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a b s t r a c t

An important activity of software evolution consists in applying refactorings to enhance the quality
of the code without changing its behaviour. Having a proper refactoring tool is a must-to in any
professional development environment. In addition, live programming allows faster development
than the usual edit-compile-debug process. During live programming sessions, the developer can
directly manipulate instances and modify the state of the running program. However, when a complex
refactoring is performed, instances may be corrupted (i.e., their state is lost). For example, when
pushing an instance variable to a superclass there is a moment where the superclass does not have yet
acquired the new instance variable and the subclass does not have it any more. It means that the value
assigned to this instance variable in existing instances is lost after the refactoring. This problem is not
anecdotal since 36% of the refactorings described in Fowler’s catalogue corrupt instances when used
in a live programming context. There is a need to manually migrate, regenerate or reload instances
from persistent sources. This manual fix lowers the usefulness of live programming.

In this context of live programming, we propose, AtomicRefactoring, a new solution based on
Dynamic Software Update to preserve the state of the application after performing refactorings. We
provide a working extension to the existing refactoring tool developed for the language Pharo (a new
offspring inheriting from Smalltalk), allowing application developers to perform complex refactorings
preserving the live state of the running program.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Software needs to evolve to keep up with the requirements
of a real-world application. During software lifetime most of
the effort is spent during the maintenance phase which consists
in adapting the existing software to new requirements [1,2].
During this evolution, when new functionalities are added or
existing functionalities are modified, the overall complexity of the
program is increased and thus lowering the code quality [3–5].

Automatic refactorings. Refactorings are behaviour preserving op-
erations that help developers to improve the design of the ap-
plication [6,7]. Refactorings modify the implementation of the
application keeping its features. They improve the overall quality
of the application. Nowadays, refactoring tools are present in
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the majority of Integrated Development Environments (IDE) used
in the industry [8], but with different degrees of refactoring
supports. A refactoring is composed of pre and post-conditions
as well as a number of ordered elementary steps. Each step
modifies the classes and methods. The refactorings are designed
to improve the quality of the code while keeping behavioural
consistency [7]. Automatic refactorings constitutes a daily tool
used by programmers to improve the quality of its code [9–13].

Live programming environments. Live programming environments
[14], such as Lisp [15], and Smalltalk [16] or Javascript [17], allows
developers to modify the code while the program is running. Live
programming allows a faster development cycle if we compare it
with the edit-compile-debug process. Live programming provides
a continuous flow of interaction between the developer and the
program [18,19]. This continuous flow of interaction provides an
excellent framework for the development of behaviour driven
applications [20–23]. Also, live programming environments allow
the manipulation of running program’s state, through the manip-
ulation of live instances [24]. Live instances represent the state of
the application in an object-oriented programming language. Ex-
isting live programming tools allow hot update of running code,
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modifying the structure of live instances as classes changes. Dur-
ing code modification, the program is still running. The user of the
running application is the programmer itself or other users (e.g.,.
a web application is still serving content during the live program-
ming session). The programmer is able to stop, debug, modify and
re-execute the running program. The use of live programming
is not limited to Smalltalk or Lisp environments. Nowadays,
there are different efforts to integrate live programming fea-
tures in professional programming environments in languages
as Java [25–27], Python [28] and Javascript [29–32]. This new
attempt to integrate live programming in professional IDEs is a
reflection of the benefits of live programming [18,33–35].

Instance corruption. However, depending on the performed
change, the internal state of live instances may be corrupted,
making them unusable for the running program. For example,
adding an instance variable initializes the new instance variable
to null for all live instances. Such bad initialization may break pro-
gram execution. As explained later, there are other refactorings
leading to such instance corruption. We use instance corruption
to designate live instances that have an incoherent internal state
making the system unusable.

Automatic refactorings as a source of corruption. As a refactor-
ing tool performs a number of modifications in a single op-
eration, each of these steps can corrupt instances. The use of
a refactoring tool in a live programming environment ampli-
fies the instance corruption problem. As refactorings does not
alter the invariants of the code [6], when a refactoring only ap-
plies behavioural changes the instance state is preserved because
the state structure is not modified. If the refactoring changes
the state structure, the instance corruption issue should be ad-
dressed. We show that 36% of the refactorings described by
Fowler et al. [6] present this problem when they are applied in a
live programming environment (cf. Section 2).

How to avoid instance corruption. Dynamic software update (DSU)
[36] provides the means to modify a running program while
preserving its state. Traditionally Smalltalk IDEs are automatically
updating instances to the new structure of a class when this one
is modified during a live programming session, but the state of
instances may not be correctly initialized and get corrupted. In
DSU, the update process should not only perform a hot update
of the running code but also it should handle all data migration
needed to smoothly move from one version of the code to an-
other. Some approaches support data migration although the user
has to explicitly express the changes needed to migrate from one
version to another [37,38].

Solution in a nutshell. We propose an implementation of auto-
matic refactorings that takes advantages of using a DSU tool.
Each refactoring runs in a transaction and it affects all instances
and classes in an atomic fashion. For each refactoring requiring
migration of instances, a migration strategy is provided. By doing
so, the instance corruption is removed when applying automatic
refactorings.

Contribution. The contributions of this article are: (1) an analysis
of the impact of refactoring tools in a live programming environ-
ment. And (2) a new technique using atomic DSU for applying
refactorings in live programming environments. This technique
allows developers to perform refactorings while preserving the
state of live objects and thus the correct behaviour of the running
program.

Paper structure. In Section 2, we analyse the consequences of
refactorings in a live programming environment, and we explain
the need of having an instance migration strategy for these refac-
torings. In Section 3, we present our solution based on atomicity

to apply refactorings while preserving the coherence of instances.
We then present in Section 4 how this solution successfully
solves the instance corruption problem. Section 5 describes the
implementation of this solution in Pharo [39] as an extension of
the Refactoring Browser. Section 6 presents the validation of our
solution, and Section 7 we compares our solution with alternative
solutions. Finally, in Section 8 we present our final conclusions
and possible future work.

2. Class refactorings that break instances

Although it is possible to perform refactorings by hand, tool
support is crucial to increase productivity [8,40]. Refactoring tools
guarantee software behaviour consistency while preserving its
correctness [41]. However, this guarantee is not extended to live
instances that constitute the runtime environment. Nevertheless,
live instance correctness is crucial when doing live-programming,
as the program is executing while the modification is performed.

A refactoring operation involves a number of small modifica-
tions of the code and the structure of the objects. These opera-
tions are usually performed sequentially, modifying the classes
one change after the other, without handling the refactoring as
a complex atomic change. Since the scope of default refactoring
tools is static (i.e., they manipulate models of the code not of
the instances), they focus on preserving a correct behaviour.
However, a problem arises when refactorings are applied in a live
programming environment. Indeed, live objects whose classes
were modified should be migrated from the previous structure
to the new structure. This need of migrating instances is not
addressed by existing refactoring tools as they are not intended
to be used in an environment with live instances.

As an extreme example, in bootstrapped and reflective sys-
tems [42,43], applying a refactoring on system classes may result
in an instability of the whole system if instances are not cor-
rectly handled by the refactoring tool. This is why developers
end up with a carefully planned sequence of steps to preserve
the internal state of ‘‘kernel’’ objects [44]. This operation is very
common in fully reflective languages such as Pharo, Self [45],
Newspeak [46] or Strongtalk [47]. These environments allow
the developer to change all the elements without differencing
application, core libraries or kernel classes.

2.1. Challenges in refactorings: Two examples of corrupting refactor-
ing

This section details two examples of refactorings that corrupt
instances.

2.1.1. Pull up instance variable
This refactoring removes the selected instance variable from

all the subclasses and defines it in the selected class. Fig. 1 shows
the process of applying this refactoring to the idNumber instance
variable. This instance variable is present in the Student and
Teacher classes. Fig. 1(a) shows the original state and Fig. 1(d)
shows the desired result of the refactoring.

To perform this, the refactoring does the following operations:

1. Iterate all the subclasses of the selected class. If the sub-
class has the instance variable, the instance variable is
removed. Fig. 1(b) shows the removal of the idNumber
instance variable from Student and Teacher classes.

2. Add the instance variable to the selected class. Fig. 1(c)
shows the addition of the instance variable idNumber to the
Person class.
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Fig. 1. Step by Step of applying the Pull Up Instance Variable refactoring to the idNumber instance variable present in Student and Teacher classes.

During each of the two operations, live instances are migrated
due to the change in their structure. This migration is performed
by the live programming environment each time a class is mod-
ified. During this process, the value of the pulled up instance
variable is lost for live instances of subclasses (e.g., Student,
Teacher). These values are lost because the instance variables
from subclasses are removed during the first migration step. Note
that the order of these steps cannot be changed because instance
variables of subclasses should be removed before adding the new
instance variable to the superclass to avoid duplicated instance
variables.

When we compare the result of applying the Step 2 (Fig. 1(c))
and the expected result (Fig. 1(d)), we can see that the refactoring
is not preserving live instance state. A state preserving refactoring
must correctly keep the state of idNumber in existing instances.

2.1.2. Split class refactoring
This refactoring extracts a selected subset of instance variables

into a new object. It replaces all accesses to the selected instance
variables by message sends to the new object. It also present the
same problem described before.

This refactoring is more complex than the previous one. In-
deed, to perform this refactoring the following changes are per-
formed:

1. Create a new child class with the selected instance vari-
ables.

2. Add the accessor methods to the child class.
3. Add a new instance variable in the selected class to hold

the extracted object.
4. Change all the uses of the mother instance variables with

messages to the child object.
5. Remove the selected instance variables from the selected

class.
6. Add initialization code creating the child objects when the

mother objects are created.

Fig. 2(a) depicts the class structure of an example and Fig. 2(c)
shows some live instances in the environment before applying
the refactoring. As a contrast, Fig. 2(b) shows the expected result
of applying the refactoring with the desired state of the live
instances in Fig. 2(e).

Even though, the class structure and the methods are correctly
created, live instance state is not preserved. Fig. 2(d) shows the
actual result of applying this refactoring. Since there is no special
handling for migrating the extracted instance variables, this state
is lost.

Although the refactoring operation is able to perform all the
structural and behavioural changes needed, the instances are not
migrated properly. The instances of the selected class are now
useless because all the selected instance variables have been
removed, replaced by an empty instance variable, and all the code
has been modified to use this empty instance variable.

2.2. Refactoring impact Categories

Instance corruption is not only present in the described ex-
amples. Instance corruption exists in a larger set of refactorings.
Considering the 72 refactorings described in Fowler’s book Refac-
toring: Improving the Design of Existing Code [6] as a set of existing
refactorings, we analyse the impact of applying the refactorings
over live instances. This analysis shows that 36.11% of these refac-
torings produce instance corruption when applied in presence of
live instances. Preventing instance corruption is not just a matter
of adding new pre/post-Conditions to refactorings. Indeed, refac-
torings have pre and/or post-conditions as part of their definition.
These conditions help to guarantee consistency. Nevertheless,
in the literature, these conditions only focus on structure and
behaviour consistency without taking care of instances. Extending
pre/post-conditions is not enough because instances must be
correctly migrated according to the applied refactoring and the
context.

We classified refactorings into 4 different categories related
to instance corruption. For each category, we assess the amount
of work to be able to preserve instance state.
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Fig. 2. The Split Class refactoring corrupts its instances.

No corruption. The live instances are not affected at all because
the refactoring does not modify the structure or the use of the
state. All the changes are in the methods of the object. An exam-
ple of this category is Add Parameter refactoring. This refactoring
only adds a new parameter to an existing method. The method
is modified in the class, but the structure of the live instances is
not modified and no migration is required.

Internal corruption. The structure of live instances is modified,
but the state preservation can be computed using exclusively
the modified instances. Client objects that have references to the
modified instances do not need to be updated. An example of this
is the Instance variable rename refactoring, where the value of the
renamed instance variable should be preserved in a new instance
variable with a new name. Another example is the Extract class
refactoring. Here, the value of one or more instance variables is
replaced with an object but the information to create this new
object is taken from the original instance.

Class corruption. When a refactoring changes the class of a set
of instances, some or all selected instances should be migrated
because their structure may also have changed which requires a
data transformation. For example, the Introduce Local Extension
refactoring may take some of the existent live instances and
migrate them to a new class that is a subclass of the old class.

Complex corruption. The changes performed by the refactoring
either impact or require access to more instances than the ones
from the modified classes to keep consistency. One example of
refactoring corrupting more instances than the ones from the
modified classes is Change Value to Reference. This refactoring
impacts not only the instances becoming references but also all
the users of those instances. Think about two clients referencing
two equal value objects that when converted to references should
be the same instance. This refactoring impacts both the client and
the transformed value objects. On the other hand, an example
of a refactoring that requires access to many instances is Change
Unidirectional Association to Bidirectional. The refactoring creates
a bidirectional association from a unidirectional. For example

consider a Course with a collection of Student. This refactoring
requires access to the Course instances to insert the back pointer
from the Student instances.

In Appendix we present the detailed classification and the
justification of each of the problematic refactorings.

Applying this classification we discovered that 26 out of 72
(36.11%) refactorings corrupt instances and should take care of
the migration of live instances to conserve their integrity. This
means that 36.11% of these refactorings cannot be applied in a
live programming environment without corrupting instances in
the running program.

2.3. Ubiquity of the problem

This analysis is not exclusive to the Fowler’s catalogue and we
also extended it to existing industrial tools. We wanted to check
if potential problems are present in tools used daily by every
programmer. To show this we extend the analysis to refactorings
tools in Rewrite Engine for Pharo (Smalltalk), Eclipse JDT (Java),
Groovy/Grails Tool Suite (Groovy), IntelliJ IDEA (Java), Visual Studio
2015 with ReSharper (C#) and WebStorm (Javascript).

Table 1 presents the results of the tool analysis and how
they compare with the results of Fowler’s list of refactorings.
These results show that if the refactoring tools are used in live
programming environments, the consistency of the live instances
is not preserved.

The analysed industrial tools are used in live programming en-
vironments. When doing so, they present the described problems.
For example, live programming is performed in Java or Groovy
using tools like DCEVM [25], JRebel [26] or Jvolve [48].

Also, studies of the usage of automatic refactorings show that
the problematic refactorings are used daily [49–51]. Other studies
show that the use of automatic refactorings is limited as it is not
giving enough guarantee to developers [9]. Although there are
no specific studies applied to live programming, it is possible to
extrapolate these results to live programming.
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Table 1
Results of the analysis of existing refactoring engines.
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Fowler 46
(63.89%)

9
(12.50%)

11
(15.28%)

6
(8.33%)

26
(36.11%)

Eclipse
JDT

24
(72.73%)

5
(15.15%)

3
(9.09%)

1
(3.03%)

9
(27.27%)

Resharper 32
(69.57%)

9
(19.57%)

4
(8.70%)

1
(2.17%)

14
(30.43%)

IntelliJ
IDEA

28
(66.67%)

5
(11.90%)

8
(19.05%)

1
(2.38%)

14
(33.33%)

Pharo 33
(66.00%)

13
(26.00%)

2
(4.00%)

2
(4.00%)

17
(34.00%)

WebStorm 10
(90.91%)

1
(9.09%)

0
(0.00%)

0
(0.00%)

1
(9.09%)

Groovy 7
(63.64%)

3
(27.27%)

0
(0.00%)

1
(9.09%)

4
(36.36%)

Average 25.71
(67.92%)

6.43
(16.98%)

4.00
(10.57%)

1.71
(4.53%)

12.1
(32.08%)

3. Our solution: Atomic refactorings for live programming

Traditionally, refactorings are applied in a non-atomic way and
changes generated by the refactoring tool are applied one at a
time, modifying live instances after each change. For example,
the rename refactoring involves two operations: adding a new
instance variable with the new name and removing the instance
variable with the old name. These operations are performed one
after the other and after each one, live instances are migrated and
corrupted.

In a live programming environment, atomic refactorings are
needed to prevent instance corruption. Since instances are ac-
cessed and modified concurrently in a multi-threading applica-
tion, all the changes should be applied at once guaranteeing
isolation and mutual-exclusion.

In Section 3.1, we present our solution to perform refactorings
that preserve the state of live instances. This solution is based
on using an Atomic Dynamic Software Update (ADSU) mecha-
nism [52]. It manages the application of changes to methods and
class structure as well as the migration of existing instances from
an old class structure to a new one. The used ADSU mechanism
performs all the changes atomically, preserving the state of the
application and its behaviour while the application is running (cf.
Section 3.2). The ADSU guarantee the atomicity of the modifica-
tions, providing isolation to the running threads, synchronizing
the access and finding a safe update point.

Regarding refactorings, it means that all classes are modified
at once and that live instances are directly migrated from the
current version to the final one in an atomic way.

3.1. Description of the atomic refactoring application

Our proposed refactoring solution requires that the used ADSU
provides ways of expressing the changes to be applied. These
changes include modifications to class structure and method body
as well as the process needed to migrate instances. The set of
changes required and the migration logic needed is called a
patch [37].

We require that the selected ADSU includes a reification of
the patch. A patch includes the details of all the modification to
perform. It includes the changes in method and classes and the

Fig. 3. Patch Operations.

logic to migrate the instances. The proposed solution represents
the modifications with instances of a hierarchy of classes as
shown in Fig. 3. These operations are later composed to produce
the patch that is the entry point to the ADSU.

We call migration policy [53], the behaviour needed to migrate
an object from one version to another. Migration policies are
special cases of transform functions [36,37]. They apply only to the
transformation of live instances. In the DSU literature, transform
functions are more generic and transform not only live instances.

All the changes are scheduled and performed atomically, the
ADSU mechanism determines the exact moment to execute the
update. The ADSU solution finds a safe update point. The lookup
of the safe update point is described in Section 5. Basically, the
solution looks for a point where there are no threads executing
(or to execute) modified methods. This is performed through the
inspection and manipulation of the thread call stacks.

The atomic refactoring engine generates patches automati-
cally. As the changes required by an automatic refactoring are
well known, the patch is generated with this changes. Instead
of applying the changes in the methods and classes they are
accumulated in a patch.
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In our implementation for validation we are using gDSU [52].
This ADSU solution presents the required elements to imple-
ment atomic refactorings. However, our proposed refactoring so-
lution is adaptable to use any other ADSU that provides such
requirements.

Fig. 4 describes the overall process of applying a refactoring
using a generic ADSU that provides the requirements of our
solution, the following section expands the details:

• In Step 1, the user selects and configures the refactoring, this
is performed through the same user interface the user uses
in non-atomic refactorings. When applying a refactoring,
our solution does not need more information than the one
provided in the non-atomic implementation of the refac-
torings. Indeed, all required information is already specified
in the refactoring to apply or it is retrieved from the live
environment. After having all the user input, the process is
fully automatic.

• In Step 2, the atomic refactoring engine generates the patch.
As described before, this patch includes all the modifications
needed and the migration policies to migrate live instances.
The creation of the patch is specified in the refactoring def-
inition. Most of the time, existing refactoring engines com-
pute the changes to be applied to classes and methods. With
Atomic Refactoring, refactorings should also compute the
migration policies that we will be applied to the instances.

• The patch is the entry parameter of the Atomic Dynamic
Software Updater (ADSU). In Step 3, the ADSU is invoked to
apply the patch.

• In Step 4, ADSU applies all the changes in an atomic process.
Preserving the behavioural consistency [41] and also the
consistency of live instances. The ADSU can be executed
while the system is running. The ADSU selects the best
moment to execute the update process, checking that none
of the running threads is using the affected instances. As
the changes are applied atomically, in case of an error or
problem during the execution the process is safely aborted.

After an update of the running environment by the ADSU, the
atomic refactoring is completed and the user can continue using
it.

3.2. Atomic dynamic software update mechanism

The Atomic DSU mechanism provides a way of applying a
patch in an atomic way. The goal of the ADSU is updating the
state of an application, including classes, methods as well as live
instances. However, this state should be correctly migrated to
maintain consistency. The modified elements should take the new
form, the unmodified elements should keep their state, the global
state of the application should be preserved and the running
threads should continue their execution normally.

To achieve this goal, all the modifications are performed in
a new environment, without modifying the original environment,
once all the changes are validated the original environment is
replaced by the new environment. During the execution of the
update all the other threads are suspended. After the update is
completed, the threads are resumed.

In Object Oriented Programming, an environment is the set of
all live instances and classes. In Smalltalk, all the elements in the
system (instances, classes, methods, global variables) are repre-
sented as objects and are accessible inside the environment. An
Object oriented environment is the space where all the instances
are contained, and where they interact with each other sending
messages [16,54,55].

All the modifications, migration policies and validations are
included in the patch. These elements are generated by the au-
tomatic refactoring engine. Each refactoring includes its required
changes and a set of validations to check its effect.

Our solution can be implemented using any DSU mechanism
that provides atomic execution, application of multiple modifica-
tions in a patch, creation of migration policies and a validation
step before the actual commit of the atomic execution.

Our proposed refactoring solution in combination with the
selected ADSU mechanism (gDSU) performs the following steps
to apply a patch in an atomic way [52]:

1. gDSU selects the moment in time to execute the update
process. gDSU can only apply an update when there is no
thread executing code or using objects to be modified. So,
gDSU process waits for a safe point i.e. when the stacks of
all the threads do not contain a method to be updated. This
is performed through thread call stack reflection. When a
safe point is detected all threads are suspended. If some
threads are using instances through other methods, gDSU
will update the objects and references in the execution
stack trace. All the instance references are updated, not
only the ones in the heap but also the ones in thread stacks.

2. All classes to be modified are created in a new environ-
ment, and the changes are applied in the new environment
without tampering the original environment. The classes in
the new environment are created as they are needed by
the changes in the patch. The new classes are not declared
in the original environment, they are declared in the new
environment. After this step, the new environment contains
a copy of all the modified classes with the changes applied.
The copying of classes produces an impact in time and
memory, although as the number of modified classes and
methods in a automatic refactoring is limited this impact is
also limited. By definition each automatic refactoring has a
limited impact in classes and methods.

3. When all the classes are modified in the new environment,
the affected instances should be migrated. gDSU applies all
the migration policies needed to migrate the objects. Each
of the affected instances is copied to the new environment.
During the copy, the migration policies are applied. So, the
resulting instances have the migrated state from the ones
in the original environment.

4. When all live instances are migrated, the results can be
validated. The validation logic is included in the patch.
The validations are run on the new environment. This
validation logic is generated by the refactoring engine. Each
refactoring has, by definition, a set of validations to exe-
cute. If the validation is unsuccessful the new environment
is discarded without affecting the original environment.
If the validations are successful the update process con-
tinues. However, if one of the validations fail, the pro-
cess is aborted. When the process is aborted, the whole
new environment is discarded without affecting the orig-
inal environment. After the abortion, all the threads are
resumed.

5. If the validation is successful the original environment
is replaced with the new environment through the use
of a bulk swap operation. This operation replaces all the
instances in the original environment with the correspond-
ing instances in the new environment. Performing this
replacement will move to the original environment all the
modified classes and migrated instances. It will move also
all the new instances that are referenced by classes, global
variables, or migrated instances.
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Fig. 4. The Atomic Refactoring process.

6. Finally, gDSU process performs a clean-up. It frees all the
structures and data used during the process and resumes
all the threads, so the application can continue its normal
execution.

Section 4 provides examples of this process through the appli-
cation of two refactorings.

4. Preserving instance state when applying refactorings with
our ADSU

Our refactoring model and its tool are successfully used to
correctly handle instances when applying refactorings presented
in Section 2. In essence, our refactoring engine generates the
corresponding migration policy for existing instances according
to the currently applied refactoring.

We have applied this technique to implement the 17 instance
corrupting refactorings existing in Pharo.1

4.1. Pull up instance variable

In the case of Pull Up Instance Variable the migration policy
should correctly copy the values from the instances before the
application of the refactoring to the refactored instances. There
is no need of transforming the values, just not losing them and
correctly re-assign them into the refactored instances. To achieve
this, the atomic refactoring engine generates a migration policy
for the refactored class and its subclasses. This policy copies
the state of all affected instances into newly created refactored
instances. Then gDSU creates the refactored instances in the
new environment. The refactoring engine correctly initializes new
instances with the saved state even if refactored objects have a
different layout from original ones (e.g. instance variable order
has changed) by using the instance variable names. Relying on
names is the default migration policy of gDSU and it is automat-
ically generated. Here the automatically generated code for the
migration policy of a pull up refactoring:

migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

new class instanceVariables do: [ :newIV |
old class instanceVariableNamed: newIV name
ifFound: [ :oldIV | newIV write: (oldIV read: old ) to: new ] ].

This migration policies iterates all the instance variables de-
fined in the new instance. In Smalltalk, the instance variables
are reificated as objects. They can be accessed by the class of
an object. The code iterates the instance variables of the new
instance, and looks for the one with the new name in the old
instance. If the instance variable is found in both instances, the
object representing the instance variable is used to read it from
the old instance and to write it in the new instance.

1 Atomic refactoring implementation is available at https://github.com/
tesonep/pharo-atomic-refactors.

4.2. Split class refactoring

For solving the live instance migration of Split Class, the
atomic refactoring engine generates a more complex migration
policy. Although this migration policy is more complex because
it has transformations of values, the migration policy is generated
automatically.

We call mother objects the instances of the selected class
for the refactoring and child objects the instances of the newly
created class. We have two versions of the mother object, the
old and the new one. This is shown in Figs. 2(c) and 2(e). The
first figure shows the instance before the migration, with all the
values of the instance even the ones to be migrated to the new
class. And the second figure shows the two instances that are the
desired result of the refactoring. This migration policy performs
the following steps for each of the instances to migrate:

1. Create a new instance of the child class.
2. Store this new object into the instance variable of the new

mother object.
3. Copy all the instance variables to extract to the new child

object.

The creation of the new instances, the copy of all the instance
variable values to the new created instance and building the
relationship between the migrated mother object and the new
child object are not performed by default by gDSU. It is the
responsibility of the migration policy to perform the following
tasks:

• It creates a new child instance.
• From the old mother instance, it copies all the instance

variable values to the newly created object.
• It adds a reference to the child object in the new mother

instance. Using for this the new instance variable in the
mother object.

This migration policy is automatically generated by the atomic
refactoring engine using the information it already has. A detailed
explanation of the implementation of this refactoring is presented
in Section 5.1.

5. Implementation

We validate our proposed solution by the implementation of
an extension to the refactoring tool present in the Pharo Pro-
gramming Environment. We selected Pharo because (1) it supports
live programming with an advanced debugger allowing to define
methods on the fly, dynamic recompilation of classes, and other
features supporting life-programming such as instance migration,
(2) the Refactoring engine available in Pharo is the direct evo-
lution of the original Refactoring Browser [7] implemented in

https://github.com/tesonep/pharo-atomic-refactors
https://github.com/tesonep/pharo-atomic-refactors
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Smalltalk, (3) the Pharo Refactoring engine propose one of the
most complete refactoring implementation with 50 refactorings.

We implemented our Atomic Refactoring solution based on
the use of gDSU [52]. This ADSU solution has some characteristics
that are required for the implementation of our proposed atomic
refactorings. It supports the definition of patches. Each patch
contains the set of changes, migration policies and validations.
Also, gDSU runs as a library without needing to modify the
running Virtual Machine or expecting the target code to follow
any guideline.

As required by our solution gDSU tool receives a patch de-
scribing the modifications. The patch contains not only all the
changes to perform but also the migration policies to apply.
This ADSU allows us to perform all the changes in an atomic
way, which means all the modifications are applied at once. The
implementation follows the description in Section 3.2.

Also, it allows the use of migration policies to describe how
the objects should be migrated from the old version to the new
version. The selected ADSU allows an easy reuse of the migration
policies. This feature eases the development of the migration
policies for the different refactorings. Moreover, gDSU provides a
number of default migration policies that can be used. However,
in our implementation, we need to implement our own migration
policies to be able to express more complex instance migrations.

gDSU also allows us to validate the correct execution of the
update. This task is performed by custom code implemented
as validation objects. A validation object validates the result of
the update process before committing the operation. The vali-
dations objects are added to the patch and they are generated
by the refactoring tool. The validations are defined for each of
the automatic refactorings. Each automatic refactoring includes
the validations as it includes the required operations to do. For
example, in the Pull-Up refactoring instances of the new classes
are validated to have the proper instance variable value.

Using them we validate the correctness of the refactoring after
all the changes are applied. Again the selected ADSU tool allows
the reuse of different validations in different refactorings. All the
validation objects receive the original and new environments and
perform all the validations needed.

This feature is used when a refactoring operation needs to
validate a post-execution condition. Including validations is not
mandatory, but provides a way of validating the result of the
refactoring execution, not only over the static model but also
on live instances. For example, it can be used in the Split Class
Refactoring to validate if the accessor methods in the original
instances return the same values.

Our solution is handling each refactoring as an atomic oper-
ation. When a set of two or more refactorings modify the same
classes, the required migration policy should be capable of per-
forming the migration taking into account both refactorings. The
required migration gets more and more complex. This required
complexity is outside the scope of our solution. So, our proposed
solution applies the set of refactorings as a sequence of atomic
refactorings. By the refactorings nature of state and behaviour
preserving operations this decision does not affect the final result
of the operation.

As our solution generates the migration policies and valida-
tions automatically based in the definition of the refactorings. We
implemented for each refactoring the code to generate them. This
automation constraints our solution to apply each refactor atom-
ically. We does not support to apply two or more refactorings
at the same time. As they might modify the same class in many
ways that cannot be analysed by the automatic generation of the
migration policies.

We decided to implement the refactoring tool as an extension,
so we can reuse all the user interface and the integration of

Fig. 5. State before refactoring.

Fig. 6. A new environment is created.

existent tool with the IDE. As the required information to apply a
refactoring is the same required by the previous implementation
of the refactoring tool, it was not needed to implement modi-
fications in the user interface. The implementation is available
in Github2 and can be easily downloaded and used in Pharo 6.
gDSU [52] is also available in Github3, it is also intended to be
used in Pharo 6.

5.1. Application of the refactoring step by step

To apply the changes in an atomic way a number of steps
are executed. All these steps are performed during the atomic
application of changes executed by gDSU. Some of the steps
are executed by gDSU and other by our proposed solution. We
will explain in detail the interaction of our solution with gDSU.
For doing so, we will describe the steps following the example
presented in Section 4.2.

Fig. 5 shows the state before applying the changes. To perform
the changes the atomic refactorings and gDSU apply the following
steps.

1. gDSU creates a new environment. All the new and modi-
fied objects and class/methods will be stored in this new
environment. The environment starts empty. (Fig. 6)

2. gDSU executes the patch that have been created by our
refactoring solution. This patch includes all the details to
create and modify classes and methods affected by the
refactoring. The modified versions of the classes Citizen and
Address are created in the new environment. The refactoring
operations modify the copied classes without tampering
the original environment. For example, it is not needed to

2 https://github.com/tesonep/pharo-atomic-refactors
3 https://github.com/tesonep/pharo-AtomicClassInstaller

https://github.com/tesonep/pharo-atomic-refactors
https://github.com/tesonep/pharo-AtomicClassInstaller
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Fig. 7. All the modifications to the classes are applied.

Fig. 8. Live instances are migrated.

create the class at once, as the Address class can be created
empty and then add the different instance variables (Fig. 7).

3. Once the class modifications are completed, the Citizen in-
stances should be migrated. The migration policy migrates
the Citizen instances, creating the Address instance needed
in each case (Fig. 8). This migration is performed using the
refactoring migration policy. This policy is included in the
automatic refactoring engine, and it is used only for this
refactoring. The following code is the migration policy. The
migration policy is generated by our refactoring solution
and it is applied atomically by gDSU.

migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

| child childClass targetClass oldClass oldValue |

"Step 1:uses the default migration for the mother ob-
ject, that

copy all the instance variables by name.
This is implemented in the reusable part of the migra-

tion policies.
It copies the instance variable values by name, copy-

ing the instance
variables existing in the old instances into the new
instance."
self basicMigrateInstance: new from: old.

"Step 2: recovers the newly child class created from the
environment.
The newClassName is a parameter of the refactoring."
childClass := newEnv at: newClassName.

"Step 3: creates a new instance of the child class.
Using the class recovered from the environment the new
instance is created."
child := childClass new.
targetClass := new class.
oldClass := old class.

"Step 4: add the reference from the mother object to the
child object."
(targetClass instanceVariableNamed: referenceVariable-

Name)
write: child to: new.

"Step 5: copy all the extracted instance variables.
Fill up the child instances with the variables extracted from
the mother instance.

These are the instance variables that are extracted from
the mother class.
These variables are a parameter to the automatic
refactoring."

variablesNamesToExtract
do: [ :e |
oldValue := ((oldClass instanceVariableNamed: e).

(childClass instanceVariableNamed: e)
write: oldValue read: old ) to: child ].

4. When all live instances are migrated, gDSU validates the
correctness of the refactoring, by the execution of a valida-
tion object generated by the refactoring tool. In this case, it
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Fig. 9. The New environment replaces the old environment.

checks that all the Citizen instances have a corresponding
Address. As the validation is successful, the modified objects
in the old environment are replaced with the ones in the
new environment. The bulk swap operation replaces all
the instances updating the references to them. The logic
to validate if the refactoring has been correctly applied is
provided by the refactoring solution based on each of the
refactorings. (Fig. 9)

5.2. Implementation details of gdsu : Dynamic software update from
development to production

This section provides a glance of some implementation details
of gDSU. These implementations details are key to understand the
applicability of our proposed atomic refactoring solution and the
requirements that should be present in any alternative Atomic
DSU tool used by our solution.

Although the complete analysis of gDSU [52] is published as
an independent work and it is outside the scope of this work.
For the sake of completeness of this paper we analyse some
implementations details of gDSU.

Update window. gDSU executes the refactoring in an atomic way.
To achieve this objective, gDSU requires an update window. Dur-
ing the atomic update window gDSU is the only thread modifying
the environment. Before starting to perform the update, gDSU
tool suspends all running threads. The threads are suspended
to guarantee that no new live instances of the old version are
created during the application of the update. Running threads
cannot be suspended in any moment, they should be in a safe
quiescence point [56].

Safe point update. An unsafe point is when there is a thread that
has in its execution stack one or more of the methods to be
modified by the update process. Performing an update during
an unsafe point produces corruption in live instances or in the
execution stack. The former is produced when the method code
access or modifies live instances that have their structure modi-
fied. The later is produced when the thread tries to execute code
that is no longer valid (e.g., sending a message that does not exist
or executing a method that has been changed).

Safe point definition. gDSU tool defines a safe quiescence point
when none of the threads has methods to be modified in their
execution stack. The threads using instances that should be mi-
grated does not represent a problem to the ADSU. As all the
instances are migrated using the bulk swap operation. This op-
eration modifies the object stack of the running threads as the
heap. This operation, that is natively implemented in the VM,
traverses the heap and the stack replacing all references to a given
instance with the references to the new instances. This operation

is needed to already support live programming and replacing of
live instances.

Safe point detection. gDSU detects the safe point to perform the
update by monitoring the running threads. When the ADSU tool
is invoked to perform the update process, it checks all the running
threads to see if they are in a safe quiescence point. If the threads
are in a safe point, the threads are suspended and the update
process is performed. However, if one or more of the threads are
in an unsafe point, gDSU will wait until all the threads are in a
safe point. gDSU has to detect the moment when all the threads
are at a safe point. To perform this, the ADSU tool modifies the
execution stack of the threads that are not at a safe point. gDSU
tool inserts a new method activation in the execution stack, just
after the execution of the methods that should be modified. Each
time a thread exits a method to be modified, the ADSU tool is
activated to recheck all the threads. This process continues until
a safe point is achieved, or after a number of retries, gDSU cancels
the update because the threads are never getting to a safe point.

Execution during the update window. During the update win-
dow, the only thread running is the gDSU thread. So, the update
window should be as short as possible. To minimize the time,
gDSU only copies the classes that need to be modified. The set
of classes and instances to be copied are calculated during the
update process. It is calculated from the set of changes, as the
changes includes the classes they affect. The old environment
is only accessed in a single point. In this point, the classes and
instances are copied to the new environment.

Atomic application of changes. gDSU applies all the changes in
the new environment in a bulk swap operation, as said before
this operation is implemented in the Smalltalk Virtual Machine.
However, the existent implementation needs to update the whole
memory [57], extending the time required in the update window.
So that, gDSU is using the Miranda [57] et al. implementation that
reduces the update window time.

5.3. Limitations

Our proposed atomic refactoring solution does heavy usage of
the underlying Atomic DSU tool. It generates all the information
required to perform the refactoring and the ADSU tool is the one
that executes the update.

So, the selection of the ADSU to use limits the capabilities of
our solution. Selecting gDSU allows us to perform updates in pro-
duction and development environments while this environments
are executing. Moreover, it allows our solution to perform self
updates and updates in the Pharo core libraries.

However, we are aware of the limitations of any existing ADSU
solution. Even more, our proposed refactoring solution will never
be able to execute refactorings that require updates not provided
by the ADSU tool.

One of the advantages of selecting gDSU is that it uses a
safe-first protocol to update the application. It is designed to
discard any update that cannot pass the validations, allowing us
to guarantee that the refactoring has been correctly applied. We
consider this approach adds value to the solution, because we
consider that a partial applied refactoring affects the stability of
the application and we prefer to cancel the whole refactoring and
notify the user.

One of the known limitations of selecting gDSU is that it still
may not find suitable update-points or even may produce crashes
due to an incorrect detection of safe-update points. This is a
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known overcome of the DSU solutions using activeness check-
ing [58,59].

We consider, that the analysis and the solutions to the differ-
ent problems and limitations of a given DSU solution is outside
the scope of this paper. However, our proposed solution could be
adapted to generate patches for other ADSU solution. Allowing
us to use an alternative solution in case of finding that the
limitations of gDSU make the atomic refactorings impractical.

6. Validation

To validate our proposed solution we have implemented
atomic refactorings as an extension of the Pharo Refactoring
Browser. Our validation implementation uses gDSU as its Atomic
DSU tool. This implementation is intended to run in Pharo 6.1.
We have stated in previous sections the motivations for choosing
Pharo and gDSU.

This implementation presents an atomic variation for all the
Pharo Refactoring Browser refactorings that introduce instance
corruption. This set of refactoring includes 17 different refactor-
ings.

As our proposed solution performs heavy use of an atomic DSU
tool, we need to have a clear difference between the validations of
our proposed solution and the validation of the underlying ADSU.

Our proposed solution generates all the information required
by gDSU to correctly apply the changes. Once the patch is pro-
duced is the task of the ADSU to correctly execute it. The patch
contains all the changes to execute, all the migration strategies
needed and all the validations to perform in each refactoring.

The correct generation of the patch and the generation speed
is under analysis. The correctness and speed of the atomic update
process is outside the scope of this work.

6.1. Validation methodology

To validate our proposed solution we executed instance cor-
rupting refactorings in three different scenarios. We used to set-
up this scenario a test application that mimics a REST Server
application. This application implements a stateful chat between
the connected users. The code of the application, instructions and
scripts to set-up it are available in Github4.

Development scenario. We set-up a development environment
with our application code. We run a simulation of requests to
generate application objects. This simulation produces around 30
000 live instances. After the simulation, we have an environment
with live instances that is useful to perform live programming
refactorings. This environment replicates a common development
environment where the developer has not only the code but also
a set of data to try her changes.

Production scenario. Using the same application, a HTTP server is
launched. This HTTP server replicates a production server. This
is designed to be deployed as a productive application, as it uses
the production ready frameworks and technologies used in Pharo.
We generated 10 concurrent requests to our server during 2 min,
generating an average of 700 requests per second. This simulation
generates the load expected in a production server. Then, we
apply the refactoring at minute 1.

4 https://github.com/tesonep/chatServer.git

Pharo. Pharo is a fully reflective, self constrained language, tools
and IDE. So, all the development tools and libraries are developed
in Pharo, and these libraries are used to modify Pharo itself.
When developing Pharo tools and libraries is frequent to get
corrupted instances. As it is a live programming environment,
corrupted instances produces the crash of the whole development
environment. This self-modification nature constitutes a perfect
test bench for validating our proposed solution.

All the validations and benchmarks have been executed using
Pharo 6.1 32-bits, in a machine running OS X 10.12.6 having a
2,6 GHz Intel Core i7 and 8 Gb of 1600 MHz RAM memory.

6.2. Validation 1: Correctness of the implementation

Research question. Does our solution complies with the existing
behaviour of Pharo Refactoring Browser?

Scenario. The Pharo implementation of the Refactoring Browser
includes an extensive set of tests to validate their execution and
the impact on the classes and methods each refactoring operation
modify.

To validate our extension we executed all the tests included
in the old Pharo implementation.

Results. All the tests execute correctly, the results of execut-
ing the old implementation or the new implementation is the
same. We can guarantee that the atomic refactorings executes
the same modifications in classes and methods that the reference
implementation.

6.3. Validation 2: Updating live instances

Research question. Is our solution capable of performing atomic
refactorings in an application with a high number of instances?

Scenario. In this validation we have the objective to test the
ability of our proposed solution of correctly applying refactorings
while preserving the state of live instances.

This validation is performed in the Development Scenario.
For doing so, we executed the following refactorings on live

instances of the application:

• Extract Class
• Pull-up instance variable
• Extract Subclass
• Introduce Local Extension
• Replace Array with Object

These refactorings where selected because presents different
scenarios of migration policies, validations and changes.

We executed the refactorings in isolation, executing only one
at the time. And all together, all the refactorings executed in
sequence.

After each isolated execution and the combined execution we
validate the live instances to guarantee that all the instances
have preserved their state. By using a test application that we
designed to present all the situations required to test the validity
of the solution; we have performed the validation in two different
ways. First, a manual analysis of some of the migrated instances,
checking that the logic of the migrated application is still valid,
the live instances correctly migrated and the test of some of
the application features. And secondly, a set of tests to validate
that all the instances have correctly state and the automatic
validations performed during the application of the migration are
covering all migration scenarios. The checks were performed on
a representative set of objects.

https://github.com/tesonep/chatServer.git
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Table A.1
Refactoring without Corruption.
Refactoring Page

Add parameter 275
Change reference to value 183
Consolidate conditional expression 240
Consolidate duplicate conditional fragments 243
Convert procedural design to objects 368
Decompose conditional 238
Encapsulate collection 208
Encapsulate downcast 308
Encapsulate field 206
Extract interface 341
Extract method 110
Form template method 345
Hide delegate 157
Hide method 303
Inline method 117
Inline temp 119
Introduce assertion 267
Introduce explaining variable 124
Introduce foreign method 162
Introduce parameter object 295
Move method 142
Parameterize method 283
Preserve whole object 288
Pull up constructor body 325
Pull up method 322
Push down method 328
Remove assignments to parameters 131
Remove control flag 245
Remove middle man 160
Remove parameter 277
Remove setting method 300
Rename method 273
Replace constructor with factory method 304
Replace error code with exception 310
Replace exception with test 315
Replace magic number with symbolic constant 204
Replace method with method object 135
Replace nested conditional with guard clauses 250
Replace parameter with explicit methods 285
Replace parameter with method 292
Replace record with data class 217
Replace temp with query 120
Self encapsulate field 171
Separate query from modifier 279
Split temporary variable 128
Substitute algorithm 139

This validation is complementary with Validation 3. This vali-
dation is taking a sample of instances to directly validate allowing
us to correctly detect which of the refactorings is failing. Then in
Validation 3 we perform the analysis on all instances indirectly by
executing the application.

Results. The migrated instances preserves correctly their state.
All the validations executed on the objects are correct.

6.4. Validation 3: Updating live instances during execution

Research question. Is our solution capable of performing atomic
refactorings in an application with a high number of instances
while the application is executing and adding/modifying live
instances?

Scenario. In this validation we have the objective to test the
ability of our proposed solution of correctly applying refactorings
while preserving the state of live instances while the application
is under heavy usage.

This validation is performed in the Production Scenario.
For doing so, we executed the following refactorings on live

instances of the application:

• Split Class
• Pull-up instance variable
• Extract Subclass
• Introduce Local Extension
• Replace Array with Object

These refactorings where selected because presents different
scenarios of migration policies, validations and changes.

We executed the refactorings in isolation, executing only one
at the time. And all together, all the refactorings executed in
sequence.

The execution of the refactorings is performed while the ap-
plication is receiving 10 concurrent request with an average of
700 request per second.

After each isolated execution and the combined execution we
validate the live instances to guarantee that all the instances have
preserved their state.

Results. The migrated instances preserves correctly their state.
All the validations executed on the objects are correct.

We have validated the correct migration of the state by con-
tinuing with the normal execution of the application. As the load
on the application is using the migrated instances, the correct
execution of the second half of the test guarantee that all the
migrated instances are correct.

This validation is complementary to Validation 2, as this vali-
dation performs an indirect check of all the migrated instances.

6.5. Validation 4: Self modification

Research question. Is our solution capable of performing atomic
refactorings in the executing Pharo libraries, including the atomic
refactoring engine and the ADSU?

Scenario. For this validation we execute the following refactoring
in Pharo library classes that are used in the system.

• Split Class
• Pull-up instance variable
• Extract Subclass
• Introduce Local Extension
• Replace Array with Object

We target the refactorings to the Collections framework, the
UI framework and the atomic refactoring engine.

Results. The refactorings have been correctly applied without af-
fecting the stability nor the state of the Pharo IDE. This validation
checks indirectly the result of the migration. As the Pharo IDE
and environment is continuously using the affected code and
instances. This is guarantee as any error in the migration of
instances or in the application of the refactoring results in an
unusable system.

6.6. Validation 5: Benchmarks

Research question. Does the generation of the patch generates an
impact in the duration of the update?

Scenario. This validation asserts that our solution does not intro-
duce a noticeable impact in performance nor memory footprint
in the generation of the patch.

For doing so we have compared the execution of a hand-
crafted patch and the execution of the atomic refactoring tool.

The baseline time and memory consist of only the execution
of the hand-crafted patch. This allows us to measure the memory
and time impact of executing the atomic update.
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Table A.2
Refactoring with complex corruption.
Refactoring Page Explanation

Change bidirectional
association to unidirectional

200 One of the sides of the bidirectional
association should be dropped. One of the two
classes involved in the association will drop
one instance variable.

Change unidirectional
association to bidirectional

197 The modified instances need the objects
referencing to them to construct the
bidirectional association. This information is
not present in the modified instances.

Change value to reference 179 All the client instances of this object should be
updated to reference the same object.

Introduce null object 260 All the clients using null in this field should be
updated to use the newly created object. If
this object should be shared, it should be done
in the migration process.

Move field 146 The field can come from any class in the
system, the original and target classes are not
related. The logic to match from the original
instances to the target instances should be in
the migration process.

Replace data value with object 175 It exposes the same problems of Extract Class
but the new instances should be shared, it
makes more complex the migration process.

Replace type code with class 218 It exposes the same problems of Extract Class
but the new instances should be shared, it
makes more complex the migration process.

The measures using our solution includes both the generation
of the patch from the analysis of the state of the system and the
execution of the update.

The execution have been performed on a running system using
the Production Scenario, with 10 concurrent request and 700
request per second. This generates between 30.000 live instances
to migrate.

The selected refactoring to test is Split Class.

Results. The execution of this validation does not present a no-
ticeable impact in memory nor time in the execution of the
baseline test and our solution test.

Executing both tests produce an average memory footprint of
10MB and an average execution time of 300 ms.

7. Related works

The Rewrite Engine [7,41] provides a complete refactoring tool.
Since 1996, it has been used in different Smalltalk implementa-
tions like Pharo, Dolphin Smalltalk, VisualWorks and VASmalltalk.
However, this tool does not support migration of live instances.
Our solution handles the correct migration of live instances.

Dynamic Software Update tool as DCEVM [25], JRebel [26],
Gosh! [60], Rubah [61] and JavAdaptor [27] provides the means to
perform dynamic software update in Java. However, they are not
integrated with refactoring tools. The refactoring operations are
performed on the source code. Even though having the support
to migrate the instances, the developer is in charge of generating
the migration patch and not the refactoring tools. The refactoring
tools are not aware of the DSU tools, and the IDEs handle the
changes statically only. Our solution introduces the integration
of both tools. In the related works, the tools are not correctly
integrated, depending on the developer to implement the changes
performed by the refactoring by a DSU tool.

Moreover, in the work describing JavAdaptor, it have been
used to implement automatic refactoring but the migration of
instances have not been addressed. The lack of instance migration

reduces the applicability of the solution. Our solution provides an
integrated solution.

Working with a dynamic language does not change the dis-
connection between the ADSU tools and refactoring tools. An
example of this is Pymoult [28], that provides the support to
migrate live instances after a refactoring operation. But none of
the tools working on a live Python environment uses this support.

The dynamic nature of Javascript allows the change of the
running code and modification of the instances. However, the
refactoring tools present in Javascript development environments
such as WebStorm [62], Grasp [63], Atom [64] and Visual Stu-
dio [65] handle all the changes in source code level, without
caring about live programming.

Also the live programming tools for Javascript as Nodemon
[29], Firebug [30] or Chrome Dev Tools [31] do not handle the
migration of live instances. They only migrate the code gener-
ating these instances. The live programming experience in these
environments is not comparable, as they are not intended to
implement complex automatic refactorings.

As we shown, the infrastructure to integrate DSU tools and
automatic refactorings in IDE exist in the related work, although
the transparent integration that we propose is not present in the
related work.

8. Conclusion

In this paper, we identify the problem of refactorings cor-
rupting instances when there are live instances of the modified
classes. We propose a categorization of the instance corruption.
And we show that 36.11% of refactorings described in the litera-
ture present this problem. Moreover, we proposed a refactoring
implementation mechanism which solves this problem.

Our Atomic Refactorings mechanism preserves instances’ state.
It is suitable for live programming environments because it does
not corrupt instances of refactored classes. We use an Atomic
Dynamic Software Update engine (gDSU), this engine offers the
possibility of modifying all the objects in a separated environ-
ment. When all the changes are performed, it replaces all the
modified objects at once.
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Table A.3
Refactoring with class corruption.
Refactoring Page Explanation

Collapse hierarchy 344 All the instances of the subclass should be
migrated to the superclass. As the subclass
does not exist any more.

Extract hierarchy 375 Some of the modified instances should be
migrated to the new subclasses. The migration
process should manage the determination of
which class to instantiate in each case.

Extract subclass 330 Some instances should be migrated to the new
subclass. Also, the structure of the main class
is changed.

Extract superclass 336 A new superclass is extracted from the
common part in two classes. The live instances
need a migration if the class structure
changed.

Introduce local extension 164 Some instances should be migrated to the new
class. Establishing which instances to migrate
is a responsibility of the migration process.

Replace conditional with
polymorphism

255 A new set of subclasses are created, the live
instances should be migrated to these
subclasses according to the values of the
original instance variables. Also, the instance
variables of the subclasses might be renamed.

Replace delegation with
inheritance

355 A pair of collaborating objects is integrated
into the same hierarchy. Making the client of
the delegation a subclass of the delegate. The
instances of the client should be migrated to
the new subclass, and all the instance
variables of the delegate should be migrated
to the client.

Replace inheritance with
delegation

352 As a subclassification is replaced with a
delegation, all the internal state of the single
instance should be migrated to the new
collaboration. Also, the delegate object should
be created.

Replace a subclass with fields 232 All the instances of the subclass should be
migrated to the superclass. Preserving the
subclass state and adding the needed fields to
distinguish from the superclass instances.

Replace type code with
subclasses

223 The instances should be migrated to new
subclasses depending on the value of the type
code.

Tease apart inheritance 362 As the hierarchy is split, the live instances
should be split in the same way, putting the
original instance state to the corresponding
instances.

Table A.4
Refactoring with internal corruption.
Refactoring Page Explanation

Duplicate observed data 189 As Extract Class, with the addition that the
extracted has a reference to the original
instance it was extracted from.

Extract class 149 The live instances of the original class should
be split in the new version of the mother
instances and the newly created child instance.

Inline class 154 The internal state of the child object should be
migrated to the mother instance.

Pull up field 320 The structure of the class has changed, all the
fields should be migrated to their new
position in the object.

Push down field 329 The structure of the class has changed, all the
fields should be migrated to their new
position in the object.

Replace array with object 186 The same problematic of Extract Class.

Replace type code with
state/strategy

227 The same problematic of Extract Class, only
having more possible subclasses.

Separate domain from
presentation

370 The same problematic of Extract Class.
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Our solution is integrated with a refactoring tool existing in an
industrial platform. The use of this new extension is transparent
to the developer. Developers perform the refactorings without
thinking to regenerate the live instances.

As a future work, we can extend this atomic behaviour to all
the changes performed in the live programming environment not
only automatic refactorings. Providing ways to the developer of
changing the code with the guarantee that the live instances are
always consistent. Detecting the nature of the changes and the in-
tention of the developer is not straight forward when the changes
are constrained to automatic refactorings. So, one interesting
future work is providing the developer a way of expressing the
required missing information with the minimum bureaucracy.
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Appendix. Detailed analysis of refactoring: Improving the de-
sign of existing code

After analysing the impact to live instances of the refactorings
described in Refactoring: Improving the Design of Existing Code [6],
we present here the detailed analysis of all the refactorings in the
book.

There are 46 refactorings that does not affect live instances, 6
refactorings with complex corruption, 11 with class corruption,
and 9 with internal corruption.

A.1. Refactoring without corruption

The following refactorings do not have any impact in live
instances. The class structures are not affected. See Table A.1.

A.2. Refactoring with complex corruption

See Table A.2.

A.3. Refactoring with class corruption

See Table A.3.

A.4. Refactoring with internal corruption

See Table A.4.
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