
HAL Id: hal-02019015
https://hal.archives-ouvertes.fr/hal-02019015

Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GUI Migration using MDE from GWT to Angular 6:
An Industrial Case

Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai,
Laurent Deruelle, Stéphane Ducasse, Mustapha Derras

To cite this version:
Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Laurent Deruelle, et al.. GUI
Migration using MDE from GWT to Angular 6: An Industrial Case. SANER 2019 - 26th edition
of the IEEE International Conference on Software Analysis, Evolution and Reengineering, Feb 2019,
Hangzhou, China. �hal-02019015�

https://hal.archives-ouvertes.fr/hal-02019015
https://hal.archives-ouvertes.fr

GUI Migration using MDE from GWT to
Angular 6: An Industrial Case

Benoît Verhaeghe1,2, Anne Etien1, Nicolas Anquetil1, Abderrahmane Seriai2,
Laurent Deruelle2, Stéphane Ducasse1, Mustapha Derras2

1Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, France
{firstname.lastname}@inria.fr

2Berger-Levrault, France
{firstname.lastname}@berger-levrault.com

Abstract—During the evolution of an application, it happens
that developers must change the programming language. In
the context of a collaboration with Berger-Levrault, a major
IT company, we are working on the migration of a GWT
application to Angular. We focus on the GUI aspect of this
migration which, even if both frameworks are web Graphical
User Interface (GUI) frameworks, is made difficult because they
use different programming languages and different organization
schema. Such migration is complicated by the fact that the new
application must be able to mimic closely the visual aspect of the
old one so that the users of the application are not disrupted.
We propose an approach in four steps that uses a meta-model to
represent the GUI at a high abstraction level. We evaluated this
approach on an application comprising 470 Java (GWT) classes
representing 56 pages. We are able to model all the web pages
of the application and 93% of the widgets they contain, and we
successfully migrated 26 out of 39 pages (66%). We give examples
of the migrated pages, both successful and not.

Index Terms—User Interfaces, Industrial case study, Java,
Angular, GWT, Migration, Model-Driven Engineering

I. INTRODUCTION

During the evolution of an application, it is sometimes
necessary to migrate its implementation to a different pro-
gramming language and/or Graphical User Interface (GUI)
framework [1]. Web GUI frameworks in particular evolve at a
fast pace. For example, in 2018 there were two major versions
of Angular, three major versions of React.js and four versions
of Vue.js. This forces companies to update their software
systems regularly to avoid being stuck in old technologies.

Our work takes place in collaboration with Berger-Levrault,
a major IT company selling Web applications developed in
GWT. However, GWT is no longer being updated with only
one major release since 2015. As a consequence, Berger-
Levrault decided to migrate its applications to Angular 6.

There are many published papers on supporting GUI migra-
tion (e.g. [6, 12, 14]). None of them discuss the case of GUI
migration of web-based applications.

We present an approach to help developers migrate the GUI
of their web-based software systems. This approach includes a
GUI meta-model, a strategy to generate the model, and how to
create the target GUI. To validate this approach, we developed
a tool which migrates Java GWT applications to Angular.
Then, we validated our approach on an industrial project that is
used to present all the widgets and their usage. It is composed

of 470 Java classes and 56 web pages. Our approach imported
correctly 93% of the widgets and 100% of the pages. Since
not all the existing widgets are re-implemented in Angular, we
tried to migrate 39 pages and were successful (same visual
appearance) for 26 of them (66%).

The following are the contributions of the paper:
• an approach to migrate the GUI of an application
• a GUI meta-model; and
• a tool that implements our approach to migrate Java GWT

application’s user interface to Angular.
First, in Section II, we review the literature on GUI meta-

modeling. We describe the context of our project in Section III.
In Section IV, we describe our migration approach. We present
our implementation in Section V. Section VI describes the
experiment we made to validate our approach. In Section VII,
we present our results. Finally, in Section VIII we discuss the
results obtained with our tool and future work.

II. STATE OF THE ART

To define a migration strategy, we identified research work
related to GUI migration. Some of the proposed approaches
do not perform a full migration, but only a part of it.

We identified three techniques to create a representation of
the GUI: static, dynamic, or hybrid.

Static. The static strategy consists in analyzing the source
code and extracting information from it. It does not execute
the code of the analyzed application.

Fleurey et al. [3], Lelli et al. [7], Silva et al. [15] and
Staiger [16] used tools that analyze source code of desktop
applications. The tools look for widget definition in the source
code, then they analyze the methods that invoked or are
invoked by the widgets and identify the relationships between
widgets and their visual properties.

Sánchez Ramán et al. [13] and Garcés et al. [4] developed
approaches to extract the GUI of Oracle Forms applications.
Their approaches consist in the creation of the hierarchy of
widgets from their position specified in external files.

Apart from the classical problem of showing all the potential
facts rather than only the real one, another limitation appears
for example, with a client/server application, when a part of
the graphical interface depends on the result of a request to a
server.

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Industry Track

579

Dynamic. The dynamic strategy consists in the analysis of
the graphical interfaces of an application while it is running.
It explores the application state by performing all the actions
on the user interface of the software system and extracting the
widgets and their information.

Memon et al. [8], Samir et al. [12], Shah and Tilevich [14]
and Morgado et al. [10] developed tools that implement a
dynamic strategy. However, the solutions proposed are only
available for desktop rather than Web applications.

Despite the dynamic analysis allows one to explore all the
windows of an application, if a request is done to build a GUI,
the dynamic analysis does not detect this information which
may be essential for a full representation of a GUI.

Hybrid. The hybrid strategy tries to combine the advantages
of the static and dynamic analyses.

Gotti and Mbarki [5] used a hybrid strategy to analyze
Java applications. The static analysis finds the widgets and
attributes of a user interface and how they are structured. Then,
the dynamic analysis executes all the possible actions linked to
a widget and analyzes if a modification occurs on the interface.

Despite the usage of both static and dynamic analysis, the
hybrid strategy does not solve the request problem inherent to
client/server applications.

None of the authors considered the migration from web
GUI to web GUI. Also, none had the constraint of keeping
similar layout except Sánchez Ramán et al. [13]; however, they
worked on Oracle Forms applications which are very different
from a web GUI. As a consequence, their work is not directly
applicable to our case study.

III. CONTEXT OF THE MIGRATION PROJECT

The goal of our work is to migrate the user interfaces
from a GUI framework to another. This is an industrial
project, migrating web applications from GWT to Angular.
In Section III-A we list some constraints that we must fulfill.
In Section III-B we describe the main differences between
GWT applications and Angular ones.

A. Constraints

We identify the following constraints for our case study:
• From GWT to Angular. In the context of the collabora-

tion with Berger-Levrault, our migration approach must
work with Java GWT as source language and TypeScript
Angular as target one.

• Approach adaptability. Our approach should be as adapt-
able as possible to different contexts. For example, it can
be used with different source and target languages.

• Keep visual aspect. The migration must keep the visual
aspect of the target application as close as possible to the
original.

• Code quality conservation. Our approach should produce
code that looks familiar to the developers of the source
application. As far as possible, the target code should
keep the same structure, identifiers and comments.

• Automatic. An automatic solution makes the approach
more accessible. It would be easier to use an automatic
approach on large system [9].

B. Comparison of GWT and Angular

GWT is a framework that allows developers to write a web
application in Java. Angular is a front-end web application
platform that allows developers to write a web application
with the TypeScript language.

GWT applications and Angular ones have several differ-
ences concerning: web page definition, their style and the con-
figuration files. Before explaining these three differences, we
note one major similarity: both GWT and Angular applications
have a main CSS file to define the general visual aspect of the
application.

• Web Page Definition. In the GWT framework, only one
Java file is necessary to define a web page . It includes
the graphical components, their properties and behaviors.
In Angular, each web page is considered as a sub-project
and represented by a file hierarchy. It contains two files:
an HTML file, containing the widgets of the web page
and their organizations; and a TypeScript file, containing
the code to execute when an action is performed.

• Visual Aspect. The visual aspect of a web page includes
color or dimension of specific displayed elements. In the
case of GWT, the specific visual aspect is defined in the
Java file of the web page definition. In Angular, there is
an optional distinct CSS file.

• Configuration Files. For the configuration files, GWT
uses one XML file that defines the binding between a
Java file, a web page and the URL of the web page. For
Angular, there are two configuration files: module, defines
the components of the application, e.g. web pages, distant
services and graphical component; and, routing, defines
for each web page, its associated URL.

IV. MIGRATION APPROACH

This section presents the migration approach we designed.
First (Section IV-A), we propose a categorization of the GUI
source code. In Section IV-B, we describe the migration
process we designed. Finally, Section IV-C presents our GUI
meta-model.

A. GUI Application Structure

We decided to use a divide-and-conquer strategy to reduce
the migration problem in multiple sub-problems. To do so, we
define three categories of source code: the visual code; the
behavioral code; and the business code.

1) Visual Code: The visual code describes the visual aspect
of the GUI. It contains the elements of the interface. It defines
the inherent characteristics of the components, such as the
ability to be clicked or their color and size. It also describes
the position of these components compared to others.

2) Behavioral Code: The behavioral code defines the ac-
tion/navigation flow that is executed when a user interacts with
the GUI. It is also possible that an action is automatically
triggered following an outside event. The behavioral code
contains control structures (i.e. loop and alternative).

580

3) Business Code: The business code is specific to an
application. It includes the rules of the application, the distant
server address and the application-specific data.

B. Migration Process

From the state of the art, the constraints and the decompo-
sition of the user interfaces, we designed an approach for the
migration.

Migrated
application

Behavioral code modelBehavioral code extraction

Source code model extraction

GUI model
extraction

Source code model

Source
application

GUI model

Export

Fig. 1: Our GUI migration process

The process, represented in Figure 1, is divided into the four
following steps:

1. Extraction of the source code model. In our case study,
the source program is written in Java GWT: The extrac-
tion produces a FAMIX model [2] of the application
using a meta-model capturing Java concepts. We also
need to parse the XML configuration file described in
Section III-B.

2. Extraction of the GUI model. We analyze the source code
model to detect the Visual code elements describing the
GUI and we build a GUI model from these elements. The
GUI meta-model is described Section IV-C.

3. Extraction of the behavioral code. Once the GUI model
is generated, we use it to identify the parts of the source
code model corresponding to Behavioral code.

4. Export. We re-create the GUI and the Behavioral code in
the target language. This step exports the user interface
files and the configuration files of the application.

Note that currently we do not treat the Business code of the
application. This will be the focus of future work.

C. GUI Meta-Model

To represent the user interfaces of desktop or web-based
applications, we designed the meta-model presented in Fig-
ure 2. In the rest of this section, we present the entities of the
meta-model.

The Page represents the main container of a graphical
interface. It is either a window of a desktop application or
a web page. A Page contains several Widgets.

A Widget is a component of the interface. It has multiple
Attributes and Actions. We use the Composite design pattern
with the entities Leaf and Container. This representation of the
DOM is heavily used in the literature.

Widget

ContainerLeaf

0..*

widgets

container

Attribute
widget

0..*attributes

0..*

calleractions

1..*
Action

Page

Linked to

Behavioral Model

Business Page
0..*

Fig. 2: GUI meta-model

An Attribute represents the information of a widget and
can change its visual aspect. Some common attributes are the
height and the width to precisely define the size of a widget
and the text attribute that contains the text of a button.

An Action is specific to widgets. It corresponds to the
Behavioral code of the GUI. It represents an interaction
between the user and the graphical interface.

V. IMPLEMENTATION

To test our approach, we implemented a migration tool. It
is implemented in Pharo and the meta-model is represented
using the Moose platform.

Note that we did not implement the Behavioral code mi-
gration.

A. Case Study

Applications at Berger-Levrault (our industrial partner) are
based on the BLCore framework. This framework consists in
763 classes in 169 packages. It is developed by the company
on top of GWT and defines the widgets that developers should
use. It also encourages some coding conventions. The BLCore
framework is used for the development of 8 large applications.

For the Berger-Levrault applications, we add a new en-
tity (Business Page) to the GUI meta-model presented Sec-
tion IV-C) to fit the company’s specific organization.

B. Import

In part because of the complexity of setting up a tool to
run automatically and capture all screens of such large web
applications, we rely on static analysis to create our model.
The results so far seem to indicate that it will be sufficient.

As presented Section IV-B, the creation of the GUI model
is divided in two steps: the source code model extraction and
the GUI model extraction. For the source code meta-model,
we use the Java meta-model of Moose [2, 11] which comes
with a Java extractor.

For the second step of the extraction, our tool creates the
GUI model from the source code model and an analysis of the
XML configuration file. The entities we want to extract are,
first, the Pages. We parse the XML configuration file in which
is defined the information about the pages (see Section III-B).

581

Then, the tool looks for the Business pages and the Wid-

gets. A Business page is defined by a Java GWT class which
implements the IPageMetier interface. A Widget is defined by
a class which is a subclass of the GWT class Widget. Then, for
both Business pages and Widgets, the tool looks where their
constructors are called and from that, it deduces and creates a
link between the Widget and its container.

Finally, to detect attributes which belong to a widget, the
tool detects in which Java variable the widget has been as-
signed. Then, it searches the methods invoked on this variable.
If it invokes a method “setX”, it creates an attribute. This
heuristic was found in the literature [12, 15].

C. Export

Once the GUI model is generated, it is possible to export
the application. To generate the code of the target application,
the tool visits the GUI model. The visitor creates the folders
of the target application and the configuration files. Then,
it visits the pages. For each Page, the visitor creates an
Angular sub-project in the form of a directory containing
several configuration files and a default blank web page. Then,
for each business page of the current visited Page, the visitor
generates one HTML file and one TypeScript file.

VI. VALIDATION

We experimented our strategy on Berger-Levrault’s
kitchensink application. This software system, dedicated to
developers, presents all the components available for building
a user interface. This application is smaller than a production
one but works exactly the same way. It contains 470 Java
classes and represents 56 web pages. The kitchensink appli-
cation, as the other applications of Berger-Levrault, does not
have tests. As a consequence, we can not validate the migration
with tests of the GWT application.

The validation is done in three steps: First, we check
the constraints defined in Section III-A; Second, we validate
that all GUI entities of interest are extracted and correctly
extracted; Third, we validate that we can re-export these
entities in Angular and that the result is correct.

For the second validation, we manually identify and count
the entities in the kitchensink application and compare the
results of the tool to this count. Our analysis focuses on the
migration of three entities: Pages, Business Pages, Widgets.

• Pages. From the XML configuration file of the applica-
tion we manually count 56 pages. This configuration file
also provides the name of each page.

• Business Pages. As explained before, the business pages
correspond to a concept specific to Berger-Levrault. They
are defined in the BLCore framework as a Java class
which implements the interface IPageMetier. Thanks to
this heuristic, we manually count 76 Business Page

instances in the original application.
• Widgets. In the literature survey, we did not find an

automatic way to evaluate the detection of widgets.
Checking all widgets in the application would be long
and error-prone as there are thousands of them. As a

fallback solution, we take a sample of the pages of
the kitchensink application and count the widget in the
DOM of these pages. We consider a sample of 6 Pages

which represents a bit more than 10% of the Pages of
the application. These Pages are of different sizes and
contain different kinds of widgets. In total, we found 238
Widgets in these 6 Pages. To get a more exact idea of
the representativeness of our sample, we also count the
number of Widget creation in the code. There are 2,081
such creation. This may not represent the exact number of
widgets in the entire application, but it is a good estimate.
We also check that the Widgets are correctly placed in
the DOM of the interface (i.e., they belong to the right
Container in the GUI model).

In our results we consider only the recall of the tool because
the precision is always 100% (there are no false positive). This
is a sign that the BLCore framework provides clear (if not
complete) heuristics to identify the entities.

For the third validation, we check that the entities are
exported correctly: In the Angular application, each Page

corresponds to a sub-project and is represented by a folder.
The name of the folder must correspond to the name of the
Page. The Business pages are represented by a sub-folder
inside the Page project. The names must also match at this
level.

We also check visually that the exported Page “looks like”
the original one. This is a subjective evaluation, and we are
looking for options to automate it in the future.

VII. RESULTS

This section presents the results of the migration validation
on Berger-Levrault’s kitchensink application. In Section VII-A,
we confront the exported result with the constraints defined in
Section III-A. Section VII-B and Section VII-C summarize
respectively the extraction and the export results.

A. Satisfaction of Constraints

We set the following constraints in Section III-A: From

GWT to Angular, Approach adaptability, Code quality con-

servation, Keep visual aspect, and Automatic.
Our tool can use Java code as input and generate Angular

code. The exported code is compilable and executable. The
target application can be displayed. We can thus confirm that
our tool fulfill the GWT to Angular constraint.

Our tool is applicable on other source target technologies.
Our heuristics have been designed to be easy to adapt, A user
of our tool can thus add a new kind of widget for the import or
the export phases. Those possibilities satisfied the adaptability
constraint.

The Code quality conservation and Keep visual aspect

constraints are discussed in Section VII-C.
Finally, the results described here were obtained automati-

cally from application of our tool to the subject application.
This validates the last constraint.

582

B. Extraction Results

The tool extracted 56 Pages from the original application.
This corresponds to the number of pages defined in the
configuration file of the kitchensink application.

The tool extracted 76 Business pages. This value cor-
responds exactly to the number of business pages in the
original application. Moreover, the tool correctly assigned each
Business page to its proper Page.

We got 100% of the Widgets on the evaluated sample were
correctly detected. However, 27 out of the 238 Widgets of
our sample (11%) were not correctly assigned to their parent
container. This problem comes from one single Business page

(containing 75 Widgets in total).

C. Export Results

All exported pages conserve their original name.

(a) GWT original (b) Angular migration

Fig. 3: Visual comparison of a Business page migration

Figure 3 presents the visual differences between the original
(GWT) version, left hand, and the migrated (Angular 6) one,
right-hand. We can see that there are only minimal differences.
In the exported version, the color of the header is a bit clearer,
and the lines are a little more distant.

(a) GWT original (b) Angular migration

Fig. 4: Visual comparison of a Business page migration: All
the Widgets are migrated but with a wrong layout.

Figure 4 presents the visual differences for the Page Input

box. Again on the left-hand side there is the original Page and
on the right-hand side is the same Page after the migration.
Because the two images are large, we trimmed them to
display this area of interest. Even though the two images look
completely different, all the widgets are present in the migrated
version. The visual differences are due to a problem in the
layout management. The visual constraint is thus partially
satisfied.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we exposed a preliminary work on the problem
of visual preservation and respect of the target architecture
during the GUI migration of an application. We proposed an

approach based on a GUI meta-model and a migration process
in four steps. We implemented this process in a tool to perform
the migration from GWT applications to Angular 6. Then,
we validated our tool with an experiment on a kitchensink

application.
We were able to extract correctly all pages of the application

and 89% of the widgets. The migration results are visualizing
equivalent as long as complex widgets (e.g. GridLayout) are
not used. Dealing with these layouts is our next challenge.

REFERENCES

[1] J. Brant, D. Roberts, B. Plendl, and J. Prince. Extreme maintenance:
Transforming Delphi into C#. In ICSM’10, 2010.

[2] S. Ducasse, N. Anquetil, U. Bhatti, A. Cavalcante Hora, J. Laval, and
T. Girba. MSE and FAMIX 3.0: an Interexchange Format and Source
Code Model Family. Technical report, RMod – INRIA Lille-Nord
Europe, 2011.

[3] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jezéquel.
Model-Driven Engineering for Software Migration in a Large Indus-
trial Context. In Model Driven Engineering Languages and Systems,
volume 4735, pages 482–497, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[4] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Viera,
F. Melo, and J. M. Soto. White-box modernization of legacy applica-
tions: The oracle forms case study. Computer Standards & Interfaces,
pages 110–122, October 2017.

[5] Z. Gotti and S. Mbarki. Java swing modernization approach - complete
abstract representation based on static and dynamic analysis:. In
Proceedings of the 11th International Joint Conference on Software

Technologies, pages 210–219. SCITEPRESS - Science and Technology
Publications, 2016.

[6] M. E. Joorabchi and A. Mesbah. Reverse engineering iOS mobile
applications. In 19th Working Conference on Reverse Engineering

(WCRE 2012), pages 177–186. IEEE, 2012.
[7] V. Lelli, A. Blouin, B. Baudry, F. Coulon, and O. Beaudoux. Automatic

detection of GUI design smells: The case of blob listener. EICS

’16 Proceedings of the 8th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, page 12, 2016.
[8] A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: reverse

engineering of graphical user interfaces for testing. In 10th Working

Conference on Reverse Engineering (WCRE 2003), pages 260–269.
IEEE, 2003.

[9] Moore, Rugaber, and Seaver. Knowledge-based user interface migration.
In Proceedings 1994 International Conference on Software Mainte-

nance, pages 72–79. IEEE Comput. Soc. Press, 1994.
[10] I. C. Morgado, A. Paiva, and J. P. Faria. Reverse engineering of graphical

user interfaces. In ICSEA 2011 : The Sixth International Conference on

Software Engineering Advances, 2011.
[11] O. Nierstrasz, S. Ducasse, and T. Gîrba. The story of Moose: an agile

reengineering environment. In Proceedings of the European Software

Engineering Conference, ESEC/FSE’05, pages 1–10, New York NY,
2005. ACM Press.

[12] H. Samir, A. Kamel, and E. Stroulia. Swing2script: Migration of
Java-Swing applications to Ajax Web applications. In 14th Working

Conference on Reverse Engineering (WCRE 2007), 2007.
[13] Ó. Sánchez Ramán, J. Sánchez Cuadrado, and J. García Molina. Model-

driven reverse engineering of legacy graphical user interfaces. Automated

Software Engineering, 21(2):147–186, 2014.
[14] E. Shah and E. Tilevich. Reverse-engineering user interfaces to facilitate

porting to and across mobile devices and platforms. In Proceedings

of the compilation of the co-located workshops on DSM’11, TMC’11,

AGERE! 2011, AOOPES’11, NEAT’11, \& VMIL’11, pages 255–260.
ACM, 2011.

[15] J. C. Silva, C. C. Silva, R. D. Goncalo, J. Saraiva, and J. C. Campos.
The GUISurfer tool: towards a language independent approach to reverse
engineering GUI code. In Proceedings of the 2Nd ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, pages 181–
186. ACM Press, 2010.

[16] S. Staiger. Reverse engineering of graphical user interfaces using static
analyses. In 14th Working Conference on Reverse Engineering (WCRE

2007), pages 189–198. IEEE, 2007.

583

	Introduction
	State of the Art
	Context of the Migration Project
	Constraints
	Comparison of GWT and Angular

	Migration Approach
	GUI Application Structure
	Visual Code
	Behavioral Code
	Business Code

	Migration Process
	GUI Meta-Model

	Implementation
	Case Study
	Import
	Export

	Validation
	Results
	Satisfaction of Constraints
	Extraction Results
	Export Results

	Conclusion and Future Works

