Meta-models and Infrastructure
for Smalltalk Omnipresent History

Verénica Uquillas Gémez *P Stéphane Ducasse” Theo D’Hondt ?

2Software Languages Lab — Vrije Universiteit Brussel — Belgium

b RMoD Team — INRIA Lille-Nord Europe Research Center
Laboratoire d’Informatique Fondamentale de Lille — Université Lillel — France

Abstract

Source code management systems record different versions of code. Tool support can then com-
pute deltas between versions. However there is little out of the box support to be able to perform
queries and analysis over the complete history: for example tools have to build their own infras-
tructure to identify slices of changes and their differences since the beginning of the project. We
believe that this is due to the lack of a powerful code meta-model as well as an infrastructure.
For example, in Smalltalk often several source code meta-models coexist: the Smalltalk reflective
APT coexists with the one of the Refactoring engine or distributed versioning system such as
Monticello. While having specific meta-models is an adequate engineered solution, it multiplies
meta-models and it requires more maintenance efforts (e.g., duplication of tests, transformation
between models), and more importantly navigation tool reuse when meta-models do not offer
polymorphic APIs. As a first step to solve this problem, this article presents several source code
models that could be used to support several activities and proposes an unified and layered
approach to be the foundation for building an infrastructure for omnipresent version browsing.

Key words: Meta-model, versioning, refactoring, Monticello, Git, SVN

1. Introduction

Source code management systems such as SVN or Git record different versions of code.
Such source code is then processed by tools for detecting changes between versions and

Email addresses: vuquilla@vub.ac.be (Verénica Uquillas Gémez), stephane.ducasse@inria.fr
(Stéphane Ducasse), tjdhondt@vub.ac.be (Theo D’Hondt).

Preprint submitted to Elsevier 5 November 2010

providing conflict analysis as well support elementary merging. Currently, there is little
support out of the box to be able to perform queries and analysis over the complete
history: Tools have to build their own infrastructure, for example, to compare all the
differences between all the senders of a given method in the past is not straightforward.
To ease version history analysis we need adequate models that deal with changes, refac-
torings, versions, merging, and history in general. Now naturally the questions of their
definition, the abstractions they use, and the APIs of such models are raised.

For example, in Smalltalk, several source code meta-models coexist in a weakly causal
connected way [Mae87]: the Smalltalk reflective API coexists with the one of the Refac-
toring engine or distributed versioning systems such as Monticello. While having specific
meta-models is an adequate engineered solution when developers want to abstract over
different systems and be independent of idiosyncrasies of the underlying execution plat-
form, in reality it multiplies the number of abstractions, it increases maintenance efforts
and lower tool reuse when in presence of non-polymorphic APIs. We call this problem the
meta-models plague, that is when multiple meta-models have different APIs which make
difficult the conversion between them, maintenance by propagation and test assessment.
This proliferation of meta-models puts the burden on the developer that has to main-
tain consistent models across tools. Resulting in many task duplications (e.g., tests) for
complying with the different APIs.

We believe that this is due to the lack of a powerful source code meta-model which could
be extended and be the glue between several models as well as an adequate infrastructure
[vdHL96]. As a first step to solve the mentioned problems, this article presents several
source code models that could be used to support several activities and be the foundation
to build an infrastructure for omnipresent version browsing. We stress the difference
between the meta-models and their role. We present an unified meta-model, the Ring,
that can be used for several purposes.

The contributions of this paper are: (1) comparison of SCM systems with a focus on
the meta-model of the objects they manipulate, (2) comparison of code meta-models, and
(3) proposal to merge those models in a unified and foundational model infrastructure,
named Ring.

In the subsequent Section 2, we first describe some requirements for typical scenarios
software engineers face. Then in Section 3 we present the meta-models of some key ver-
sioning systems. Section 4 describes the source code meta-models of well known Smalltalk
projects. In Section 5 we introduce and sketch our proposed meta-model, followed by the
discussion of several open questions about its infrastructure. Finally, we conclude this
paper in Section 6.

2. Requirements for Source Code and History Modeling

The source code and its history are an invaluable resource for software engineers,
developers and integrators that often need to analyze and understand the evolution of
a system before performing actual maintenance or integration tasks. Different kinds of
questions and actions should be supported by the tools and the underlying meta-models.

2

2.1. Supporting Software Engineers

By reasoning over the role of certain code entities in previous versions of the system,
developers can better understand their current state, assess the required maintenance
and avoid making the same mistakes over and over again. In the same way, integrators
can speed the understanding of the changes and take better decisions of the integration
process itself.

Based on our own experience, we present a list of specific questions that usually arise
when analyzing the software evolution of a system (linear history) or when comparing
forks of related systems (cross history). In addition, these questions are supported and
extended by a recent work [FM10] that provides a list of 35 questions related to changes
to the source code that developers commonly ask during maintenance tasks.

— Co-Change analysis [YMNCC04,ZWDZ04,XS04,L7Z05, GJK03]: What are the entities
that changed together with entity Number in version 37 Did the same entities change
together in wversion 47 if not, what were the missing changes?

— Queries as in the past: What were the senders of the method #asString in Squeak 3.97

— Queries as in the present: What are the senders of method #readStream in version
8.17. What are the messages sent by method #printOn: in version 27

— Global analysis: What is the whole history of method #detect:ifNone:? [FM10]. Was
the method #directoryNamed: rename in the past? if yes, in which version? and which
was its previous name?. What is the most queried history entity?. What is the meta-
data that the history should keep?

— Bug spot: Was this method regularly changed over the last 15 years?

— Forks analysis: If the version of method #isNil changed in Squeak 3.9, should it be
changed in Pharo?

— Comparison profiler: load one version and run it, load another version and run it.
What are the differences or similarities of both running versions?

Our questions and the ones defined in [FM10] reinforce our claim that developers lack
support for easily retrieving that information. We intend to take those questions into
account when building our meta-model and infrastructure.

2.2. Constraints

The meta-model and infrastructure that we intend to build have a set of constraints
that emerge from reuse and practical integration with the host environment, i.e., Pharo!
environment. We motivate the most important ones.

— No layering and duplication of meta-models. We do not want one runtime meta-model
and one for the changes and versioning system. Having different meta-models is costly
to maintain, to test, and to keep them in sync. Our goal is to defined a common core
meta-model that can be extended for specific tasks. This may be at the cost of having
some parts of the objects not used for certain scenario(s). To solve this problem, the
meta-model should be able to be annotated with any additional information that is
not handle beforehand.

1 Pharo: http://www.pharo-project.org

http://www.pharo-project.org

— Model update as cheap as possible. Updating models is also a problem since desyn-
chronization of the represented information may lead to subtle bugs. In addition
since Smalltalk has its own reflective meta-model that is used by the runtime sys-
tem [BDNT09] and it is causally connected (by causally connected we mean that the
model reflects its subject in any circumstances [Mae87]). Therefore, the additional
model should use the causal connection as much as possible. Note that taking such
advantage is only possible between the current running runtime model and a past ver-
sion. For history analysis between two versions in the past, it is not possible to use the
causally connected reflective behavior of Smalltalk since we do not compare it with
another model.

— Tool reusability relying on common APIs. Currently, it is common that new tools
define their own meta-model with non-polymorphic API for representing entities. This
hampers the reuse of tools manipulating entities, as their API might differ from each
other. Having a common meta-model will ease the integration and reusability of those
tools.

3. Source Versioning Systems

Versioning systems often store and manipulate the source code text without domain
semantics. The relation between the source code meta-model and the versioning system
meta-model might not be explicit. That means, the source code meta-model keeps each
entity as a first-class object, while the versioning system meta-model often stores files of
source code (containing different entities). The mismatch between the model used by the
tools (like package class browsers in Eclipse) and the underlying versioning meta-model
leads to extra efforts to connect two different abstractions. Having this gap is already
the origin for having different APIs and transformations between those two models.
Note that some versioning systems such as recently Monticello [BDNT09] but also Envy
[TJ88, PKO1] (in the past) manipulate classes and methods. In addition, a versioning
system supports merging algorithms (e.g., 3-way merging) and changes, that in turn
interact with the source code meta-model. Resulting in other transformations of models
and duplication of efforts in keeping them in sync.

While some specialized versioning systems manipulate a source code meta-model, not
all of them do so. For example, Git or SVN can be used to version textual information and
not only compiled code. Since meta-models do not necessarily keep a direct connection
between the stored meta-model and the actual source code, this results in a need to
understand versioning models and their links to the actual source code. For example
using Git to directly manipulate methods/classes implies to build an extra infrastructure
as it stores objects with a chunk of binary data representing the files that contain the
definitions of method/classes, but not those entities independently.

3.1. SVN

Subversion ? [CSFP09] is a centralized system for sharing information. At its core is
a repository, which stores data centrally. The repository stores information in the form

2 http://subversion.apache.org

http://subversion.apache.org

of a filesystem tree —a typical hierarchy of files and directories. Any number of clients

connect to the repository, and then read from or write to these files. By writing data,

a client makes the information available to others; by reading data, the client receives

information from others.

The Subversion repository remembers every change ever written to it —every change
to every file, and even changes to the directory tree itself, such as the addition, deletion,
and rearrangement of files and directories.

Subversion supports two strategies for enabling collaborative editing and sharing of
data, or in other words two versioning models.

— The Lock-Modify-Unlock model. This model is common in version control systems
which address the problem of many authors overwriting each other’s work. It allows
only one person to change a certain file at a certain time. This exclusivity policy is
managed using locks. A developer must lock a file before making changes to it. Once
the lock is set other developers cannot lock it anymore, they can only read it, hence
avoiding simultaneous changes.

— The Copy-Modify-Merge model. This model is used by several version control systems
and is an alternative to locking. The idea is that each user creates a personal work-
ing copy (i.e., a local duplication of the repository’s files and directories). They can
work independently on their private copies. As the end, those independent changes are
merged together into a new, final version stored in the repository.

The disadvantage of the lock-modify-unlock model lies on the fact that files might be
locked unnecessary when changes to the same file are not overlapping. Locked files need to
be unlocked to allow other users to work on them. When unlocking files is procrastinated,
other users’ time might be wasted. Locking and changing interdependent files at the same
time may result in semantically incompatible files.

In the copy-modify-merge model, the merging may need human intervention if changes
overlap (creating conflicts). This might easily be solved without demanding a lot of
time. The disadvantage of this model is that it is based on the assumption that files are
contextually mergeable, i.e., changed files are line-based text files which can be easily
merged, excluding binary files where merging conflicting changes is often impossible.

Even though the lock-modify-unlock model is considered generally harmful to collab-
oration, it is still more appropriate when working with binary formats.

3.2. Git

Git? is a distributed revision control system with an emphasis on speed. The core
of Git is composed of a collection of tools that implement a tree history storage and
directory content management system [Cha08].

Git differs from most SCM systems (e.g., Subversion, CVS, Perforce, Mercurial) on the
way it stores data. Those SCM systems store the code deltas or diffs between one commit
and the next when creating a new version of a project. Instead, when Git stores a new
version of a project, it stores a snapshot of all the files in that project at a point in time.
The snapshot is stored as a new tree — a bunch of blobs of content and a collection of
pointers with which a full directory of files and subdirectories can be recreated. In Git, a

3 http://git-scm.com

http://git-scm.com

diff between two versions is calculated by running a new diff on the two trees representing
those versions.

Git defines objects which represent the actual data. There are four main immutable
object types that are stored in the Git Object Database, which in turn is kept in the
Git Directory. Each object is referenced by the SHA-1 value of its content plus a small
header.

parents commits

g*

Commit
Y sha)
> points to
'. author L= Reference
. 1 commiter 7
Tree message
< : | Branch | [Remote |
mode sha of cammit
type
I
- Sha pz\:ats to curre
sha + file name and mode object
type
Blob tag version
4/"' sha tagger
file "
file content message

Fig. 1. The Git data model.

— Blob. The content of each file is stored as a blob. The files themselves —names and
modes— are not stored within the blobs, just their content. Differently named files with
the same contents will only store one blob and share it. Therefore, during repository
transfers (i.e., clones or fetches) only one blob will be transferred, then expanded it
into multiple files upon checkout. The blob is totally independent of its location in the
directory tree, and renaming a file does not change the blob that such file is associated
with.

— Tree. The physical directories map to trees. A tree is a simple list of pointers to blobs
and other trees, along with the names and modes of those trees and blobs. The content
section of a tree object consists of a very simple text file that lists the mode, type,
name and SHA-1 of each entry.

— Commit. The tree history is managed by the commit objects. A commit is similar to
a tree. It points to a tree (representing the contents of a directory at a certain point
in time) and keeps an author, committer, message and any parent commits.

— Tag. Commits can be referred to by tags, i.e., permanent shorthand names. A tag
contains an object, type, tag version, tagger and a message. Normally the type is
commit and the object is the SHA-1 of the commit that is being tagged.

In addition to the immutable objects, mutable references also stored in Git as well.

A reference is a pointer to a particular commit, similar to a tag, but easily moveable.

References are used for controlling branches and remotes.

— Branch. A branch is just a file that contains the SHA-1 of the most recent commit for
that branch.

— Remote. A remote is basically a pointer to a branch in another person’s copy of the
same repository (e.g., by cloning a repository).

6

Figure 1 shows the data model with the objects and references stored in Git. Note an
extra element, the HEAD file that points to the branch you are currently working on,
and that is used as the parent of the next commit.

3.3. Monticello 1

Monticello 14 is a distributed concurrent versioning system for some Smalltalk dialects
such as Pharo, Squeak, GemStone and Cincom Smalltalk, in which classes and methods,
rather than lines of text, are the units of change [BDN'09]. Monticello 1 (a.k.a. MC1)
is organized around snapshots of a package, that are stored as versions. Snapshots are a
declarative model of the Smalltalk code that makes up a package, which is composed of
classes and methods, organized in various ways, and with dependencies.

MCPackage iﬁjgckagelnfo
name i .
workingCopy |+ i methodCategoryPrefix
MCVersion MCVersioninfo | _
srfapshot packase | dependencies o __[id ancestors
snapshot changes name
workingCopy message
date
1 time
MCSnapshot definitons | \MICDefinition author
patchRelativeToBase: * <
f MCScriptDefinition
‘ P—
[MCOrganizationDefinition || MCClassDefinition || MCMethodDefinition
| categories | [name | [selector
N source
variables
category

[MCVariableDefinition |
|

[name

Fig. 2. Monticello 1 key classes for versioning (in grey the source code entities).

In Figure 2, we present an overview of the Monticello 1 models (i.e., versioning model
and source code model). The main entities of the versioning model are packages, snap-
shots, and versions. In addition, this model relies on an external packaging system, usually
Packagelnfo.

— Packages. A package is the unit of versioning. The classes and methods contained in a
package are recorded and versioned together in a snapshot.

— Snapshots. A snapshot is the state of a package at a particular point in time. It includes
definitions of classes, methods, variables, traits and categories.

— Versions. A wversion is a snapshot of a package. It also stores associated metadata
as VersionInfo and the version’s ancestry. Versions are often stored as mcz files, and
represent the standard data used by the system.

In summary, MCI1 records a series of snapshots of the code corresponding to a package
as it evolves, as well as the ancestral relationships between snapshots. When loading a
snapshot into an image, MC1 locates the differences between this snapshot and the state
of its package in the image, and then makes the necessary changes to the image so that it

4 http://www.wiresong.ca/monticello/v1

http://www.wiresong.ca/monticello/v1

matches the snapshot. It uses the ancestry of snapshots to provide a merge operation, so
that conflicts between two sets of changes can be detected, and non-conflicting changes
can be applied automatically.

The source code model of Monticello 1 basically consists of definitions representing
the elements of a program. It is connected to the versioning model through versions and
snapshots. In Section 4.5 we provide detailed information about it and we show a more
complete illustration in Figure 8.

In spite of the presented benefits, the versioning model that Monticello 1 uses, is based
on the assumption that packages are well-defined and have relatively stable boundaries
(e.g., packages are not expected to be removed or renamed, or their classes will not move
to other packages), which is not always the case. In addition, Monticello 1 limits the
history to the level of packages and not to the level of independent entities. These issues
are addressed by Monticello 2.

3.4. Monticello 2

Monticello 25 (a.k.a. MC2) addresses the main problem encountered with Monticello
1, which is its unit of versioning —the package— that is too coarse for many situations
that arise in normal development (i.e., changes may only impact few methods or classes,
but still the whole package needs to be versioned).

In Monticello 2, a new versioning model has been incorporated. It does not have pack-
ages as the fundamental unit of versioning. Instead, the unit of versioning is individual
program elements — classes, methods, instance variables, etc. This means that Monticello
2 can be used to version arbitrary snippets of code. These might correspond to packages,
change sets, or any other method a programmer chooses to separate “interesting” code
from the rest of the image.

Rather than maintaining the version history of packages, Monticello 2 keeps version
history for each element. Having such history allows users to perform tasks that are not
possible with Monticello 1 (e.g., access the whole history of a particular method). With
this model package boundaries are not a restriction anymore. Packages can be created,
renamed or destroyed, elements can move back and forth between packages, elements can
even belong to more than one package at a time. Since the version history is attached to
the element, it is not affected.

As shown in Figure 3, the ancestry information is now linked at an entity-based level
and not at the level of the package as in Monticello 1.

— Elements. These are representations of specific parts of the program (e.g., classes,
methods, variables).

— Variants. A variant describes the state of a particular element. RemovelVariant defines
the state of elements that might be not present in the image. DefinitionVariant defines a
set of properties of an element.

— Versions. A version represents the state of an element at a particular point in time. A
version associates a variant of an element with the ancestry of that element (i.e., set
of versions that precede this version), and it is identified by a hashstamp.

— Hashstamps. A hashstamp is a unique identifier given to each version.

5 http://www.wiresong.ca/monticello/v2

http://www.wiresong.ca/monticello/v2

[HashedObject Snapshot |
\ I |

>
>

\ChangeSetSIice} [ExplicitSlice | [PackagelnfoSlice |
\ |

\ _ :
N JAN JAN
ImageElement <[
s -] Variant | - [ElementVersion || NullVersion |
\ |

[4_‘ |1 [ancestry | [element
[ClassElement | InstVarElement T

|theClassName _ | theCl

MethodElement | o2me Rem_oval Defiqition
theClassName Variant Variant
selector properties
classlsMeta

Fig. 3. Monticello 2 key classes for versioning (in grey few source code entities).

— Slice. A slice groups elements together. They are responsible for defining which ele-
ments are part of the slice and which are not. Slices are independent and can overlap.
Elements can belong to many slices at the same time or to none. Different types of
slices are supported: PackagelnfoSlice for elements defined in a given package, Change-
SetSlice for elements associated with a given ChangeSet, ExplicitSlice for a particular
collection of elements, and UnionSlice for elements included in one or more slices.

— Snapshot. A snapshot captures the state of a slice. Snapshots record the versions’
hashstamps of the slice’s elements. It is equivalent to a version in Monticello 1, and it
is the unit at which code is moved between images.

The repositories are similar to those in Monticello 1, but have different protocols and
performance characteristics. Several types of repositories are defined: memory stores
objects in the image, file stores objects in a file, and directory stores objects in several
files within a directory.

Another important consequence of the new versioning model (element-based version
history) is that merges can be performed on individual elements. Although Monticello 1
supports cherry-picking, it does so in an awkward and non-intuitive way. In Monticello
2, cherry-picking is the norm, and merging an entire package is just a special case.

4. Source Code Meta-Models

While versioning focuses on how to version and merge between versions, it is important
to look at source code models. If we take for example Smalltalk, there are several source
code meta-models with different purposes (for managing changes, refactorings, merges
and versions) that manipulate in some way the Smalltalk source code model. Most of the
time such meta-models are overlapping or included in each other. This overlap often exists
for a good reason: for example the Refactoring Engine was developed in VisualWorks
and should work on any other Smalltalk dialects, therefore the authors preferred to
extract and build their own representation instead of extending the existing one. A similar
concern exists for Monticello.

Another important concern that we should pay attention to is that Smalltalk is a
reflective language [Riv96,Duc99]. This means that it has a causally connected represen-
tation of itself [Mae87]. Such causal connection between the model of Smalltalk and its

9

execution is a really powerful mechanism that supports tool building. Now, when new
models are populated to represent views of the Smalltalk runtime, the question of the
causal connection is key: should tool builders recreate the model each time the runtime
changes? How do they maintain consistency across models? For example in the Moose
software analysis platform a model is created for a version or the current code, but if
such code changes the model needs to be recreated. Moose keeps immutable models as it
focuses on being able to manipulate source code written in different languages; Smalltalk
being one among others (Java, C, C++) [NDGO5]. But since Moose is implemented in
Smalltalk, it could be possible that for a single version analysis we could use the ca-
sual connection to the actual source code, and avoid recreating the model when changes
happen.

We start studying FAMIX the metamodel of Moose since its goal is to capture the
code structure of different object-oriented languages.

4.1. FAMIX

FAMIX 3.0 is a family of meta-models oriented towards enabling software analysis.
These models were developed in the context of the Moose” analysis platform [NDGO5].
The meta-models are implemented in Smalltalk, and provide a rich API that can be
used for querying and navigating. The core of FAMIX [DTDO01] is a language indepen-
dent meta-model that provides a generic representation of the static structure of pro-
grams written in multiple object-oriented and procedural programming languages, such
as Smalltalk, Java, C, and C++.

The core meta-model consists of a set of classes that represent source code at the
program entity level. Such classes map onto the different elements in a program (e.g.,
classes, methods, attributes, comments), and of the associations between these elements
(i.e., inheritance definitions, invocations of methods, accesses to attributes by methods,
references to classes by methods). Figure 4 shows the FAMIX-Core meta-model. While
the meta-model is fairly complete, it can be easily extended in order to incorporate other
language extensions.

Key points. There are two important points in the design of FAMIX that are worth
stressing.

First, FAMIX does not only represent structural source code entities such as packages,
classes, methods but also it represents explicitly information that is extracted from the
methods’ abstract syntax trees and attached to the correct semantic level: a class refers
to another class (Reference), a method accesses attributes (Access) and a method invokes
another one (Invocation). This way FAMIX offers a finer-grained representation of a pro-
gram than a simpler meta-model and it does so in a language independent manner. Fact
extractors which by definition have the knowledge of the targeted language, then produce
such a language independent information in terms of FAMIX models. The second point
is the decoupling between Package and Namespace. Namespaces are scoping entities and
packages deployment entities. This decoupling makes sure that FAMIX can model any
kind of situations at the package level.

6 http://www.themoosebook.org/book/internals/famix
7 http:/www.moosetechnology.org

10

http://www.themoosebook.org/book/internals/famix
http://www.moosetechnology.org

Package Namespace

parentPackage container
* *

Reference | - target Class “{Inheritance
subclass
source parentType ’ parentType
Invocation ——="*"—{ Method Attribute
accessor variable
Access

Fig. 4. An overview of the FAMIX-Core language independent meta-model.

4.2. Refactoring Browser

The Refactoring Browser® — known as RB [BR98, RBJ97, Rob99] — is a powerful
Smalltalk browser which enables developers to perform several automated refactorings
on Smalltalk programs. The refactorings can be classified into three kinds: class, method,
and code-based refactorings. RB also offers other productivity enhancements for program-
mers: Smalltalk Code Critics, a tool that analyzes code for detecting bugs or possible
errors; and the Rewrite tool for expressing the rewriting of code through recognition of
expressions (pattern matching) on ASTs.

RB defines different models, each having a particular purpose. The following three
models are the main ones. The refactoring model represents specific refactoring oper-
ations. The changes model represents changes associated with refactorings. The source
code model, which is relevant for our study maps the program elements to entities which
are manipulated for the rest of RB models. In addition, the RB source code model models
a delta on the current system and it is supposed to be polymorphic with the Smalltalk
meta-model.

The complete source code model is shown in Figure 5. Note that, it is a very simple
model which is only mapping classes, methods and namespaces. Other elements, such as
variables are not being modeled as first-class objects. A namespace is associated with an
environment (BrowserEnvironment) which provides an API for the browsers and queries.

4.3. Smalltalk Runtime and Structure Meta-model

Smalltalk itself defines a meta-model for representing entities at structural and runtime
level [GR89]. An excerpt of this meta-model extracted from Pharo is shown in Figure 6.
The main root class in Smalltalk is Object which defines common behavior for the rest of
the classes. Classes and metaclasses derive from ClassDescription where instances variables
are maintained in an array. Classes’ methods are kept in a suitable form for interpretation
by the virtual machine (i.e., instances of CompiledMethod) and contained in a dictionary

8 http://www.refactory.com/RefactoringBrowser

11

http://www.refactory.com/RefactoringBrowser

RBNamespace subclasses

implementors
superclasses
1 removedClasses
* *
|

mwciusses | RBAbstractClass || _RBMethod

* [instanceVariableNames | removeatietiogs] comPiledMethod
source
envirgnment model T L‘ . N

1

BrowserEnvironment | |RBMetaclass RBClass
category

/t comment
theMetaClass| o|assVariableNames

poolVariableNames

theNonMetaClass 4\

Fig. 5. RB declarative source code model.

(methodDict). Classes are organized in categories, or what is commonly known as pack-
ages. The class categories are kept in SystemOrganization, an instance of SystemOrganizer.
The protocols of a class are managed by ClassOrganizer. Finally, any entity knows the
environment (i.e., namespace) in which it is visible, such environment is unique and is
represented by an instance of SystemDictionary.

Object , |SystemDictionary| = [namespace]

GompiledMethod

selector

environment

methodDict contains

prag

Behavior
methodClass

superclass methodReference

1
i 4\ ! BasicClassOrganizer | -] LI
ClassDescription i :
instanceValriahlesp Tsubct | classl w
tStamp 1methodClass

organization Zf iselector 3
‘category A

| ClassOrganizer
Class wisclass| Metaclass i
name localSelectors allMethodS
classPool
sharedPool category is managed by ‘
localSelectors [SystemOrganizer | _| Categorizer |
\ |

|categoryArray

. \
subclasses

Fig. 6. Smalltalk (Pharo) core model (with dashed border an attempt to add a representational object
for CompiledMethod).

Key points. There are several points to stress about the Smalltalk model. First, the
model is causally connected with its execution. Therefore there is no problem related
to the synchronization of the model when a runtime entity changes. Second, the meta-
model is really influenced by the information mandatory for the language execution. For
example, instance variables are not first-class objects but just strings. This is a problem
when we need to map meta-models targeted to program representations or versioning.
Finally, Figure 6 shows the class MethodReference that can be considered as a hack to
support a representation of compiled methods. This hack was needed to support tools
browsing different versions of a method. Originally MethodReference was not polymorphic
with the static API of a CompiledMethod. This resulted in tools duplication.

12

4.4. Ginsu

Ginsu? is a cross-dialect semantic model and toolkit for partitioning Smalltalk code
into packages. Each package should have a clearly defined scope and prerequisite struc-
ture. One of the goals of Ginsu is to be able to build analyses about code that is currently
not executing or living in a Smalltalk runtime image [BDN*09]. This goal is similar to
the one of FAMIX but without the language independent aspect and with a stronger
focus on Smalltalk.

In particular, Ginsu maps the elements defined in Smalltalk code to semantic objects.
A semantic object represents the semantic of a Smalltalk program. Semantic objects
(SemanticObject) are categorized as modules or components (subclasses of Module and Mod-
uleComponent). Packages are mapped to modules and the rest of the elements (e.g., classes,
methods, variables, etc.) to components. A particular definition (such as: ClassDefinition,
InstanceMethodDefinition, ClassVariableDefinition, etc.) exists for each kind of component.

’ SemanticObject M Mndule(:omponenl‘

GlobalRelated N
Definition K—{ ClassRelatedDefinition ‘

Definition (<]

ScopedModule

GlobalDefinition

. | ClassVariable
Definition
= Definition
i — able
- Definition

Fig. 7. Ginsu key classes.

ClassMethod
Definition

InstanceMethod
Definition

The key classes defined in the semantic model are shown in Figure 7. Note that a
package contains a set of definitions, the key idea of Ginsu. An interesting property of
Ginsu is the ability to annotate any semantic object. Annotations are easily maintained
in a dictionary attached to each semantic object. In addition, the model defines the
GinsuClassDescription which is associated with a class definition, a set of definitions, and a
package. The Ginsu browsers (i.e., PackageSystem and PackageSupport) interact with class
descriptions.

Another nice property of Ginsu is that when a semantic object is built for an entity
that currently exists in the runtime, Ginsu delegates queries to the living entity. This
approach tries to get as much as possible out off the natural causal connection of the
underlying model.

4.5. Monticello 1 and 2

This section presents the underlying source code meta-model of Monticello 1 and 2.
We show the key entities of the meta-model of Monticello 1 in Figure 8. Note that the

9 http://sourceforge.net/projects/ginsu

13

http://sourceforge.net/projects/ginsu

versioning model is displayed in grey. This allows us to present the link between both
models.

MCVersion MCVersioninfo
MCPackage dey ; info id
name 1 package changes 1 [name
kingC:
workingCopy — workingCopy message
srapshot P date
definitionjs time
1
* author
MCSnapshot +| MCDefinition
pafchRelativeToBase: | definitons | |4 [\ICMethodDefinition

selector
source
category

MCScriptDefinition
N A

[MCOrganizationDefinition | [MCClassDefinition |
| i | [name |
variables

[MCVariableDefinition | | MCTraitDefinition |
\

[name | [name

MCPreamble | | MCPostscript
MCClassVariable . Definition Definition

MClInstaceVariable
Definition

Definition

Fig. 8. Monticello 1 key classes for source entities (in grey the versioning entities).

A source code entity definition represents an element of the program (i.e., class,
method, variable, trait, category, script). The source code model required by MC1 is
simple: Package (as Packagelnfo — an external class), ClassDefinition maps a class contained
in a package, OrganizationCategory maps the categories names in which classes are defined
(i.e., packages names). Subclasses of VariableDefinition represent variables of classes, and
they are accessed by class references. MethodDefinition maps structural data of methods
(selector, source code). Finally, script definitions represent the pre- and post-conditions
required by packages.

. [WashedObjeot |, [Snapshot |
/_T Y_‘ ‘ [] [contents |
[ChangeSetSlice| [ExplicitSlice | [PackagelnfoSlice | L !

Element |——={ ImageElement ﬁ 1
la—p 2

theClassName

[variant J1_ ~[ElementVersion | [NullVersion |
[ancestry | [etement |
ClassElement InstVarElement
name Definition
MethodElement Variant
selector 4,[“—‘ properties
name Removal
Variant
ClassComment
Element PoolimportElement
comment

Fig. 9. Monticello 2 key classes for source entities (in grey the versioning entities).

Monticello 2 defines a new meta-model that aims at overcoming some limitations en-
countered while using Monticello 1. In particular, the unit of versioning of MC2 is not
limited to only packages but also to any individual elements (i.e., classes, methods, vari-
ables, comments). Figure 9 presents the key classes defined in the source code model of
MC2. It also shows the link of such elements to the versioning model, which appear in

14

grey. Note that the versioning model accesses the source code elements through slices
and variants.

The main source code entities in MC2 which map to program elements derive from
ImageElement. In MC2, an element is more fine-grained than a definition in MC1, for
example a comment is also represented as an element (ClassCommentElement). Elements
are mostly related to a class and thus are defined as subclasses of ClassAwareElement.
Class elements (e.g., variables) can be referred to directly, rather than by implication of
the class reference.

5. Towards a Unifying and Foundational Model Infrastructure

Section 2 shows that lot of questions engineers face are about history and that history
is linked to source code meta models. In this paper we stressed the importance of getting
an omnipresent history meta-model. We will work on such a meta-model called the Ring
meta-model.

5.1. The Ring meta-model

One key idea behind the Ring is to define a meta-model and infrastructure that provides
a common API at structural and runtime level and allows existing and new tools to
interact and integrate directly with the host environment, i.e., Pharo. The second key
idea, is that the Ring meta-model should become the foundational model in Pharo, and
thus other models should use, refer or extend it. In particular, we focus on the merging
model and the versioning model of Monticello as well as the change model and the
refactoring model of RB as clients of the Ring meta-model. Currently, those models work
mostly independently of each other. In addition, they often define non-polymorphic APIs
which makes working on maintenance tasks cumbersome. The RB source code model is
the only polymorphic model with the Smalltalk meta-model but this implies duplication
of information (e.g., different names, tests).

— |

Change —
Model

|

Merging > Structural {)Wé: Runtime
Model Model Model

structural

an S

runtime API

Tools

— —

RB Source Versioning
Model Model

Fig. 10. The Ring overview.

Figure 10 shows our proposal for the Ring meta-model and infrastructure, and how it
should interact with other components and tools. Note that the structural and runtime

15

models share a common API which can be referred by basic tools. This will ease the
reuse of such tools. In addition, the rest of the main models (i.e., change, RB, versioning
and merging models) should use and extend the structural model.

—1
RB Source 1
Model
Basic Tools

Runtime
Model

Full off line analysis Source Model

— —1 / —1
Merging Change History
Model Model Model

Fig. 11. The Onion structure of the Ring.

The Ring meta-model will not be defined as one big meta-model, the goal is to divide
it in layers as shown by Figure 11. These layers can facilitate the reuse and integration
with other tools and models. We envision to define a core source code model, a history
model and a merging model. The core source code model will only know about the few
entities in the system, such as classes, methods, and comments.

Note that up until now we did not really talk about the infrastructure we want to put
in place. In addition to have a layered meta-model that different tools can extend. We
want the largest version of the Ring meta-model to be used to store all the versions of all
the entities of the system to support advance queries and merging algorithms. We want
to offer such storage as a web service.

5.2. Open Questions

The goals of the Ring meta-model and infrastructure are clear. However, there are
several open questions that we need to consider, answer and evaluate before we start
building it, as they will impact its design and architecture.

Expensive Queries: How do we manage queries like find all the senders in a given
version in the past and at which cost (memory and speed)? Indeed, if we only store source
code entities like in Ginsu, it may be heavy to compute queries like finding the senders
of a particular message which requires to build a representation of the complete AST
for the whole system. The question of storing intra-methods elements (i.e., AST nodes)
or like in FAMIX (i.e., invocations, references, accesses) has to be assessed in terms of
memory and speed of each of the solutions.

16

Version ids: identifying a version (or group of elements committed together) and its
elements sounds trivial, however, we encounter the case where the elements of a version
are not aware of their id, and they are looked up by matching the commit comment
and the commit timestamp with the ones of the versions which have been committed
previously or at the same time. Performing such a search may not be efficient especially
if we want to provide a flexible querying infrastructure. At the same time, if any element
attached to a version is aware of the version id, we should be careful defining the format
of ids since they may have to be distinct over multiple repositories.

Annotations: Being able to annotate entities makes a model extensible. This is one of
the advantages of the Ginsu and FAMIX meta-models. However, they allow annotations
in different ways and for different purposes. In Ginsu, for example, any entity defines
annotations by means of a dictionary, which allows one to annotate (i.e., add properties)
even at runtime. The situation is the same in Moose. In addition, when an undefined
property is loaded from a file, it is automatically added to the dictionary of properties.
This ensures that extended properties are not lost when loading or saving a model. Our
meta-model has to have the same mechanism to support its extensibility.

Meta-model vs. Database schema: We want to define a meta-model that is more
than what is stored. This means, we want to define and store entities that are able
to produce more data by computation. For example, a slice of changes is computed as
diff between two versions. On the other hand, keeping pre-processed data will definitely
speed up the querying of data, especially if we take into account that our histories
may considerably grow. But if we are able to reconstruct such information, then several
questions arise. The answers to the following questions are not clear to us and we will
have to define scenarios to assess them: Should we keep all the information in the history?
Is the speed more important in our infrastructure? Which are the entities that should be
part of the source code meta-model?. One alternative could be to store data that will be
frequently searched (e.g., deltas). Another alternative could be to only store computed
data of histories (in particular heavy data for searching such as senders and references),
and to process such information on demand for the current implementation. In any case,
we have to ensure that tools should be able to manipulate all that information.

Core code model API: We intend to encourage tool reusability by relying on a
common API of the main entities (i.e., classes, methods, comments) which basic tools
may refer to. This avoids having non-polymorphic APIs for representing entities among
different tools. Related to the API the question that arise is: Are we considering all
the definitions that external tools may need? A typical problem is related to instance
variables. Indeed instance variables are not first-class entities in the Smalltalk reflective
API even though they are important information for a number of tools. Bridging both
worlds and making sure that for example a visitor can navigate both structures (runtime
and declarative model) requires some thoughts.

Meta-Models Extensibility: How do we provide an extensible support for class
extensions? Smalltalk supports class extension [BDNWO5], i.e., developers are able to
add methods to classes and package them in different packages than the ones to which

17

the classes belong to. This is a simple mechanism that allows developers to add behav-
ior to existing entities without subclassing them. The discussion here is how the Ring
infrastructure can provide an extensible support to manage class extensions, as well as
state extensions. Annotations are a possible solution. An interesting scenario is to see
that exists a fundamental difference between Monticello 1 and Monticello 2: in MC1 one
method can belong to only one package, while in MC2 a method may belong to multi-
ple packages. It is not clear whether we should consider the possibility of such kind of
changes in advance, but if is possible we should evaluate the cost of making those kind
of changes.

Unifying Models: Can the reflective model and the declarative model be merged?
As shown in Figure 10, the declarative model and the runtime model are independent
of each other but they implement a common API. The question of knowing whether the
runtime entities know their representation is an interesting question from the perspective
of a reflective model having another separate and unconnected representation [DDLO09].
The inverse is simpler, keeping track of the runtime representation of entities from the
declarative definitions makes it easy and efficient (e.g., Ginsu takes advantage of this).
Now the question is if we cannot simply have either reflective entities that can be dis-
connected and played the role of declarative ones. This would simply merge both models
as an optimal implementation of the Ring. The question of the API is then central.

6. Conclusions

In this paper, we have presented needed requirements for modeling source code and
history of a system. In particular, those requirements stress the importance of supporting
software engineers and integrators. Additionally, the requirements are complemented with
a set of constraints that need to be taken into account.

Several versioning models and source code models have been presented. Some of them
showed the connection between the versioning model and the code model (as in the case
of the Monticello implementations). Each of those models have some benefits which,
together with the requirements, gave us a background for proposing an unifying and
foundational model infrastructure, named the Ring.

The Ring is conceptually presented as a code meta-model as well as an infrastructure
for providing support to perform queries over the complete history, and as a means to
encourage navigation tool reuse by providing an API on which external tools can rely on.
Even though the Ring has not been implemented yet, we believe that we provide enough
insights about it, its requirements and its scope.

Acknowledgments. We gratefully acknowledge the sponsoring of ESUG (the European Smalltalk
User Group) http://www.esug.org/

References

[BDN109] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and
Marcus Denker. Pharo by Example. Square Bracket Associates, 2009.

18

[BDNWO05]

[BR9S]

[Cha08]
[CSFP09)]

[DDL09)

[DTDO1]
[Duc99]

[FM10]

[GIKO3]

[GR89)]
[LZ05]
[Mae87]

[NDGO5)

[PKOL1]
[RBJ97]
[Riv96]
[Rob99]

[TJ88]

[vAHLI6]

[XS04]

Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Classboxes:
Controlling visibility of class extensions. Journal of Computer Languages, Systems and
Structures, 31(3-4):107-126, December 2005.

John Brant and Don Roberts. “Good Enough” Analysis for Refactoring. In Object-Oriented
Technology Ecoop 98 Workshop Reader, LNCS, pages 81-82. Springer-Verlag, 1998.
Scott Chacon. Git Internal. PeepCode, 2008.

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with
Subversion (for Subversion 1.6). O’Reilly Media, June 2009.

Stéphane Ducasse, Marcus Denker, and Adrian Lienhard. Evolving a reflective language. In
Proceedings of the International Workshop on Smalltalk Technologies (IWST 2009), pages
82-86, Brest, France, aug 2009. ACM.

Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1 — The FAMOOS
Information Exchange Model. Technical report, University of Bern, 2001.

Stéphane Ducasse. Evaluating message passing control techniques in Smalltalk. Journal of
Object-Oriented Programming (JOOP), 12(6):39-44, June 1999.

Thomas Fritz and Gail C. Murphy. Using information fragments to answer the questions
developers ask. In ICSE ’10: Proceedings of the 82nd ACM/IEEE International Conference
on Software Engineering, pages 175-184. ACM, 2010.

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for detecting
logical couplings. In IWPSE ’03: Proceedings of the 6th International Workshop on
Principles of Software Evolution, pages 13-23. IEEE Computer Society, 2003.

Adele Goldberg and Dave Robson. Smalltalk-80: The Language. Addison Wesley, 1989.
Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error patterns by
mining software revision histories. SIGSOFT Software Engineering Notes, 30(5):296-305,
September 2005.

Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Artificial Intelligence,
Vrije Universiteit Brussel, Brussels Belgium, January 1987.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story of Moose: an
agile reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE’05), pages 1-10, New York NY, 2005. ACM Press. Invited paper.
Joseph Pelrine and Alan Knight. Mastering ENVY/Developer. Cambridge University
Press, 2001.

Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk. Theory
and Practice of Object Systems (TAPOS), 3(4):253-263, 1997.

Fred Rivard. Reflective Facilities in Smalltalk. Revue Informatik/Informatique, revue des
organisations suisses d’informatique. Numéro 1 Février 1996, February 1996.

Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois, 1999.

Dave Thomas and Kent Johnson. Orwell — A configuration management system for team
programming. In Proceedings OOPSLA 88, ACM SIGPLAN Notices, volume 23, pages
135-141, November 1988.

Peter van den Hamer and Kees Lepoeter. Managing design data: The five dimensions of cad
frameworks, configuration management, and product data management. In In Proceedings
of the IEEE, volume 84, pages 42 — 56. IEEE CS Press, January 1996.

Zhenchang Xing and Eleni Stroulia. Data-mining in support of detecting class co-evolution.
In SEKE ’04: Proceedings of the 16th International Conference on Software Engineering
and Knowledge Engineering, pages 123—128, 2004.

[YMNCCO04] Annie Ying, Gail Murphy, Raymond Ng, and Mark Chu-Carroll. Predicting source code

[ZWDZ04]

changes by mining change history. Transactions on Software Engineering, 30(9):573-586,
2004.

Thomas Zimmermann, Peter Weifigerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages 563-572. IEEE Computer
Society, 2004.

19

	Introduction
	Requirements for Source Code and History Modeling
	Supporting Software Engineers
	Constraints

	Source Versioning Systems
	SVN
	Git
	Monticello 1
	Monticello 2

	Source Code Meta-Models
	FAMIX
	Refactoring Browser
	Smalltalk Runtime and Structure Meta-model
	Ginsu
	Monticello 1 and 2

	Towards a Unifying and Foundational Model Infrastructure
	The Ring meta-model
	Open Questions

	Conclusions
	References

