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a b s t r a c t

Source code management systems record different versions of code. Tool support can then

compute deltas between versions. To ease version history analysis we need adequate

models to represent source code entities. Now naturally the questions of their definition,

the abstractions they use, and the APIs of such models are raised, especially in the context

of a reflective system which already offers a model of its own structure.

We believe that this problem is due to the lack of a powerful code meta-model as well

as an infrastructure. In Smalltalk, often several source code meta-models coexist: the

Smalltalk reflective API coexists with the one of the Refactoring engine or distributed

versioning system such as Monticello or Store. While having specific meta-models is an

adequate engineered solution, it multiplies meta-models and it requires more maintenance

efforts (e.g., duplication of tests, transformation between models), and more importantly

hinders navigation tool reuse when meta-models do not offer polymorphic APIs.

As a first step to provide an infrastructure to support history analysis, this article

presents Ring, a unifying source code meta-model that can be used to support several

activities and proposes a unified and layered approach to be the foundation for building an

infrastructure for version and stream of change analyses. We re-implemented three tools

based on Ring to show that it can be used as the underlying meta-model for remote and

off-image browsing, scoping refactoring, and visualizing and analyzing changes. As a future

work and based on Ring we will build a new generation of history analysis tools.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Source code management systems such as SVN or Git record different versions of code. Such source code is then
processed by tools for detecting changes between versions and providing conflict analysis as well support elementary
merging. Nowadays, there is little support out of the box to be able to perform queries and analysis over the complete
history: tools have to build their own infrastructure and history analysis on top of versioning systems [27], for example, to
compare all the differences between all the senders of a given method in the past is not straightforward. Another example
is how to support cross-forks merging. Such examples, however, should be based on source code models [13]. To ease
version history analysis we need adequate models to represent source code entities. Now naturally the questions of their
definition, the abstractions they use, and the APIs of such models are raised; especially in the context of a reflective system
which already offers model of its own structure.
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In Smalltalk, several source code meta-models coexist in a weakly causal connected way1 [15]: the Smalltalk reflective
API coexists with the one of the Refactoring engine or distributed versioning systems such as Monticello. While having
specific meta-models is an adequately engineered solution when developers want to abstract over different systems and
be independent of idiosyncrasies of the underlying execution platform, in reality it multiplies the number of abstractions,
it increases maintenance efforts and reduce tool reuse when in presence of non-polymorphic APIs. We call this problem the

meta-models plague that is, when multiple meta-models have different APIs which make difficult the conversion between
them, maintenance by propagation and test assessment. This proliferation of meta-models puts the burden on the
developer that has to maintain consistent models across tools. As a result developers will end adding or modifying the
same behavior (e.g., introducing a test) several times for complying with the different APIs.

We believe that this is due to the lack of a powerful source code meta-model which could be extended and be the glue
between source code models and tools as well as an adequate infrastructure [24]. As a first step to solve the mentioned
problems, this article presents six source code models that could be used to support several activities and be the
foundation to build an infrastructure for source code oriented analyses. We stress the difference between the meta-models
and their role. We present a unified meta-model, named Ring, that can be used for multiple purposes.

The contributions of this paper are (1) a comparison of six code meta-models, and (2) the proposal to merge those
models in a unified and foundational model infrastructure, named Ring, and (3) the validation of Ring usage as meta-model
for three tools.

In Section 2, we first describe some requirements for typical scenarios software engineers face. Section 3 describes the
source code meta-models of well-known Smalltalk projects. In Section 4 we introduce Ring our proposed meta-model.
Section 5 presents a first validation where Ring is used as a meta-model of three existing tools: out-of-image code browser,
Refactoring engine scoping model, and Torch—a specialized visual tool for supporting source code changes integration.
In Section 6 we discuss several open questions about its infrastructure. Finally, we conclude this paper in Section 7.

2. Requirements for source code and history modeling

The source code and its history are an invaluable resource for software engineers, developers and integrators [13]. They
often need to analyze and understand the evolution of a system before performing actual maintenance or integration tasks.
Different kinds of questions and actions should be supported by the tools and their underlying meta-models.

2.1. Supporting software engineers

By reasoning over the role of certain code entities in previous versions of the system, developers can better understand
their current state, assess the required maintenance and avoid making the same mistakes over and over again. In the same
way, integrators can speed the understanding of the changes and take better decisions of the integration process itself.

Based on our own experience, we present a list of specific questions that usually arise when analyzing the software
evolution of a system (linear history) or when comparing forks of related systems (cross history). In addition, these questions
are supported and extended by Fritz and Murphy’s work [10] that provides a list of 35 questions related to changes to the
source code that developers commonly ask during maintenance tasks.

� Queries as in the past2: For example, what were the senders of the method asString in Squeak 3.9? Were they stable over
their own history?
� Queries as in the present3: For example, what are the senders of method readStream in version 3.1? What are the

messages sent by method printOn: in version 2?
� Co-change analysis [25–27,14,11]: What are the entities that changed together with entity Number in version 3? Did the

same entities change together in version 4? If not, what were the missing changes?
� Global analysis: The following questions illustrate the kind of analysis to be supported by a meta-model: what is the

whole history of method detect:ifNone: [10]? Was the method directoryNamed: renamed in the past? If yes, in what
version? And what was its previous name? What is the most queried history entity? What is the difference in usage of a
given method between the different versions?
� Bug spot: Was this method regularly changed over the last 15 years?
� Forks analysis: For fork analysis, specific requests should be answered: for example, what are the previous changes that

are required to merge a change with another branch? What are the users potentially impacted by a change in the
source code and as well in the destination fork? More concretely, if the version of method isNil changed in Squeak 3.9,
should it be changed in Pharo and what would possibly be the impact?
� Comparison profiler: After loading one version and running it, and loading another version and running it. What are the

differences or similarities of both running versions?

1 Causal connection is defined by Maes as ‘‘A computational system is said to be causally connected to its domain if the internal structures and the

domain they represent are linked in such a way that if one of the two changes, this leads to a correspond effect upon the other’’.
2 Retrieve the original implementation of methods that were invoked in a past version regardless of their current implementation.
3 Retrieve the last implementation of methods that were invoked in a past version.

V. Uquillas Gómez et al. / Computer Languages, Systems & Structures 38 (2012) 44–60 45



Author's personal copy

Our questions and the ones defined in Fritz and Murphy’s work [10] reinforce our claim that developers lack support for
easily retrieving information to perform adequate analyses. We intend to take these questions into account when building
our meta-model and infrastructure.

2.2. Constraints

The meta-model and infrastructure that we propose have a set of constraints that emerge from reuse and practical
integration with the host environment, i.e., Pharo4 environment. We motivate the most important constraints

� No duplication of meta-models: We do not want one source code runtime meta-model and one for change and versioning
system. Having different meta-models is costly to maintain, test, and keep them in sync. Our goal is to define a common
source code core meta-model that can be extended for specific tasks. This may be at the cost of having some parts of the
objects not used for certain scenario(s). To solve this problem, the meta-model should be able to be annotated with any
additional information that is not handled beforehand.
� Model update as cheap as possible: Updating models is also a problem since desynchronization of the represented information

may lead to subtle bugs. In addition Smalltalk has its own reflective meta-model that is used by the runtime system [1]
which is causally connected (meaning that the model reflects its subject in any circumstances). Therefore, the additional
model should use the causal connection as much as possible. Note that taking such advantage is only possible for analysis
between the current running runtime model and a past version. For history analysis between two versions in the past, it is
not possible to use the causally connected reflective behavior of Smalltalk since we do not compare it with another model.
� Tool reusability relying on common APIs: Currently it is common for new tools to define their own meta-model with non-

polymorphic API for representing entities. This hampers the reuse of tools manipulating source code entities, as their
API might differ from each other. Having a common meta-model will ease the integration and reusability of those tools.

2.3. Source versioning systems

Versioning systems often store and manipulate the source code text without domain semantics. The relation between the
source code meta-model and the versioning system meta-model might not be explicit. That means that the source code meta-
model keeps each entity as a first-class object, while the versioning system meta-model often stores files of source code
(containing different entities). The mismatch between the model used by the tools (like package class browsers in Eclipse) and
the underlying versioning meta-model leads to extra efforts to connect two different abstractions. Having this gap is already
the reason for having different APIs and transformations between those two models. Note that some versioning systems, such
as recently Monticello [1] but also Envy [21,17] (in the past) manipulate classes and methods. In addition, a versioning system
supports merging algorithms (e.g., three-way merging) and changes, that in turn interact with the source code meta-model.
Resulting in more transformations of models and duplication of efforts in keeping them in sync.

While some specialized versioning systems manipulate a source code meta-model, not all of them do so. For example,
Git5 [5] or SVN6 [6] can be used to version textual information and not only compiled code. Since meta-models do not
necessarily keep a direct connection between the stored meta-model and the actual source code, this results in a need to
understand versioning models and their links to the actual source code. For example using Git to directly manipulate
methods/classes implies building an extra infrastructure as it stores objects with a chunk of binary data representing the
files that contain the definitions of method/classes, but not those entities independently. In fact, in parallel to this work
GitFS and Pharogenesis7 were proposed to build Git repositories in Pharo proving the need of an extra infrastructure.

In a previous work [22] we presented four versioning models as well as six code models. In the rest of this paper we
focus on source code meta-models and their unification to support tool building.

3. A Smalltalk source code meta-model zoo

While versioning focuses on how to merge and version between versions, it is important to look at source code models. If
we take for example Smalltalk, there are several source code meta-models with different purposes (e.g., for managing changes,
refactorings, merges and versions) that manipulate in some way the Smalltalk structural meta-model. Most of the time, such
meta-models are overlapping or included in each other. This overlap often exists for a good reason: for example the Refactoring
engine was developed in VisualWorks and should work on any other Smalltalk dialect, therefore the authors preferred to
extract and build their own representation instead of extending the existing one. A similar concern exists for Monticello.

Another important concern that we should pay attention to is that Smalltalk is a reflective language [19,9]. This means that
it has a causally connected representation of itself [15]. Such causal connection between the model of Smalltalk and its

4 Pharo: http://www.pharo-project.org.
5 http://git-scm.com.
6 http://subversion.apache.org.
7 http://scg.unibe.ch/archive/projects/Lesk11a.pdf.
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execution is a really powerful mechanism that supports tool building. When new models are populated to represent views of
the Smalltalk runtime, the question of the causal connection is key: should tool builders recreate the model each time the
runtime changes? How do they maintain consistency across models? For example, in the Moose8 software analysis platform, a
model is created for a version or for the actual code, but if such code changes the model needs to be recreated. Moose keeps
immutable models as it focuses on being able to manipulate source code written in different languages; Smalltalk being one
among others (Java, C, Cþþ) [16]. But since Moose is implemented in Smalltalk, it could be possible that for a single version
analysis we could use the casual connection to the actual source code, and avoid recreating the model when changes happen.

3.1. FAMIX

FAMIX 3.09 is a family of meta-models oriented towards software analysis. These models were developed in the context
of the Moose analysis platform [16]. The meta-models are implemented in Smalltalk, and provide a rich API that can be
used for querying and navigating. The core of FAMIX [8] is a language independent meta-model that provides a generic
representation of the static structure of programs written in multiple object-oriented and procedural programming
languages, such as Smalltalk, Java, C, and Cþþ.

The core meta-model consists of a set of classes that represent source code at the program entity level. Such classes
map onto the different elements in a program (e.g., classes, methods, attributes, comments), and of the associations
between these elements (i.e., inheritance definitions, invocations of methods, accesses to attributes by methods, references
to classes by methods). Fig. 1 shows the FAMIX-Core meta-model. While the meta-model is fairly complete, it can be easily
extended in order to incorporate other language extensions.

Key points: There are two important points in the design of FAMIX that are worth stressing.

1. FAMIX does not only represent structural source code entities such as packages, classes, methods but also it represents
explicitly information that is extracted from the methods’ abstract syntax trees and attached to the correct semantic
level: a class refers to another class (Reference), a method accesses attributes (Access) and a method invokes other
methods (Invocation). In this way, FAMIX offers a finer-grained representation of a program than a simpler meta-model
and it does so in a language independent manner. Fact extractors, which by definition have the knowledge of the
targeted language, produce a language independent information in terms of FAMIX models.

2. FAMIX provides decoupling between Packages and Namespaces. Namespaces are scoping entities that provide a lexical
scope for the contained entities, while packages scoping are entities that describe the physical structure of a system
(i.e., deployment entities). This decoupling makes sure that FAMIX can model any kind of situations at the package level.

3.2. Refactoring Browser

The Refactoring Browser10 – known as RB [3,18,20] – is a powerful Smalltalk browser which enables developers to perform
several automated refactorings on Smalltalk programs, such as: pushing up methods, renaming variables, splitting classes, etc.
The refactorings can be classified into three groups: class based refactorings, method based refactorings, and code based
refactorings. RB also offers other productivity enhancements for programmers: Smalltalk Code Critics, a tool that analyzes code for
detecting bugs or possible errors; and the Rewrite tool for expressing the rewriting of code through recognition of expressions
(pattern matching) on ASTs.

RB defines different models, each having a particular purpose. The following three models are the main ones: the
refactoring model represents specific refactoring operations. The changes model represents changes associated with
refactorings. The source code scoping model, which is relevant for our study, identifies the program elements that are
manipulated for the rest of RB models. In addition, the RB source code scoping model models a delta on the current system
and it is supposed to be polymorphic with the Smalltalk meta-model.

The complete source code model is shown in Fig. 2. Note that, it is a very simple model, only mapping classes, methods
and namespaces. Other elements, such as variables, are not modeled as first-class objects. Two external classes to this
model are BrowserEnvironment and CompositeRefactoryChange (shown with dashed border), both are associated to
RBNamespace. The first represents the environment in which a namespace is defined and the second allows a namespace
to control changes and refactorings.

3.3. Smalltalk runtime and structure meta-model

Smalltalk itself defines a meta-model for representing entities at structural and runtime level [12]. An excerpt of this
meta-model extracted from Pharo is shown in Fig. 3. The main root class in Smalltalk is Object which defines common
behavior for the rest of the classes. Classes and metaclasses derive from ClassDescription where instance variables are

8 http://www.moosetechnology.org.
9 http://www.themoosebook.org/book/internals/famix.
10 http://www.refactory.com/RefactoringBrowser.
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maintained in an array. Classes’ methods are kept in a suitable form for interpretation by the virtual machine (i.e.,
instances of CompiledMethod) and contained in a dictionary (methodDict). Classes are organized in categories, or what is
commonly known as packages. However, this model only keeps category names in SystemOrganization, an instance of

Fig. 1. An overview of the FAMIX-Core language independent meta-model.

Fig. 2. Refactoring engine declarative source code scoping model.

Fig. 3. Smalltalk (Pharo) core model (with dashed border an attempt to add a representational object for CompiledMethod).

V. Uquillas Gómez et al. / Computer Languages, Systems & Structures 38 (2012) 44–6048
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SystemOrganizer. The protocols of a class (i.e., method categories) are managed by ClassOrganizer. Finally, every entity
knows the environment (i.e., namespace) in which it is visible, such environment is unique and is represented by an
instance of SystemDictionary.

Key points: There are three points to stress about the Smalltalk model.

1. The model is causally connected with its execution. Therefore, there is no problem related to the synchronization of the
model when a runtime entity changes.

2. The model is really influenced by the information mandatory for the language execution. For example, instance
variables are not first-class objects but just strings. This is a problem when we need to map meta-models targeted to
program representations or versioning.

3. Fig. 3 shows the class MethodReference that can be considered as a hack to support a representation of compiled
methods. This hack was needed to support tools browsing of different versions of a method. Originally MethodReference

was not polymorphic with the static API of a CompiledMethod. This resulted in tools duplication and level mixing
(UI and execution).

3.4. Ginsu

Ginsu11 is a cross-dialect semantic model and toolkit for partitioning Smalltalk code into packages. Each package should have
a clearly defined scope and prerequisite structure. One of the goals of Ginsu is to be able to build analyses about code that is
not executing or living in a Smalltalk runtime image [1]. This goal is similar to the one of FAMIX but without the language
independent aspect.

Ginsu maps the elements defined in Smalltalk code to semantic objects. A semantic object represents the semantics of a
Smalltalk program. Semantic objects (SemanticObject) are categorized as modules or components (subclasses of Module

and ModuleComponent). Packages are mapped to modules, and the rest of the elements (e.g., classes, methods, variables,
etc.) to components. A particular definition (such as ClassDefinition, InstanceMethodDefinition, ClassVariableDefinition, etc.)
exists for each kind of component.

The key classes defined in the semantic model are shown in Fig. 4. Note that a package contains a set of definitions, the
key idea of Ginsu. An interesting property of Ginsu is the ability to annotate any semantic object. Annotations are easily
maintained in a dictionary attached to each semantic object. In addition, the model defines the GinsuClassDescription

which is associated with a class definition, a set of definitions, and a package. The Ginsu browsers (i.e., PackageSystem and
PackageSupport browser) interact with class descriptions.

Another interesting property of Ginsu is that when a semantic object is built for an entity that exists in the runtime,
Ginsu delegates all queries to that living entity. This approach tries to get as much as possible out of the natural causal
connection of the underlying Smalltalk model.

3.5. Monticello 1

Monticello 112 is a distributed concurrent versioning system for Smalltalk dialects such as Pharo, Squeak, GemStone and
Cincom Smalltalk, in which classes and methods, rather than lines of text, are the units of change [1]. Monticello 1 (a.k.a. MC1)
is organized around snapshots of a package, that are stored as versions. Snapshots are a declarative model of the Smalltalk code
that makes up a package composed of classes and methods, organized in various ways, and with dependencies.

The main entities of the versioning model are packages, snapshots, and versions. In addition, this model relies on an
external packaging system, usually PackageInfo.

� Packages: A package is the unit of versioning. The classes and methods contained in a package are recorded and versioned
together in a snapshot.
� Snapshots: A snapshot is the state of a package at a particular point in time. It includes definitions of classes, methods,

variables, traits and categories.
� Versions: A version is a snapshot of a package stored on a repository. It also stores associated metadata as VersionInfo

and the version’s ancestry. Versions are often .mcz files, and represent the standard data used by the system.

In summary, MC1 records a series of snapshots of the code corresponding to a package as it evolves, as well as the
ancestral relationships between snapshots. When loading a snapshot into an image, MC1 locates the differences between
this snapshot and the state of its package in the image, and then makes the necessary changes to the image so that it
matches the snapshot. It uses the ancestry of snapshots to provide a merge operation, so that conflicts between two sets of
changes can be detected, and non-conflicting changes can be applied automatically.

11 http://sourceforge.net/projects/ginsu.
12 http://www.wiresong.ca/monticello/v1.
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Source code model: The source code model of Monticello 1 basically consists of definitions representing the elements of
a program. It is connected to the versioning model through versions and snapshots. Fig. 5 shows the key entities of the
Monticello 1 models (i.e., versioning model and source code model) and the link between both models. Note that the
versioning model is displayed in grey to differentiate it from the source code model.

A source code entity definition represents an element of the program (i.e., class, method, variable, trait, category, script). The
source code model required by MC1 is simple: MCPackage (as PackageInfo—an external class), MCClassDefinition maps a class
contained in a package, MCOrganizationDefinition maps the categories names in which classes are defined (i.e., packages names).
Subclasses of MCVariableDefinition represent variables of classes, and they are accessed by class references. MCMethodDefinition

maps structural data of methods (selector, source code). Finally, MCScriptDefinition subclasses represent the pre/post conditions
required by packages.

The source code model is not complete. For example, there are no definitions to represent class extensions as first-class
objects, but instead naming convention in method categories is used.

In spite of the presented benefits of Monticello 1, its versioning model is based on the assumption that packages are
well-defined and have relatively stable boundaries (e.g., packages are not expected to be removed or renamed, or that their
classes will not move to other packages), which is not always the case. In addition, Monticello 1 limits the history to the
level of packages and not to the level of independent entities. Note that such issues are orthogonal to the source code
model used and are out of the scope of this article. Nevertheless, these issues are addressed by Monticello 2.

Fig. 4. Ginsu key classes.

Fig. 5. Monticello 1 key classes for source entities (in grey the versioning entities).
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3.6. Monticello 2

Monticello 213 (a.k.a. MC2) defines a new meta-model that aims at overcoming some limitations encountered while
using Monticello 1. In particular, the unit of versioning of MC2 is not limited to only packages but also to any individual
elements (i.e., classes, methods, variables, comments). Fig. 6 presents the key classes defined in the source code model of
MC2. It also shows the link of such elements to the versioning model, which appear in grey. Note that the versioning model
accesses the source code elements through slices and variants.

The main source code entities in Monticello 2, which map to program elements, derive from ImageElement. In
Monticello 2, an element is more fine-grained than a definition in Monticello 1; for example, a comment is also represented
as an element (ClassCommentElement). Elements are mostly related to a class and thus are defined as subclasses of
ClassAwareElement. Class elements (e.g., variables) can be referred to directly, rather than by implication of the class
reference.

The versioning model in Monticello 2 does not have packages as the fundamental unit of versioning. Instead, the unit of
versioning is the individual program elements—classes, methods, instance variables, etc. This means that MC2 can be used
to version arbitrary snippets of code. These might correspond to packages, changesets or any other way a programmer
chooses to separate ‘‘interesting’’ code from the rest of the image. Rather than maintaining the version history of packages,
MC2 keeps version history for each element. Having this history allows users to perform tasks that are not possible with
MC1 (e.g., access the whole history of a particular method). With this versioning model package boundaries are not a
restriction anymore. Packages can be created, renamed or destroyed, elements can move back and forth between packages,
elements can even belong to more than one package at a time. Since the version history is attached to the element, it is not
affected.

4. Towards a unifying and foundational model infrastructure

Section 2 shows that lots of questions are about history, and that history requirements are linked to the source code
model. In this article we stress the importance of getting a well-designed source code meta-model which we call Ring.
In the future, Ring will serve as foundation for a solid history meta-model. In addition, we want that existing tools use Ring
to avoid code and task duplication.

4.1. The Ring meta-model intuition

One key idea behind Ring is to define a meta-model and infrastructure that provide a common API at structural and
runtime level and allow existing and new tools to interact and integrate directly with the host environment, i.e., Pharo. The
second key idea, is that the Ring meta-model should become the foundational model in Pharo, and thus other models
should use, refer or extend it. In particular, we focus on the merging model and the versioning model of Monticello as well
as the change model and the refactoring model of RB as clients of the Ring meta-model. Currently those models work
mostly independently of each other. In addition, they often define non-polymorphic APIs which makes working on

Fig. 6. Monticello 2 key classes for source entities (in grey the versioning entities).

13 http://www.wiresong.ca/monticello/v2.
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maintenance tasks cumbersome. The RB source code model is the only partially polymorphic model with the Smalltalk
meta-model but this implies duplication of information (e.g., tests).

Fig. 7 shows our proposal for the Ring meta-model and infrastructure, and how its components and tools should
interact. Note that the structural and runtime models share a common API which can be referred by basic tools. This will
ease the reuse of such tools, for example a code browser should browse entities (e.g., classes, methods) loaded in image or
in external code files (e.g., changesets). Finally, the rest of the main models (i.e., change, RB, versioning and merging
models) should use and extend the structural model.

The Ring meta-model will not be defined as one big meta-model, the goal is to divide it in layers as shown by Fig. 8 (left
side). The Smalltalk runtime model (right side) was presented in Section 3.3. Defining Ring in layers can facilitate reuse
and integration with other tools and models. We envision to define a solid core source model and in the future a history

model and a merging model built on top. The core source model will only know about the essential structural entities such
as classes, methods and comments.

In the context of merge support, change and history understanding [23], we want the largest layer of Ring to be used to
store all the versions of all the entities of the system to support advance queries and merging algorithms. Finally, we want
to offer such storage as a web service.

Fig. 7. The Ring overview.

Fig. 8. The layered structure of Ring.
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4.2. The Ring meta-model first design

In this section we present a concrete implementation of Ring.14 This is our first design and was based on an exhaustive
analysis of four source code meta-models presented in Section 3: (1) Smalltalk structural and runtime meta-model,
(2) refactoring source code scoping model, (3) Ginsu, and (4) Monticello 1 source code model.

So far we have implemented two complete layers of Ring (i.e., Core source layer and RB source layer), and partially the
third layer. All the classes are named using the prefix RG which stands for Ring.

Core source layer/model: The first layer of Ring is shown in Fig. 9. The core source layer comprises the main entities present in
the source code (i.e., classes, methods and comments). This also implies that our first layer corresponds to the core source model

as well. The root class in Ring is RGObject, a subclass of Object. We incorporated in RGObject the annotations feature proposed
by Ginsu that allows users to add properties to an object without altering its structure. Annotations are managed by
RGAnnotationManager and kept in an RGAnnotationDictionary object. Entities in the source code are treated as definitions in
Ring, and thus we defined RGNamedDefinition, from which most of our classes are derived.

Note that for classes and methods we have defined two hierarchies on top as we needed to define the basis for class-like
entities (i.e., traits [4]) and other elements of classes (e.g., comments, variables). Two main definitions separate classes
from methods, RGBehaviorDefinition for class-like entities and RGElementDefinition for elements such as methods or
comments. A behavior definition can have multiple element definitions, and each element definition knows the class in
which is defined by its unified property parent. We propose parent to solve the current main problem of having multiple
names for this property among several source code models, such as methodClass, parentClass, belongsTo, className, etc.
The same problem happens when referring to the class of a variable.

A class and a metaclass are also separated definitions represented by RGClassDefinition and RGMetaclassDefinition

respectively. A class knows its theMetaClass and a metaclass knows its theNonMetaClass. Both have similarities and inherit
from RGClassDescriptionDefinition. Note in the diagram that the same logic and hierarchy are applied for traits.

Methods and comments are element definitions (concretely RGMethodDefinition and RGCommentDefinition) that inherit
from RGElementDefinition. An element knows in which class is defined by its parent property.

The small core source model is sufficient to re-implement the simple browser that supports (external) file-based code
browsing available in Pharo and Squeak known as File Contents Browser. In addition, as the core also includes comment
definitions, it is also sufficient to manipulate changesets.

RB source scoping layer: The second layer and a partial third later of Ring are shown in Fig. 10. The RB source scoping
layer is the basis for re-implementing the Refactoring engine source code scoping model explained in Section 3.2. In this
layer we have added definitions for variables as well as slices. Note that the diagram shows the core source layer with grey
background to distinguish from the new classes.

Package and shared definitions belong to the third layer and they are shown with a double border in the diagram. Even
thought that layer is not finished yet we are introducing those classes in this section because we make use of them in one
of our validations.

Variables are all subclasses of RGVariableDefinition which inherits from RGElementDefinition. They can represent
instance variables, class variables, class instance variables and pool variables. Pool variables do not represent shared pools
of Smalltalk but their usage relation with classes.

A package is represented by RGPackage and may contain many RGBehaviorDefinition or RGElementDefinition objects, such
as classes, traits or methods (in case of class extensions). A class knows the package in which it is packaged by means of the
property package. Similarly a method knows its package when it extends a class. This follows our API unification when
representing the relationship B is the parent of A by means of the unique message parent which is mapped to semantics language

Fig. 9. The Ring core source layer/model.

14 http://www.squeaksource.com/Ring.
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elements: a class is the parent of a method, a comment or of a variable. Therefore we have two relationships: parent for language
driven relationship definitions and package for deployment and ownership representation.

RGSlice represents a group of elements as RGPackage. In fact, both inherit from RGContainer. But a slice is more
general than a package as it can group several kind of elements, not only classes or methods, but also variables, senders,
etc. Every Ring object is linked to an environment. Thus, a slice is used to identify elements on which particular operations
should be performed (e.g., rewrite, rule checking, browsing, etc.). We also have an initial representation of Namespace,
which will be included in the next version of Ring. For now the environment is pointing to Smalltalk globals (the default
Smalltalk namespace).

Finally, we also have shared definitions as subclasses of RGGlobalDefinition. We emphasize RGPoolDefinition as the
mapping definition of shared pools in the system.

5. Validation

In this section we present how we migrated three existing tools to be based on Ring as their source code meta-model:
we show the code file browser, the refactoring engine source scoping model, and the Torch dashboard.

5.1. External code file browser: out-of-image code browsing

Smalltalk IDEs allow developers to browse and load the contents of external source code files—changeset files (.cs) or
smalltalk source files (.st). Before loading source code files into an image, developers usually browse the contents of such
files first to be sure that those files contain the needed source code.

For this task, the Pharo environment provides users with a browser FileContentsBrowser shown in Fig. 11 (left). The
source code is represented with a meta-model created for this particular browser, such model is known as the pseudo

classes shown in Fig. 11 (right).
PseudoClass and PseudoMetaclass represent classes. On one hand, both classes are not related to the ones that define

classes in the Smalltalk structure meta-model, and do not fully implement the same API. On the other hand, a part of the
class data (i.e., comment, stamp and method categories) is indeed managed by PseudoClassOrganizer, a subclass of
BasicClassOrganizer that is defined in the Smalltalk structure meta-model. In addition, for methods there is no pseudo
method definition, but instead ChangeRecord objects are stored into a dictionary that corresponds to the property source

of a pseudo class.
As expected this small meta-model is chaotic, and maintenance on it is avoided at such extend that traits are not being

loaded and presented in the FileContentsBrowser.
Our proposal for browsing source code file contents is shown in Fig. 12. The pseudo classes are replaced by Ring subclasses

of classes defined in the core source layer. The source code of files is mapped to classes, traits and methods defined in the Ring
core model. Additional behavior for browsing source code (i.e., loading data from change records and filing the source code in
the image) is needed. For this, we had two alternatives, subclassing class and metaclass definition, or creating method
extensions. We opted for the first option and have created RGFileBasedClassDefinition and RGFileBasedMetaclassDefinition

subclasses of RGClassDefinition and RGMetaclassDefinition respectively. The same subclassing was done for traits. As the new
subclasses have common behavior, we also introduced a new trait RGTFileBasedBehaviorDefinition that implements such
behavior.

We also simplify the original FilePackage and replaced it by RGFileContentsManager. RGFileContentsManager is dedicated to
read files, to provide the loaded data to the browser, and to offer the file in operation of the whole file.

Fig. 10. Adding package, variables and the Ring RB source scoping layer.

V. Uquillas Gómez et al. / Computer Languages, Systems & Structures 38 (2012) 44–6054



Author's personal copy

Finally, the new FileContentsBrowser shown in Fig. 13 was implemented from scratch. It uses Glamour,15 an engine for
building dedicated browsers.

5.2. Refactoring engine source scoping model

The Refactoring Browser and its current declarative source code scoping model were introduced in Section 3.2. In our
validation we redesigned its source code model extending the second layer of Ring.

Fig. 14 shows the new proposal for the source scoping model. The new RB classes are subclassing existing Ring classes
such as RGClassDefinition, RGMetaclassDefinition and RGSlice. The old RBMethod class is not needed anymore, instead the
Ring RGMethodDefinition class instantiates method objects. Additional parsing behavior required by method objects was
added as method extensions of RGMethodDefinition.

The new RBClass and RBMetaclass classes make use of a newly introduced trait, RBTClassDescription that defines the
global behavior of the Refactoring engine to deal with changes, refactoring and conditions. Note that the old model did not
define classes for mapping variables. Instead collection of names (i.e., string and symbols) were used to represent instance
variables, class instance variables, class variables and pool dictionaries. In the new proposal variables are first-class objects
represented by the subclasses of RGVariableDefinition. This change in particular had a high impact in the API used by
the Refactoring engine, in addition to changes to the source code model, both the refactoring model and the changes model

needed some minor changes as well.
Finally, the old RBNamespace class had few changes in the new model. In the Refactoring a engine RBNamespace

object deals with changes associated to its environment, and keeps such changes in separated groups depending on their
change status (i.e., new, removed, changed). We did make a few adaptations in its API, renamed it to RBModel and

Fig. 11. The current FileContentsBrowser and its meta-model.

Fig. 12. Ring proposal for replacing the pseudo classes.

15 http://www.moosetechnology.org/tools/glamour.
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inherited it from RGSlice. The link to an environment is not affected as every ring object knows the environment in which
it is working. As for the Refactoring engine, it continues being a BrowserEnvironment instance. Since Squeak/Pharo do not
have explicit namespace at the language level, considering the original namespace as a kind of slice is not a contradiction,
but in future versions, we will use the final implementation of RGNamespace instead of RGSlice.

5.3. Torch dashboard: visually supporting source code changes integration

Torch is a visual tool for understanding source-code changes [23]. Torch supports integrators in taking decisions about
the integration of changes before performing the actual merging, and offers developers a means to understand and control
their changes before publishing them. Torch provides an overview of how a Smalltalk program was changed, and aims at
aiding its users in understanding these changes.

Torch characterizes the changes based on structural information, authorship and symbolic information. Fig. 15 shows
the Torch dashboard that presents different structural representations of source code changes using visualizations.

In Fig. 16 we show the current source meta-model of Torch. This model did not extend an existing one but followed
some conventions from the Monticello 1 source code meta-model. As the dashboard is integrated in the Monticello
browsers, its data comes from Monticello definition objects (i.e., MCDefinition and subclasses).

The main characteristic of Torch is that it maintains a unique object representing a particular entity (e.g., a class, a method, a
package). Objects in Torch are stateful and thus each object knows which of its properties have changed and what are the old
and new values. The following example clarifies the logic in Torch. If we compare two versions in which a class has changed its
superclass, Monticello provides two MCClassDefinition objects for that class. Torch converts both objects into one TCClass

object and set its status to modified. Finally, the subclass instance variable keeps a TCChangedElement object that contains the
old and new subclass.

Fig. 13. The new FileContentsBrowser.

Fig. 14. Refactoring engine new declarative source code scoping model.
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Another characteristic of the classes defined in the Torch meta-model is that they also know how to be drawn in the
dashboard. Mixing the business logic with the drawing logic has increased the complexity of such classes.

For this validation, we have re-implemented the source meta-model of Torch using Ring—including our partial third
layer. Moreover, we have also separated the drawing logic of entities in a new layer. In Fig. 17 we show the classes of the
new source meta-model (classes with white background) and how they relate to the Ring classes (classes with grey
background). Note that in this diagram we are only showing the inheritance relationships between classes to simplify it.
Associations and aggregations relationships are semantically the same as in the original meta-model shown in Fig. 16,
e.g., a class (TCClass) has 0..* variables (subclasses of RGVariableDefinition).

We kept the logic of unique stateful objects and changed properties linked to them, but this behavior is defined in a new trait
TCTObject. This trait is used by all the entities that need state. A newly introduced class TCSlice replaced the old TCFeature as
slice is a better concept for representing a group of entities. Two classes have been introduced in Torch, TCProtocol and
TCExtension that inherit from RGElementDefinition and RGClassDefinition respectively. TCProtocol maps the method categories,
and TCExtension – a class alike definition – groups method extensions of a class per external package.

In addition, common existing behavior was grouped in traits to avoid code duplication. TCTComment and TCTStamp

take care of comments, authors and timestamp in classes and methods. TCTClass defines the specific behavior of classes
and traits, and TCTClassAlike the behavior of class extensions.

Fig. 15. The Torch dashboard.

Fig. 16. The actual Torch source meta-model.
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The actual classes in Torch define additional properties non-existing in Ring classes. Those properties are caches that
exclusively avoid repeated data processing when drawing (e.g., allSuperclasses keeps all the superclasses in the inheritance
chain of a class present in the data). In the newly proposed source meta-model, classes do not define additional instance
variables, but keep extra information as annotations a feature of Ring.

To simplify the integration of Torch with Ring, we also separated from classes the logic that is responsible for drawing the
entities in the dashboard and moved to a new layer. Our Ring specializations only care for business logic. The drawing layer is
shown in Fig. 18. Note that it involves less classes than the new source meta-model. For each entity that needs to be drawn a
class has been defined (i.e., slice, package, class, trait, extension, method, variable). We call them drawing classes and they
inherit from TCObjectDrawing that knows the model (entity that will be drawn). Some entities are able to display symbolic
clouds (i.e., a particular kind of visualization in Torch) and for such behavior the trait TCTSymbolicCloud is used.

6. Open questions

The goals of the Ring meta-model and infrastructure are clear. However, there are open questions that we will need to
address when modeling the complete history of the system (since 1996) and when building tools to help merging and
manipulating versions.

6.1. Current Ring concerns

Revisiting design choices: We will continue stabilizing Ring based on other validations. Now the following concerns will
have to be addressed:

� Namespace: Even though Pharo does not have namespace support at the language level, it has a namespace to support class
lookup. Modeling namespace will enable remote browsing and other facilities. Therefore this is already a definition being
implemented.

Fig. 17. The key classes of the new Torch source meta-model.

Fig. 18. The drawing layer of Torch when using Ring.
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� Slice/package interaction: We have to experiment more to understand how slice and package interact.
� Compiled method: CompiledMethod has some method extensions for MethodReference that we do not want in Ring. We

are considering to define a subclass of RGMethodDefinition to deal with compiled methods as a temporal solution for
tools that use such a reference. But our goal is to remove MethodReference and make some adjustments in the Smalltalk
runtime model as well. This API unification will allow us to interact with compiled methods without any definition
on top.
� Layer names vs. model names: We are discussing about the names set to layers. We want to highlight that a layer in Ring

is not always a full model for a particular tool, for example, the RB source scoping layer is the foundation layer for the RB

source scoping model implemented in our second validation. But as names are almost the same this can bring confusion.

Unifying models: Can the reflective model and the declarative model be merged? As shown in Fig. 7, the declarative
model and the runtime model are independent of each other but they implement a common API. The question of knowing
whether the runtime entities know their representation is an interesting question from the perspective of a reflective
model having another separate and unconnected representation [7]. The inverse is simpler, keeping track of the runtime
representation of entities from the declarative definitions makes it easy and efficient (e.g., Ginsu takes advantage of this).
Now the question is if we cannot simply have either reflective entities that can be disconnected and play the role of
declarative ones. This would simply merge both models as an optimal implementation of Ring. The question of the API is
then central.

Core source model API : We intend to encourage tool reusability by relying on a common API of the main entities (i.e.,
classes, methods, variables) which basic tools may refer to. This avoids having non-polymorphic APIs for representing
entities among different tools. Related to the API the question that arises is: are we considering all the definitions that
external tools may need? A typical problem is related to instance variables. Indeed instance variables are not first-class
entities in the Smalltalk reflective API even though they are important information for a number of tools. Bridging both
worlds and making sure that for example a visitor can navigate both structures (runtime and declarative model) requires
some thought.

Meta-models extensibility: How do we provide an extensible support for class extensions? Smalltalk supports class
extension [2], i.e., developers are able to add methods to classes and package them in different packages than the ones to
which the classes belong to. This is a simple mechanism that allows developers to add behavior to existing entities without
subclassing them. The discussion here is how the Ring infrastructure can provide an extensible support to manage class
extensions, as well as state extensions. Annotations are a possible solution. An interesting scenario is to see that exists a
fundamental difference between Monticello 1 and Monticello 2: in MC1 one method can belong to only one package, while
in MC2 a method may belong to multiple packages. It is not clear whether we should consider the possibility of such kind
of changes in advance, but if is possible we should evaluate the cost of making these kind of changes.

6.2. Representing versions

Since one of the goals of Ring is to provide a solid foundation to support history analyses and merging, we should
consider the following points:

Expensive queries: How do we manage queries like find all the senders in a given version in the past and at which cost
(memory and speed)? Indeed, if we only store source code entities like in Ginsu, it may be heavy to compute queries like
finding the senders of a particular message which needs to build a representation of the complete AST for the whole
system. The question of storing intra-methods elements (i.e., AST nodes) or like in FAMIX (i.e., invocations, references,
accesses) has to be assessed in terms of memory and speed of each of the solutions.

Version ids: Identifying a version (or group of elements committed together) and its elements sounds trivial, however,
we encounter the case where the elements of a version are not aware of their id, and they are looked up by matching the
commit comment and the commit timestamp with the ones of the versions which have been committed previously or at
the same time. Performing such a search may not be efficient especially if we want to provide a flexible querying
infrastructure. At the same time, if every element attached to a version is aware of the version id, we should be careful
defining the format of ids since they may have to be distinct over multiple repositories.

Meta-model vs. database schema: We want to define a meta-model that is more than what is stored. This means, we
want to define and store entities that are able to produce more data by computation. For example, a slice of changes
is computed as diff between two versions. On the other hand, keeping pre-processed data will definitely speed up the
querying of data, especially if we take into account that our histories may considerably grow. But if we are able to
reconstruct such information, then some questions arise. The answers to the following questions are not clear to us and we
will have to define scenarios to assess them: should we keep all the information in the history? Is speed more important in
our infrastructure? Which are the entities that should be part of the source code meta-model? One alternative could be
to store data that will be frequently searched (e.g., deltas). Another alternative could be to only store computed data of
histories (in particular heavy data for searching such as senders and references), and to process such information on
demand for the current implementation. In any case, we have to ensure that tools are able to manipulate all that
information.
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7. Conclusion

In this paper, we have presented needed requirements for modeling the source code and history of a system. In
particular, these requirements stress the importance of supporting software engineers and integrators. Additionally, the
requirements are complemented with a set of constraints that need to be taken into account.

Six source code models have been presented. Some of them showed the connection between the versioning model and
the code model (as in the case of the Monticello implementations). Each of these models have some benefits which,
together with the requirements, gave us a background for proposing a unifying and foundational model infrastructure,
named the Ring.

We presented Ring, a unifying meta-model and its implementation. We validated the first design and implementation
of Ring by migrating three existing tools to use such meta-model. These validations showed how such unrelated tools
replaced their source code meta-model by using and extending the common API proposed by Ring.

As result of the validations the roadmap of Pharo 1.4 already includes the integration of Ring. We will provide support
to the integration process but the engineers of Pharo will lead the integration of Ring with the tools included in the core
distribution. Two of our validations corresponding to core tools (i.e., Refactoring Engine Source Scoping Model and the
Code File Browser) will be considered. The third validation, the Torch dashboard using Ring is already released.
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