no extra overhead by
using an alias slot over a normal one.

VirtualSlot subclass: #AliasSlot
layout: PointerLayout
slots: {
#aliasedSlot => TypedSlot type: Slot.
Fo

AliasSlot >> read: anInstance
17 aliasedSlot read: anInstance

AliasSlot >> write: aValue to: anInstance
17 aliasedSlot write: aValue to: anInstance

Listing 5. Alias Slot Implementation

Derived slots  are computed from the values of other slots.
They can be used for example to provide a dual represen-
tation of values without having to duplicate support code
or add explicit transformation code. The code in Listing 6
shows a Color object which has three standard slots for the
three color compounds red, green and blue. The fourth slot
is a virtual slot combining the three compounds into a sin-
gle integer value. The RGBS1lot internally links to the three
other color components, denoted by the slots named #r, #g
and #b. Internally the RGBSlot uses these slots as sources
and transforms the input and output to represent one single
integer value.

On assignment the RBG Slot splits the written integer
value into the three compounds and forwards them to the
corresponding slots. On read access the single integer value
is computed from the three other slots. By reading from the
rgb instance variable the full combined integer value is read.
This has the advantage over a normal method invocation
in that it can be directly inlined by the compiler and that
it stays private to the class. Whenever this dual number
representation is required elsewhere it is sufficient to copy
over the RGB Slot and thus the slot helps to reduce code
duplication.

VirtualSlot subclass: #RGBSlot
layout: PointerLayout
slots: {
#redSlot  => TypedSlot type: Slot.
#greenSlot => TypedSlot type: Slot.
#blueSlot => TypedSlot type: Slot.
T

RGBSlot >> read: aColor
1T (((redSlot read: aColor) & OxFF) << 16)
+ (((greenSlot read: aColor) & OxFF) << 8)
+ ((blueSlot read: aColor) & OxFF).

RGBSlot >> write: anInt to: aColor
redSlot write:((anInt & O0xFF0000) >> 16) to: aColor.
greenSlot write:((anInt & OxOOFFO0) >> 8) to: aColor.
blueSlot write: (anInt & 0xOOOOFF) to: aColor.

Object subclass: #Color
layout: PointerLayout
slots: {
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#r => PositiveIntSlot limit: OxFF.
#g  => PositiveIntSlot limit: OxFF.
#b  => PositiveIntSlot limit: OxFF.
#rgb => RGBSlot redSlot: #r
greenSlot: #g
blueSlot: #b.

Listing 6. RGB Color Slot Implementation

5. First-Class Layout Scopes

In our system a layout consists of layout scopes, which
themselves again can contain slots. Layout scopes provide
a level of reusable object semantics that is orthogonal to
the standard reuse through subclassing. They are responsible
for providing access to instance variables and requiring the
fields in the final instance. This allows them to influence the
visibility of slots while still requiring enough space for all
slots in the final instances. By creating custom layout scopes
we can implement more complex use-cases which would
otherwise require boilerplate code.

The two core scopes, the empty scope and the class scope
are shown in Figure 1. As a default for each class a class
scope is generated and link to a parent scope which holds
the slots form the superclass. These layout scopes form a
chain which eventually ends in an empty scope, as shown in
Figure 2. With this approach we have a compatible model
to represent slot reuse through subclassing. So far we only
assumed that the scopes will contain exactly the slots from
the class definition. The following examples however, show
situations where new slots are introduced depending on the
slots specified in the class definition. We introduce addi-
tional slots by adding specialized scopes. Hence the class
scopes always contain exactly the scops provided with the
class definition.

In addition to the empty scope and class scopes two
general groups of additional layout scopes exist. slot hiding
scopes only give access to a part of the actually declared
slots, and slot issuing scopes give access to more slots than
are declared by the scope. The following two examples both
introduce a new slots and thus are to be seen as slot issuing
scopes.

5.1 Bit Field Layout Scope

In several languages the number of instances variables is re-
stricted, for instance many Smalltalk VMs limit the number
of instances variables to something less than 64 on many
systems. When using many instance variables that only use
booleans it feels natural to combine them into a single field.
Normally each instance variable would require a full pointer
to store a value that can be represented with a single bit.
Combining these variables into a single field helps to reduce
the memory footprint of an object. In our implementation we
can combine multiple boolean fields into a single bit field.
This not only reduces the memory footprint but also helps to
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speed up the garbage collection. Due to the single field the
garbage collector has to traverse fewer fields.

Listing 7 shows the implementation details of the BitSlot.
Each BitSlot knows its storage location in the object de-
noted by the bitSlot instance variable. The bitIndex is
used to extract the corresponding bit out of the integer stored
at the location of the bitSlot. In order to read a boolean
value, the BitSlot reads the full integer value from the
bitSlot and masks out the corresponding bit.

VirtualSlot subclass: #BitSlot
layout: PointerLayout
slots: {
#bitIndex => PositiveIntegerSlot.
#bitFieldSlot => TypedSlot type: BitHolderSlot.
}

read: anInstance
mask := (0x01 >> index).

1T (bitFieldSlot read: anInstance) & mask == mask.

write: aBoolean to: anInstance

lint|

int := bitFieldSlot read: anInstance.

int := int & (0x01 >> index) invert. "mask the bit"
int := int | (aBoolean asBit >> index) '"set the bit"

bitSlot write: int to: anInstance
17 aBoolean

Listing 7. Bit Field Slot Implementation

Using bit fields in a normal object is a matter of changing
the slot definition. Instead of using the default Slot the
BitSlot has to be used. Listing 8 shows the basic definition
of an object using bit slots. When using such an object up
to 30 bit slots are combined into a single field. Figure 4
shows a transcript of how the boolean values are written
to the single instance variable. If this were implemented
without encapsulating the behavior in slots, the code of the
write:to: or read: method would have to be copied at
least into a getter or setter. In this case there is a single
definition of the extraction semantics in the bit slot, which
serves as a template.

Object subclass: #BitObject
layout: PointerLayout
slots: {

booleanl => BitSlot.
boolean2 => BitSlot.

booleanN => BitSlot.

Listing 8. Bit Object using Bit Slots

Unlike the previous examples of slots the BitSlots re-
quire the layout to add a storage slot. As a reminder, the
BitSlots are virtual and hence do not occupy a field in
the instance. The situation is further complication in that the
number of storage slot is not fixed and depends on the num-
ber of BitSlots, since each storage integer fixed number
of bits. Instead of changing the current class scope, and thus
obfuscating the original slots definition we add specific bit
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Step 1: instance := BitObject new.
instance : Bit Object
bitSlot =0 (000),
Step 2: instance booleanl: true.
instance : Bit Object
bitSlot = 1 (100),
Step 3: instance boolean3: true.
instance : Bit Object
bitSlot =5 (101),
Figure 4. A BitField Instance in Action
| |
1 1
Bit Object Bit Scope
booleanl ) propertyHolder
boolean2
ootean BitFieldHolderSlot |«
name = #bitField
boolean30 fieldIndex = 1
layout parentScope
Class Scope
host scopeT |slots
Pointer Layout N Bit Slot

name = #booleanl
bitPosition = 0
fieldIndex = nil

bitFieldSlot

Bit Slot
name = #boolean2
bitPosition = 1
fieldIndex = nil

v

Bit Slot
name = #boolean30
bitPosition = 29
fieldIndex = nil

v

Figure 5. Bit Field Scope Example

scopes. In Figure 5 we see that the layout of the Bit Object
points to a normal class scope which contains the slot def-
inition mentioned in the class definition. Instead of linking
directly to the class scope defining the slots of the superclass
the parent scope is set to a special bit field scope. The bit
scope internally contains the bit slot which is used to store
the different bits in it. Each virtual bit slot points to a non-
virtual bit field slot defined in a bit scope.

5.2 Property Layout Scope

The previous example using bit fields displayed that by using
slots and slots scopes it is possible to transparently optimize
the footprint of an object using boolean instance variables.
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Here we will show how this technique can be used to selec-
tively but drastically transform the layout of objects.

JavaScript [13] and Python [22] use dictionaries as the
internal representation for objects. This enables the dynamic
addition of instance variables and saves memory when there
are many unused instance variables. The simplicity of the
object design comes with two major drawbacks however:
1) typing mistakes in instance variable names are not easily
detected, and 2) attribute access is difficult to optimize.

In standard Smalltalk the number of instance variables
is fixed up-front in the class. However we easily overcome
this limitation by using an intermediate dictionary which
holds all the object’s instance variables. Without first-class
layouts this would enforce us to use unchecked symbols
as field names to access the properties. Furthermore each
instance variable access would have to be manually replace
with a dictionary access, which can be completely avoided
in our case. In our implementation it is possible to benefit
from both worlds by only enabling dictionary-based storage
where it is needed, while still providing syntax checking for
slots.

Object subclass: #PropertyObject
layout: PointerLayout
slots: {
field => Slot

propertyl => PropertySlot.
property2 => PropertySlot.

propertyN => PropertySlot.

Listing 9. Property Object using Property Slots

Listing 9 provides a class definition of an object which uses
a normal slot, named field and an arbitrary number of
virtual slots that use a dictionary as storage target. Figure 6
shows an example usage of this property object. Note that the
resulting instance uses only two fields. The property holder
named dict is lazily filled with the values for the different
properties.

Similar to the previous bit field example we have to in-
troduce a data holder slot depending on the types of speci-
fied slot. In this case we use a special property scope. Fig-
ure 7 shows that the property scope holds an instance of a
PropertyHoldertSlot which is required to reserve one
field for the property storage. This field holds a property dic-
tionary that maps property slots onto their values. Listing 10
shows how accesses are rewritten by property slots such that
they access the state via the property dictionary.

VirtualSlot subclass: #PropertySlot
layout: PointerLayout
slots: {

#dictSlot => TypedSlot type: PropertyHolderSlot.
Fo

PropertySlot >> read: anlnstance

7 (dictSlot read: anInstance)
at: name ifAbsent: [ nil ].

9 2011/11/11



Step 1:

instance := PropertyObject new.

instance : Property Object
dict = {}
field = nil

instance field: 'real field'.

Step 2:

instance : Property Object
dict = {}
field = 'real field'

Step 3:

instance propertyl: 'string'.

instance property2: false.

instance : Property Object
dict = {
#propertyl = 'string'.
#property2 — false.

}
field = 'real field'

Step 4:

instance propertyl: nil.
instance field: nil.

instance : Property Object
dict = {
#property2 — false.

}
field = nil

Figure 6. Property Object in Action

PropertySlot >> write: aValue to: anInstance
1 (dictSlot read: anlInstance) at: name put: aValue.

Listing 10. Property Slot Implementation

This approach has three main advantages over the default
behavior in Python or JavaScript. First the overall perfor-
mance of the system does not suffer since only the accesses
of selected property slots are rewritten to go over the dictio-
nary. Secondly converting a property slot into a normal slot
is matter of changing the type of slot. The only difficulty
being that special care has to be taken to convert the values
in property dictionaries of existing live instances back into
normal fields. Finally, in contrast to the standard Python or
JavaScript approach our model minimizes the risk of run-
time errors related to misspelled variable names by requir-
ing the property slots to be explicitly specified in the layout
scope up-front. This allows us to provide proper compile-
time checks of property slots just like for all other Smalltalk
slots.

6. Stateful Traits

In this section we show that by reifying the state of the
objects and making it available in the programming language
new concepts that revolve around state can be implemented
with less effort. As case-study we implement stateful traits
[11], a mechanism for sharing behavior and state in standard
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Property Object Property Scope
field “ propertyHolder
propertyl y
property2 PropertyHolderSlot |«
name = #dict
propertyN fieldIndex = 1
lavout parentScope

Class Scope

host scope slots

Pointer Layout > Slot

name = #field
fieldIndex = 2

15| Property Slot
name = #property1
fieldIndex = nil

dictSlot

Ly.| Property Slot
name = #propertyN
fieldIndex = nil

Figure 7. Property Scope Example

object-oriented systems which is orthogonal to subclassing.
Stateful traits are components of reuse that are more fine-
grained than classes but generally larger than slots.

Although a previous implementation for Smalltalk exists
it was more difficult to attain and includes ad-hoc solutions
like renaming instance variables to avoid name clashes.

6.1 Traits

Fundamentally traits are used as collections of reusable
methods that are installed on classes. Normally, installing
a trait is implemented by flattening out the collection in the
method dictionary of the target class. All conflicts result-
ing from installing a trait have to be resolved by the devel-
oper. This includes renaming methods, rejecting methods
and overriding methods.

On installing a trait, the trait object is copied before in-
stallation. The trait methods are recompiled on the receiv-
ing class to ensure correct semantics for superclass sends.
Whenever a trait-related method is modified, the trait and all
its users are notified of the change and updated accordingly.
A trait is uninstalled by removing all methods introduced by
the trait. Finally whenever a class is updated, its trait com-
position is copied over from the previous version of the class
to the new version of the class.

6.2 Stateful Traits

Stateful traits [4] add the possibility to define state related
to traits. When composing a stateful trait with a class not
only the methods are installed, but also the associated state is
added to the class. Stateful traits are closely related to mixins
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| Empty Scope |
fparentScope

Sync Trait | Trait Scope |
lock slots
layout Slot
host name = #lock
fieldIndex = 1

- scope
| Pointer Layout

Figure 8. Stateful Trait Example

[9] except that they follow the conflict-avoiding composition
strategy of standard traits.

6.3 Installing State of Stateful Traits

By relying on our model of first-class layouts and scopes it
becomes straightforward to extend traits with state. A state-
ful trait is in essence a subclass of Trait which is extended
with a layout. Where we previously declared a class to use a
trait, we can now allow it to equally rely on a stateful trait.
The behavior has to be mixed in the exact same location as
standard traits. The only additional step required is the mix-
ing of the state declared by the trait with the state declared by
the class. Figure 8 shows an example of such a stateful trait,
the Sync Trait. In addition to the provided methods, the
stateful trait has a layout. This layout is linked to the related
trait scope that contains a single slot lock.

The class builder is the tool responsible for installing
the state of a stateful trait. During this process we want to
avoid name clashes with the state of the target class. To
avoid complex renaming required by the original stateful
trait work, we introduce a new kind of layout scope in our
model, the fork scope. A fork scope is a scope that does not
only have a parent scope, just like a normal class scope,
but also a list of side scopes. The side scopes contribute
to the final number of fields that an associated object has,
but they do not provide any visible slots. Their state in the
resulting object is essentially private to the owner of the
scope. The trait scopes are then installed in the fork scope
as side scopes. Figure 9 shows how the trait from Figure 8 is
applied to the Sync Stream class.

The modelling challenge when installing stateful traits is
to correctly update the field indices and scope instance vari-
able access. The index calculation has to take into account
the fields in the superclass and other installed traits.

For the normal operations on a class (e.g., compiling a
method inside the class) the visible slots will be computed
by recursively traversing the parent links of the scopes, ag-
gregating the slots from the class scopes, but ignoring the
side scopes of fork scopes. During compilation of the trait-
specific behavior the trait providing the behavior is used as
compilation target. This way, at compilation time, the class
methods do not have access to the trait state and vice-versa.
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Stream Class Scope H
>| array slots

L>| Pointer Layout

Slot <
name = #array
fieldIndex = 1

parentScope

| Fork Scope I:
sideScopes

| Empty Scope |
T parentScope

| Trait Scope |<—

name = #lock

fieldIndex = 2
parentScope
—| Sync Stream | Class Scope —
W slots = {}
layout

host
SCOpe
| Pointer Layout

Figure 9. Stateful Trait with Fork Scopes

6.4 Installing Behavior of Stateful Traits

After the class has been successfully composed by the class
builder, the methods of the used traits are installed. Stateful
trait methods are installed by updating them in the context
of the installed trait copy, meaning in the context of the
trait scope that was installed rather than the original trait
scope. The indices of the slots in the installed scope are
already updated to reflect their installed offset. Recompiling
methods in the installed scope will equally update them to
reflect this modification. This is a simplification of the copy
down technique [1] in that it does not try to save memory but
always installs methods by copy. Bytecode modification can
be used to reduce the runtime overhead of installing traits.

7. Class Building

In Smalltalk class definitions are themselves objects just
like anything else. Modifying the class definitions implies
changing the layout of the class objects. Since a class is part
of a class hierarchy this layout change has to be propagated
throughout the hierarchy.

The class builder is the programming language tool that
supports this evolution of class definitions. It requires the
most changes to support our layout-based model. However,
after the changes the implementation becomes much simpler
since its responsibilities are now distributed over the differ-
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ent types of layouts, layout scopes and slots, making it more
adept to change:

* A layout knows the rules the VM imposes on it, for
example that it is not allowed to subclass a class with
byte array slots.

* Slot scopes know exactly how many slots they have and
which slots are supposed to be visible.

* Slots themselves know their access semantics and how
they are related to fields in instances.

By delegating the responsibility to those specific objects,
we allow libraries to provide new types of layouts or slots
without modifying the class builder. The class builder will
gladly support such metaobjects as long as they are poly-
morph to the primitive slot and layout.

7.1 Class Modification Model

The class builder itself is responsible for building or chang-
ing classes for a class installer. The builder constructs new
classes from their definition and notifies the installer about
the new class. In case the class installer already had a ver-
sion of the new class, the class builder builds up a class
modification model of the difference between the old class
and the new class. In case the old class had subclasses and if
the change impacts the layout of the final instances or its
methods, this has to be propagated to the subclasses. For
each subclass of a class modification, a class modification
propagation is created. These propagations are cheaper than
the normal propagation since the fields they add have to be
shifted by the difference in the number of fields of the su-
perclass. All the other changes are the same for the modified
class as for any of its subclasses, so it only needs to be cal-
culated once for each class hierarchy.

The class modification is validated by checking if all new
layouts are consistent. This means that no slots should be
introduced that mask or will be masked by existing slots,
and that all layout types in the hierarchy are still compatible.

A class modification is calculated by asking the new
layout how it differs from the old layout. The layouts rely
all of their slots, hidden and visible, to calculate the exact
model. The layouts know which slots have been removed,
added or were modified in place. Once the class modification
is ready we have all the information required to build an
instance migration model and a method modification model.

Once the modification model is validated the class builder
will tell the class installer to perform the migration. This
consists of copying over the related methods and updating
their code, migrating instances to the new classes and finally
fully replacing the old version of the class hierarchy by the
new hierarchy. Since everything is validated up front we
know that this change will not raise any conflicts and can
apply the migration in a single transaction.
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7.2 Instance Migration

Instance migration is a fairly low-level operation that builds
instances from a class-based on other instances from an
old version of the class. Our instance migration model is
built directly from the class modification model-based on the
knowledge of how slots have changed since the old version
of the class.

Since instances are built at the level of fields, our instance
migration model is built up using field modification objects,
specifying the semantics of how to initialize the fields in
the migrated instances. There are five different types of field
modification objects: added, removed, modified, shifted and
unmodified.

Since the field modification objects have access to the slot
objects, they can forward this decision back to the slot. This
provides another new hook into the meta-system that allows
users to control exactly what happens to their instances when
software is updated.

7.3 Method Updating

Similar to the instance migration model, we build a method
modification model. Depending on how the instances changed
(e.g., a field was moved) the method sources have to be up-
dated as well. These modifications are again calculated from
the class modification model. Whereas the instance migra-
tion builds new instances from old instances, the method
modification model is used by a method field updater that
applies bytecode rewriting on existing methods to reflect the
new layout of the instance.

Whenever a field is removed, we replace the access to
the field by a message send to the removed field object.
This will throw an exception at runtime when someone tries
to read from the removed field instead of maybe reading
from an invalid location. By inserting the removed field
object we also keep enough metadata to later on retract the
inserted code and replace it by another access when the slot
is reintroduced.

8. Conclusion

The lack of proper abstractions reifying object state is of-
ten the reason for the introduction of boilerplate code. To
address this problem we propose to extend the structural re-
flective model of the language with object layouts, layout
scopes and slots. Layouts and slots are first-class representa-
tions of the assumptions which conventionally exist only as
implicit contracts between the virtual machine and the com-
piler. Layouts describe the object layout of instances of a
class while slots represent the conceptual link between in-
stance variables and fields. Layout scopes reify how classes
extend the layout of their superclass.
We have shown

* that first-class slots encapsulate the definition of custom
semantics for instance variable initialization, access and
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migration (e.g., first-class relationships), promoting con-
sistent fine-grained reuse,

* and that layout scopes support language extensions (e.g.,
stateful traits) that influence layout composition.

We have classified slots into primitive slots, customized slots
and virtual slots and provided examples for each. The pro-
gramming language tool that requires the most fundamen-
tal change to support our layout-based model is the class
builder, and we have shown how even its implementation
becomes simpler by using slots.

In the future we would like to investigate further poten-
tial uses of our model (e.g., dynamic software updates) and
to see whether we can provide better tool support for soft-
ware development based on the new reflective model (e.g.,
specialized object inspectors and debuggers).

Code Availability. We have implemented all the concepts that we have
presented in this article in Pharo Smalltalk. The code is released under

an BSD licence and is available at http://www.squeaksource.com/
PlayQOut.html
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