
HAL Id: hal-02541754
https://hal.archives-ouvertes.fr/hal-02541754

Submitted on 14 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Instance State during Refactorings in Live
Environments

Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane
Ducasse

To cite this version:
Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane Ducasse. Preserving In-
stance State during Refactorings in Live Environments. Future Generation Computer Systems, Else-
vier, In press, �10.1016/j.future.2020.04.010�. �hal-02541754�

https://hal.archives-ouvertes.fr/hal-02541754
https://hal.archives-ouvertes.fr

Preserving Instance State during Refactorings
in Live Environments

Pablo Tesonea,b,∗, Guillermo Politoc, Luc Fabresseb, Noury Bouraqadib,
Stéphane Ducassea

aInria Lille-Nord Europe, 40 Avenue Halley, Villeneuve d’Ascq, France
bUnité de Recherche Informatique et Automatique, IMT Lille Douai, 764 Boulevard Lahure,

Douai, France
cUniv. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en

Informatique Signal et Automatique de Lille, F-59000 Lille, France

Abstract

An important activity of software evolution consists in applying refactorings
to enhance the quality of the code without changing its behaviour. Having a
proper refactoring tool is a must-to in any professional development environment.
In addition, live programming allows faster development than the usual edit-
compile-debug process. During live programming sessions, the developer can
directly manipulate instances and modify the state of the running program.
However, when a complex refactoring is performed, instances may be corrupted
(i.e., their state is lost). For example, when pushing an instance variable to a
superclass there is a moment where the superclass does not have yet acquired
the new instance variable and the subclass does not have it any more. It
means that the value assigned to this instance variable in existing instances
is lost after the refactoring. This problem is not anecdotal since 36% of the
refactorings described in Fowler’s catalogue corrupt instances when used in a
live programming context. There is a need to manually migrate, regenerate or
reload instances from persistent sources. This manual fix lowers the usefulness
of live programming.

In this context of live programming, we propose, AtomicRefactoring, a
new solution based on Dynamic Software Update to preserve the state of the
application after performing refactorings. We provide a working extension to
the existing refactoring tool developed for the language Pharo (a new offspring
inheriting from Smalltalk), allowing application developers to perform complex
refactorings preserving the live state of the running program.

∗Corresponding author
Email addresses: pablo.tesone@inria.fr (Pablo Tesone), guillermo.polito@inria.fr

(Guillermo Polito), luc.fabresse@imt-lille-doaui.fr (Luc Fabresse),
noury.bouraqadi@imt-lille-doaui.fr (Noury Bouraqadi), stephane.ducasse@inria.fr
(Stéphane Ducasse)

Preprint submitted to Elsevier April 8, 2020

Keywords

automatic refactorings, live programming environments, dynamic software
update, IDE

1. Introduction

Software needs to evolve to keep up with the requirements of a real-world
application. During software lifetime most of the effort is spent during the
maintenance phase which consists in adapting the existing software to new
requirements [1, 2]. During this evolution, when new functionalities are added
or existing functionalities are modified, the overall complexity of the program is
increased and thus lowering the code quality [3, 4, 5].

Automatic Refactorings. Refactorings are behaviour preserving operations that
help developers to improve the design of the application [6, 7]. Refactorings
modify the implementation of the application keeping its features. They improve
the overal quality of the application. Nowadays, refactoring tools are present
in the majority of Integrated Development Environments (IDE) used in the
industry [8], but with different degrees of refactoring supports. A refactoring is
composed of pre and post-conditions as well as a number of ordered elementary
steps. Each step modifies the classes and methods. The refactorings are designed
to improve the quality of the code while keeping behavioural consistency [7].
Automatic refactorings constitutes a daily tool used by programmers to improve
the quality of its code [9, 10, 11, 12, 13].

Live Programming Environments. Live programming environments [14], such
as Lisp [15], and Smalltalk [16] or Javascript [17], allows developers to modify
the code while the program is running. Live programming allows a faster
development cycle if we compare it with the edit-compile-debug process. Live
programming provides a continuous flow of interaction between the developer and
the program [18, 19]. This continuous flow of interaction provides an excellent
framework for the development of behaviour driven applications [20, 21, 22,
23]. Also, live programming environments allow the manipulation of running
program’s state, through the manipulation of live instances [24]. Live instances
represent the state of the application in an object-oriented programming language.
Existing live programming tools allow hot update of running code, modifying
the structure of live instances as classes changes. During code modification, the
program is still running. The user of the running application is the programmer
itself or other users (e.g.,. a web application is still serving content during the
live programming session). The programmer is able to stop, debug, modify and
re-execute the running program. The use of live programming is not limited
to Smalltalk or Lisp environments. Nowadays, there are different efforts to
integrate live programming features in professional programming environments
in languages as Java [25, 26, 27], Python [28] and Javascript [29, 30, 31, 32]. This
new attempt to integrate live programming in professional IDEs is a reflection
of the benefits of live programming [18, 33, 34, 35].

2

Instance Corruption. However, depending on the performed change, the internal
state of live instances may be corrupted, making them unusable for the running
program. For example, adding an instance variable initializes the new instance
variable to null for all live instances. Such bad initialization may break program
execution. As explained later, there are other refactorings leading to such
instance corruption. We use instance corruption to designate live instances that
have an incoherent internal state making the system unusable.

Automatic Refactorings as a source of corruption. As a refactoring tool performs
a number of modifications in a single operation, each of these steps can corrupt
instances. The use of a refactoring tool in a live programming environment
amplifies the instance corruption problem. As refactorings does not alter the
invariants of the code [6], when a refactoring only applies behavioural changes
the instance state is preserved because the state structure is not modified. If the
refactoring changes the state structure, the instance corruption issue should be
addressed. We show that 36% of the refactorings described by Fowler et al. [6]
present this problem when they are applied in a live programming environment
(cf. Section 2).

How to avoid instance corruption. Dynamic software update (DSU) [36] provides
the means to modify a running program while preserving its state. Traditionally
Smalltalk IDEs are automatically updating instances to the new structure of
a class when this one is modified during a live programming session, but the
state of instances may not be correctly initialized and get corrupted. In DSU,
the update process should not only perform a hot update of the running code
but also it should handle all data migration needed to smoothly move from
one version of the code to another. Some approaches support data migration
although the user has to explicitly express the changes needed to migrate from
one version to another [37, 38].

Solution in a Nutshell. We propose an implementation of automatic refactorings
that takes advantages of using a DSU tool. Each refactoring runs in a transaction
and it affects all instances and classes in an atomic fashion. For each refactoring
requiring migration of instances, a migration strategy is provided. By doing so,
the instance corruption is removed when applying automatic refactorings.

Contribution. The contributions of this article are: (1) an analysis of the impact
of refactoring tools in a live programming environment. And (2) a new technique
using atomic DSU for applying refactorings in live programming environments.
This technique allows developers to perform refactorings while preserving the
state of live objects and thus the correct behaviour of the running program.

Paper Structure. In Section 2, we analyse the consequences of refactorings in a
live programming environment, and we explain the need of having an instance
migration strategy for these refactorings. In Section 3, we present our solution
based on atomicity to apply refactorings while preserving the coherence of
instances. We then present in Section 4 how this solution successfully solves

3

the instance corruption problem. Section 5 describes the implementation of this
solution in Pharo [39] as an extension of the Refactoring Browser. Section 6
presents the validation of our solution, and Section 7 we compares our solution
with alternative solutions. Finally, in Section 8 we present our final conclusions
and possible future work.

2. Class Refactorings that break Instances

Although it is possible to perform refactorings by hand, tool support is crucial
to increase productivity [40, 8]. Refactoring tools guarantee software behaviour
consistency while preserving its correctness [41]. However, this guarantee is not
extended to live instances that constitute the runtime environment. Nevertheless,
live instance correctness is crucial when doing live-programming, as the program
is executing while the modification is performed.

A refactoring operation involves a number of small modifications of the
code and the structure of the objects. These operations are usually performed
sequentially, modifying the classes one change after the other, without handling
the refactoring as a complex atomic change. Since the scope of default refactoring
tools is static (i.e., they manipulate models of the code not of the instances),
they focus on preserving a correct behaviour. However, a problem arises when
refactorings are applied in a live programming environment. Indeed, live objects
whose classes were modified should be migrated from the previous structure to
the new structure. This need of migrating instances is not addressed by existing
refactoring tools as they are not intended to be used in an environment with
live instances.

As an extreme example, in bootstrapped and reflective systems [42, 43],
applying a refactoring on system classes may result in an instability of the whole
system if instances are not correctly handled by the refactoring tool. This is
why developers end up with a carefully planned sequence of steps to preserve
the internal state of “kernel” objects [44]. This operation is very common in fully
reflective languages such as Pharo, Self [45], Newspeak [46] or Strongtalk[47].
These environments allow the developer to change all the elements without
differencing application, core libraries or kernel classes.

2.1. Challenges in refactorings: Two examples of corrupting refactoring
This section details two examples of refactorings that corrupt instances.

2.1.1. Pull Up Instance Variable
This refactoring removes the selected instance variable from all the subclasses

and defines it in the selected class. Figure 1 shows the process of applying this
refactoring to the idNumber instance variable. This instance variable is present
in the Student and Teacher classes. Figure 1a shows the original state and
Figure 1d shows the desired result of the refactoring.

To perform this, the refactoring does the following operations:

4

1. Iterate all the subclasses of the selected class. If the subclass has the
instance variable, the instance variable is removed. Figure 1b shows the
removal of the idNumber instance variable from Student and Teacher
classes.

2. Add the instance variable to the selected class. Figure 1c shows the addition
of the instance variable idNumber to the Person class.

name
Person

idNumber
degree

Student
idNumber
courses

Teacher

name = 'John'
idNumber = '1234'
degree = '...'

:Student
name = 'Carl'
idNumber = '6789'
courses = '...'

:Teacher

(a) Original State before
the refactoring

name
Person

degree
Student

courses
Teacher

name = 'John'
degree = '...'

:Student
name = 'Carl'
courses = '...'

:Teacher

(b) Step 1: Remove subclass instance vari-
ables

name
idNumber

Person

degree
Student

courses
Teacher

name = 'John'
idNumber = nil
degree = '...'

:Student
name = 'Carl'
idNumber = nil
courses = '...'

:Teacher

(c) Step 2: Add superclass instance variable

name
idNumber

Person

degree
Student

courses
Teacher

name = 'John'
idNumber = '1234'
degree = '...'

:Student
name = 'Carl'
idNumber = '6789'
courses = '...'

:Teacher

(d) Expected Result

Figure 1: Step by Step of applying the Pull Up Instance Variable refactoring to the idNumber
instance variable present in Student and Teacher classes.

During each of the two operations, live instances are migrated due to the
change in their structure. This migration is performed by the live programming
environment each time a class is modified. During this process, the value of the
pulled up instance variable is lost for live instances of subclasses (e.g., Student,
Teacher). These values are lost because the instance variables from subclasses
are removed during the first migration step. Note that the order of these steps
cannot be changed because instance variables of subclasses should be removed
before adding the new instance variable to the superclass to avoid duplicated
instance variables.

When we compare the result of applying the Step 2 (Figure 1c) and the
expected result (Figure 1d), we can see that the refactoring is not preserving
live instance state. A state preserving refactoring must correctly keep the state

5

of idNumber in existing instances.

2.1.2. Split Class Refactoring
This refactoring extracts a selected subset of instance variables into a new

object. It replaces all accesses to the selected instance variables by message
sends to the new object. It also present the same problem described before.

This refactoring is more complex than the previous one. Indeed, to perform
this refactoring the following changes are performed:

1. Create a new child class with the selected instance variables.
2. Add the accessor methods to the child class.
3. Add a new instance variable in the selected class to hold the extracted

object.
4. Change all the uses of the mother instance variables with messages to the

child object.
5. Remove the selected instance variables from the selected class.
6. Add initialization code creating the child objects when the mother objects

are created.

Figure 2a depicts the class structure of an example and Figure 2c shows some
live instances in the environment before applying the refactoring. As a contrast,
Figure 2b shows the expected result of applying the refactoring with the desired
state of the live instances in Figure 2e.

Even though, the class structure and the methods are correctly created, live
instance state is not preserved. Figure 2d shows the actual result of applying
this refactoring. Since there is no special handling for migrating the extracted
instance variables, this state is lost.

Although the refactoring operation is able to perform all the structural
and behavioural changes needed, the instances are not migrated properly. The
instances of the selected class are now useless because all the selected instance
variables have been removed, replaced by an empty instance variable, and all
the code has been modified to use this empty instance variable.

2.2. Refactoring Impact Categories
Instance corruption is not only present in the described examples. Instance

corruption exists in a larger set of refactorings. Considering the 72 refactorings
described in Fowler’s book Refactoring: Improving the Design of Existing Code [6]
as a set of existing refactorings, we analyse the impact of applying the refactorings
over live instances. This analysis shows that 36.11 % of these refactorings produce
instance corruption when applied in presence of live instances. Preventing
instance corruption is not just a matter of adding new pre/post-Conditions to
refactorings. Indeed, refactorings have pre and/or post-conditions as part of
their definition. These conditions help to guarantee consistency. Nevertheless, in
the literature, these conditions only focus on structure and behaviour consistency
without taking care of instances. Extending pre/post-conditions is not enough

6

name
street
number
city

Citizen

(a) Classes before Refactoring

name
Citizen street

number
city

Address
address

(b) Classes after Refactoring

name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

:Citizen

(c) Objects before Refactoring

name = 'Bart'
address = nil

:Citizen

(d) Actual Result

name = 'Bart'
:Citizen street = 'Evergreen Terrace'

number = 742
city = 'Springfield'

:Address
address

(e) Expected Result

Figure 2: The Split Class refactoring corrupts its instances.

because instances must be correctly migrated according to the applied refactoring
and the context.

We classified refactorings into 4 different categories related to instance cor-
ruption. For each category, we assess the amount of work to be able to preserve
instance state.

No Corruption. The live instances are not affected at all because the refactoring
does not modify the structure or the use of the state. All the changes are in the
methods of the object. An example of this category is Add Parameter refactoring.
This refactoring only adds a new parameter to an existing method. The method
is modified in the class, but the structure of the live instances is not modified
and no migration is required.

Internal Corruption. The structure of live instances is modified, but the state
preservation can be computed using exclusively the modified instances. Client
objects that have references to the modified instances don’t need to be updated.
An example of this is the Instance variable rename refactoring, where the value
of the renamed instance variable should be preserved in a new instance variable
with a new name. Another example is the Extract class refactoring. Here,
the value of one or more instance variables is replaced with an object but the
information to create this new object is taken from the original instance.

7

Class Corruption. When a refactoring changes the class of a set of instances,
some or all selected instances should be migrated because their structure may also
have changed which requires a data transformation. For example, the Introduce
Local Extension refactoring may take some of the existent live instances and
migrate them to a new class that is a subclass of the old class.

Complex Corruption. The changes performed by the refactoring either impact
or require access to more instances than the ones from the modified classes
to keep consistency. One example of refactoring corrupting more instances
than the ones from the modified classes is Change Value to Reference. This
refactoring impacts not only the instances becoming references but also all the
users of those instances. Think about two clients referencing two equal value
objects that when converted to references should be the same instance. This
refactoring impacts both the client and the transformed value objects. On the
other hand, an example of a refactoring that requires access to many instances
is Change Unidirectional Association to Bidirectional. The refactoring creates a
bidirectional association from a unidirectional. For example consider a Course
with a collection of Student. This refactoring requires access to the Course
instances to insert the back pointer from the Student instances.

In Appendix A we present the detailed classification and the justification of
each of the problematic refactorings.

Applying this classification we discovered that 26 out of 72 (36.11%) refac-
torings corrupt instances and should take care of the migration of live instances
to conserve their integrity. This means that 36.11% of these refactorings cannot
be applied in a live programming environment without corrupting instances in
the running program.

2.3. Ubiquity of the problem
This analysis is not exclusive to the Fowler’s catalogue and we also extended

it to existing industrial tools. We wanted to check if potential problems are
present in tools used daily by every programmer. To show this we extend the
analysis to refactorings tools in Rewrite Engine for Pharo (Smalltalk), Eclipse
JDT (Java), Groovy/Grails Tool Suite (Groovy), IntelliJ IDEA (Java), Visual
Studio 2015 with ReSharper (C#) and WebStorm (Javascript).

Table 1 presents the results of the tool analysis and how they compare
with the results of Fowler’s list of refactorings. These results show that if the
refactoring tools are used in live programming environments, the consistency of
the live instances is not preserved.

The analysed industrial tools are used in live programming environments.
When doing so, they present the described problems. For example, live program-
ming is performed in Java or Groovy using tools like DCEVM [25], JRebel [26]
or Jvolve [48].

Also, studies of the usage of automatic refactorings show that the problematic
refactorings are used daily [49, 50, 51]. Other studies show that the use of auto-
matic refactorings is limited as it is not giving enough guarantee to developers [9].

8

Although there are no specific studies applied to live programming, it is possible
to extrapolate these results to live programming.

N
o

C
or

ru
p
ti

on

In
te

rn
al

C
or

ru
p
ti

on

C
om

p
le

x
C

or
ru

p
ti

on

C
la

ss
C

or
ru

p
ti

on

T
ot

al
C

or
ru

p
ti

on

Fowler 46
(63.89%)

9
(12.50%)

11
(15.28%)

6
(8.33%)

26
(36.11%)

Eclipse
JDT

24
(72.73%)

5
(15.15%)

3
(9.09%)

1
(3.03%)

9
(27.27%)

Resharper 32
(69.57%)

9
(19.57%)

4
(8.70%)

1
(2.17%)

14
(30.43%)

IntelliJ
IDEA

28
(66.67%)

5
(11.90%)

8
(19.05%)

1
(2.38%)

14
(33.33%)

Pharo 33
(66.00%)

13
(26.00%)

2
(4.00%)

2
(4.00%)

17
(34.00%)

WebStorm 10
(90.91%)

1
(9.09%)

0
(0.00%)

0
(0.00%)

1
(9.09%)

Groovy 7
(63.64%)

3
(27.27%)

0
(0.00%)

1
(9.09%)

4
(36.36%)

Average 25.71
(67.92%)

6.43
(16.98%)

4.00
(10.57%)

1.71
(4.53%)

12.1
(32.08%)

Table 1: Results of the analysis of existing refactoring engines.

3. Our Solution: Atomic Refactorings for Live Programming

Traditionally, refactorings are applied in a non-atomic way and changes
generated by the refactoring tool are applied one at a time, modifying live
instances after each change. For example, the rename refactoring involves two
operations: adding a new instance variable with the new name and removing
the instance variable with the old name. These operations are performed one
after the other and after each one, live instances are migrated and corrupted.

In a live programming environment, atomic refactorings are needed to prevent
instance corruption. Since instances are accessed and modified concurrently
in a multi-threading application, all the changes should be applied at once
guaranteeing isolation and mutual-exclusion.

In Section 3.1, we present our solution to perform refactorings that preserve
the state of live instances. This solution is based on using an Atomic Dynamic

9

Software Update (ADSU) mechanism [52]. It manages the application of changes
to methods and class structure as well as the migration of existing instances from
an old class structure to a new one. The used ADSU mechanism performs all the
changes atomically, preserving the state of the application and its behaviour while
the application is running (cf. Section 3.2). The ADSU guarantee the atomicity
of the modifications, providing isolation to the running threads, synchronizing
the access and finding a safe update point.

Regarding refactorings, it means that all classes are modified at once and
that live instances are directly migrated from the current version to the final
one in an atomic way.

3.1. Description of the Atomic Refactoring Application
Our proposed refactoring solution requires that the used ADSU provides ways

of expressing the changes to be applied. These changes include modifications
to class structure and method body as well as the process needed to migrate
instances. The set of changes required and the migration logic needed is called a
patch [37].

We require that the selected ADSU includes a reification of the patch. A
patch includes the details of all the modification to perform. It includes the
changes in method and classes and the logic to migrate the instances. The
proposed solution represents the modifications with instances of a hierarchy of
classes as shown in Figure 3. These operations are later composed to produce
the patch that is the entry point to the ADSU.

Operations
on Methods

Install
Method

Alias
Method

Remove
Method

Create
Method

Rewrite
Method

Deep
Rename
Message

Rename
Inst. Var.

Operations
on Inst. Var

Add Inst.
Var

Alias Inst.
Var

Remove
Inst. Var

Figure 3: Patch Operations.

We call migration policy [53], the behaviour needed to migrate an object
from one version to another. Migration policies are special cases of transform
functions [36, 37]. They apply only to the transformation of live instances. In
the DSU literature, transform functions are more generic and transform not only
live instances.

All the changes are scheduled and performed atomically, the ADSU mecha-
nism determines the exact moment to execute the update. The ADSU solution
finds a safe update point. The lookup of the safe update point is described in

10

Section 5. Basically, the solution looks for a point where there are no threads
executing (or to execute) modified methods. This is performed through the
inspection and manipulation of the thread call stacks.

The atomic refactoring engine generates patches automatically. As the
changes required by an automatic refactoring are well known, the patch is
generated with this changes. Instead of applying the changes in the methods
and classes they are accumulated in a patch.

In our implementation for validation we are using gDSU [52]. This ADSU
solution presents the required elements to implement atomic refactorings. How-
ever, our proposed refactoring solution is adaptable to use any other ADSU that
provides such requirements.

Figure 4 describes the overall process of applying a refactoring using a generic
ADSU that provides the the requirements of our solution, the following section
expands the details:

• In Step 1, the user selects and configures the refactoring, this is performed
through the same user interface the user uses in non-atomic refactorings.
When applying a refactoring, our solution does not need more information
than the one provided in the non-atomic implementation of the refactorings.
Indeed, all required information is already specified in the refactoring to
apply or it is retrieved from the live environment. After having all the user
input, the process is fully automatic.

• In Step 2, the atomic refactoring engine generates the patch. As described
before, this patch includes all the modifications needed and the migration
policies to migrate live instances. The creation of the patch is specified in
the refactoring definition. Most of the time, existing refactoring engines
compute the changes to be applied to classes and methods. With Atomic
Refactoring, refactorings should also compute the migration policies that
we will be applied to the instances.

• The patch is the entry parameter of the Atomic Dynamic Software Updater
(ADSU). In Step 3, the ADSU is invoked to apply the patch.

• In Step 4, ADSU applies all the changes in an atomic process. Preserving
the behavioural consistency [41] and also the consistency of live instances.
The ADSU can be executed while the system is running. The ADSU selects
the best moment to execute the update process, checking that none of the
running threads is using the affected instances. As the changes are applied
atomically, in case of an error or problem during the execution the process
is safely aborted.

After an update of the running environment by the ADSU, the atomic
refactoring is completed and the user can continue using it.

3.2. Atomic Dynamic Software Update Mechanism
The Atomic DSU mechanism provides a way of applying a patch in an atomic

way. The goal of the ADSU is updating the state of an application, including

11

...

...
A

...

...
B

...

...
C

...

...

:C

...

...

:B

...

...

:B

...

...
A

...

...
B

...

...
C

...

...

:C

...

...

:A

...

...

:C

Refactoring
Tool

patch DSU

Atomic

1. User selects
and configures
the refactoring.

2. Generates
the patch

1
2

3
4

Includes:
- Changes
- Migration

Policies

Automatic

Original Environment New Environment

3. Invokes the
DSU process

4. Updates the
Environment

Figure 4: The Atomic Refactoring process.

classes, methods as well as live instances. However, this state should be correctly
migrated to maintain consistency. The modified elements should take the new
form, the unmodified elements should keep their state, the global state of the
application should be preserved and the running threads should continue their
execution normally.

To achieve this goal, all the modifications are performed in a new environment,
without modifying the original environment, once all the changes are validated
the original environment is replaced by the new environment. During the
execution of the update all the other threads are suspended. After the update is
completed, the threads are resumed.

In Object Oriented Programming, an environment is the set of all live
instances and classes. In Smalltalk, all the elements in the system (instances,
classes, methods, global variables) are represented as objects and are accessible
inside the environment. An Object oriented environment is the space where all
the instances are contained, and where they interact with each other sending
messages [16, 54, 55].

All the modifications, migration policies and validations are included in the
patch. These elements are generated by the automatic refactoring engine. Each
refactoring includes its required changes and a set of validations to check its
effect.

Our solution can be implemented using any DSU mechanism that provides
atomic execution, application of multiple modifications in a patch, creation of
migration policies and a validation step before the actual commit of the atomic
execution.

Our proposed refactoring solution in combination with the selected ADSU
mechanism (gDSU) performs the following steps to apply a patch in an atomic
way [52]:

1. gDSU selects the moment in time to execute the update process. gDSU
can only apply an update when there is no thread executing code or using
objects to be modified. So, gDSU process waits for a safe point i.e. when
the stacks of all the threads do not contain a method to be updated. This
is performed through thread call stack reflection. When a safe point is

12

detected all threads are suspended. If some threads are using instances
through other methods, gDSU will update the objects and references in
the execution stack trace. All the instance references are updated, not only
the ones in the heap but also the ones in thread stacks.

2. All classes to be modified are created in a new environment, and the
changes are applied in the new environment without tampering the original
environment. The classes in the new environment are created as they are
needed by the changes in the patch. The new classes are not declared in the
original environment, they are declared in the new environment. After this
step, the new environment contains a copy of all the modified classes with
the changes applied. The copying of classes produces an impact in time
and memory, although as the number of modified classes and methods in
a automatic refactoring is limited this impact is also limited. By definition
each automatic refactoring has a limited impact in classes and methods.

3. When all the classes are modified in the new environment, the affected
instances should be migrated. gDSU applies all the migration policies
needed to migrate the objects. Each of the affected instances is copied to
the new environment. During the copy, the migration policies are applied.
So, the resulting instances have the migrated state from the ones in the
original environment.

4. When all live instances are migrated, the results can be validated. The
validation logic is included in the patch. The validations are run on the
new environment. This validation logic is generated by the refactoring
engine. Each refactoring has, by definition, a set of validations to execute.
If the validation is unsuccessful the new environment is discarded without
affecting the original environment. If the validations are successful the
update process continues. However, if one of the validations fail, the process
is aborted. When the process is aborted, the whole new environment is
discarded without affecting the original environment. After the abortion,
all the threads are resumed.

5. If the validation is successful the original environment is replaced with the
new environment through the use of a bulk swap operation. This operation
replaces all the instances in the original environment with the corresponding
instances in the new environment. Performing this replacement will move
to the original environment all the modified classes and migrated instances.
It will move also all the new instances that are referenced by classes, global
variables, or migrated instances.

6. Finally, gDSU process performs a clean-up. It frees all the structures and
data used during the process and resumes all the threads, so the application
can continue its normal execution.

Section 4 provides examples of this process through the application of two
refactorings.

13

4. Preserving Instance State when Applying Refactorings with our
ADSU

Our refactoring model and its tool are successfully used to correctly handle
instances when applying refactorings presented in Section 2. In essence, our
refactoring engine generates the corresponding migration policy for existing
instances according to the currently applied refactoring.

We have applied this technique to implement the 17 instance corrupting
refactorings existing in Pharo1.

4.1. Pull Up Instance Variable
In the case of Pull Up Instance Variable the migration policy should correctly

copy the values from the instances before the application of the refactoring to the
refactored instances. There is no need of transforming the values, just not losing
them and correctly re-assign them into the refactored instances. To achieve this,
the atomic refactoring engine generates a migration policy for the refactored
class and its subclasses. This policy copies the state of all affected instances
into newly created refactored instances. Then gDSU creates the refactored
instances in the new environment. The refactoring engine correctly initializes
new instances with the saved state even if refactored objects have a different
layout from original ones (e.g. instance variable order has changed) by using the
instance variable names. Relying on names is the default migration policy of
gDSU and it is automatically generated. Here the automatically generated code
for the migration policy of a pull up refactoring:

migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

new class instanceVariables do: [:newIV |
old class instanceVariableNamed: newIV name

ifFound: [:oldIV | newIV write: (oldIV read: old) to: new]].

This migration policies iterates all the instance variables defined in the new
instance. In Smalltalk, the instance variables are reificated as objects. They can
be accessed by the class of an object. The code iterates the instance variables of
the new instance, and looks for the one with the new name in the old instance.
If the instance variable is found in both instances, the object representing the
instance variable is used to read it from the old instance and to write it in the
new instance.

4.2. Split Class Refactoring
For solving the live instance migration of Split Class, the atomic refactoring

engine generates a more complex migration policy. Although this migration

1Atomic refactoring implementation is available at
https://github.com/tesonep/pharo-atomic-refactors

14

https://github.com/tesonep/pharo-atomic-refactors

policy is more complex because it has transformations of values, the migration
policy is generated automatically.

We call mother objects the instances of the selected class for the refactoring
and child objects the instances of the newly created class. We have two versions
of the mother object, the old and the new one. This is shown in the Figure 2c
and Figure 2e. The first figure shows the instance before the migration, with
all the values of the instance even the ones to be migrated to the new class.
And the second figure shows the two instances that are the desired result of the
refactoring. This migration policy performs the following steps for each of the
instances to migrate:

1. Create a new instance of the child class.
2. Store this new object into the instance variable of the new mother object.
3. Copy all the instance variables to extract to the new child object.

The creation of the new instances, the copy of all the instance variable values
to the new created instance and building the relationship between the migrated
mother object and the new child object are not performed by default by gDSU.
It is the responsibility of the migration policy to perform the following tasks:

• It creates a new child instance.

• From the old mother instance, it copies all the instance variable values to
the newly created object.

• It adds a reference to the child object in the new mother instance. Using
for this the new instance variable in the mother object.

This migration policy is automatically generated by the atomic refactoring
engine using the information it already has. A detailed explanation of the
implementation of this refactoring is presented in Section 5.1.

5. Implementation

We validate our proposed solution by the implementation of an extension
to the refactoring tool present in the Pharo Programming Environment. We
selected Pharo because (1) it supports live programming with an advanced
debugger allowing to define methods on the fly, dynamic recompilation of classes,
and other features supporting life-programming such as instance migration, (2)
the Refactoring engine available in Pharo is the direct evolution of the original
Refactoring Browser [7] implemented in Smalltalk, (3) the Pharo Refactoring
engine propose one of the most complete refactoring implementation with 50
refactorings.

We implemented our Atomic Refactoring solution based on the use of
gDSU [52]. This ADSU solution has some characteristics that are required
for the implementation of our proposed atomic refactorings. It supports the
definition of patches. Each patch contains the set of changes, migration policies

15

and validations. Also, gDSU runs as a library without needing to modify the
running Virtual Machine or expecting the target code to follow any guideline.

As required by our solution gDSU tool receives a patch describing the
modifications. The patch contains not only all the changes to perform but also
the migration policies to apply. This ADSU allows us to perform all the changes
in an atomic way, which means all the modifications are applied at once. The
implementation follows the description in Subsection 3.2.

Also, it allows the use of migration policies to describe how the objects should
be migrated from the old version to the new version. The selected ADSU allows
an easy reuse of the migration policies. This feature eases the development of
the migration policies for the different refactorings. Moreover, gDSU provides
a number of default migration policies that can be used. However, in our
implementation, we need to implement our own migration policies to be able to
express more complex instance migrations.

gDSU also allows us to validate the correct execution of the update. This task
is performed by custom code implemented as validation objects. A validation
object validates the result of the update process before committing the operation.
The validations objects are added to the patch and they are generated by the
refactoring tool. The validations are defined for each of the automatic refactorings.
Each automatic refactoring includes the validations as it includes the required
operations to do. For example, in the Pull-Up refactoring instances of the new
classes are validated to have the proper instance variable value.

Using them we validate the correctness of the refactoring after all the changes
are applied. Again the selected ADSU tool allows the reuse of different validations
in different refactorings. All the validation objects receive the original and new
environments and perform all the validations needed.

This feature is used when a refactoring operation needs to validate a post-
execution condition. Including validations is not mandatory, but provides a way
of validating the result of the refactoring execution, not only over the static
model but also on live instances. For example, it can be used in the Split Class
Refactoring to validate if the accessor methods in the original instances return
the same values.

Our solution is handling each refactoring as an atomic operation. When a
set of two or more refactorings modify the same classes, the required migration
policy should be capable of performing the migration taking into account both
refactorings. The required migration gets more and more complex. This required
complexity is outside the scope of our solution. So, our proposed solution applies
the set of refactorings as a sequence of atomic refactorings. By the refactorings
nature of state and behaviour preserving operations this decision does not affect
the final result of the operation.

As our solution generates the migration policies and validations automatically
based in the definition of the refactorings. We implemented for each refactoring
the code to generate them. This automation constraints our solution to apply
each refactor atomically. We does not support to apply two or more refactorings
at the same time. As they might modify the same class in many ways that
cannot be analysed by the automatic generation of the migration policies.

16

We decided to implement the refactoring tool as an extension, so we can
reuse all the user interface and the integration of existent tool with the IDE.
As the required information to apply a refactoring is the same required by the
previous implementation of the refactoring tool, it was not needed to implement
modifications in the user interface. The implementation is available in Github2

and can be easily downloaded and used in Pharo 6. gDSU [52] is also available
in Github3, it is also intended to be used in Pharo 6.

5.1. Application of the Refactoring step by step

name
street
number
city

Citizen

name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

:Citizen

Figure 5: State before refactoring

To apply the changes in an atomic way a number of steps are executed. All
these steps are performed during the atomic application of changes executed
by gDSU. Some of the steps are executed by gDSU and other by our proposed
solution. We will explain in detail the interaction of our solution with gDSU.
For doing so, we will describe the steps following the example presented in
Subsection 4.2.

Figure 5 shows the state before applying the changes. To perform the changes
the atomic refactorings and gDSU apply the following steps.

1. gDSU creates a new environment. All the new and modified objects and
class/methods will be stored in this new environment. The environment
starts empty. (Figure 6)

2. gDSU executes the patch that have been created by our refactoring solution.
This patch includes all the details to create and modify classes and methods
affected by the refactoring. The modified versions of the classes Citizen and
Address are created in the new environment. The refactoring operations
modify the copied classes without tampering the original environment.
For example, it is not needed to create the class at once, as the Address
class can be created empty and then add the different instance variables
(Figure 7).

2https://github.com/tesonep/pharo-atomic-refactors
3https://github.com/tesonep/pharo-AtomicClassInstaller

17

name
street
number
city

Citizen

name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

:Citizen

Original Environment

New Environment

Figure 6: A new environment is created

name
street
number
city

Citizen

name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

:Citizen

Old Environment

New Environment

name
Citizen street

number
city

Address
address

Figure 7: All the modifications to the classes are applied

3. Once the class modifications are completed, the Citizen instances should
be migrated. The migration policy migrates the Citizen instances, creating
the Address instance needed in each case (Figure 8). This migration is
performed using the refactoring migration policy. This policy is included
in the automatic refactoring engine, and it is used only for this refactor-
ing. The following code is the migration policy. The migration policy is
generated by our refactoring solution and it is applied atomically by gDSU.

migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

| child childClass targetClass oldClass oldValue |

"Step 1:uses the default migration for the mother object, that
copy all the instance variables by name.
This is implemented in the reusable part of the migration policies.
It copies the instance variable values by name, copying the instance

18

name
street
number
city

Citizen

name = 'Bart'
street = 'Evergreen Terrace'
number = 742
city = 'Springfield'

:Citizen

Old Environment New Environment

name
Citizen street

number
city

Address
address

name = 'Bart'
:Citizen street = 'Evergreen Terrace'

number = 742
city = 'Springfield'

:Address
address

Figure 8: Live instances are migrated

variables existing in the old instances into the new instance."
self basicMigrateInstance: new from: old.

"Step 2: recovers the newly child class created from the environment.
The newClassName is a parameter of the refactoring."
childClass := newEnv at: newClassName.

"Step 3: creates a new instance of the child class.
Using the class recovered from the environment the new instance is created."
child := childClass new.
targetClass := new class.
oldClass := old class.

"Step 4: add the reference from the mother object to the child object."
(targetClass instanceVariableNamed: referenceVariableName)

write: child to: new.

"Step 5: copy all the extracted instance variables.
Fill up the child instances with the variables extracted from the mother instance.

These are the instance variables that are extracted from the mother class.
These variables are a parameter to the automatic refactoring."

variablesNamesToExtract
do: [:e |
oldValue := ((oldClass instanceVariableNamed: e).

(childClass instanceVariableNamed: e)
write: oldValue read: old) to: child].

4. When all live instances are migrated, gDSU validates the correctness of

19

the refactoring, by the execution of a validation object generated by the
refactoring tool. In this case, it checks that all the Citizen instances have a
corresponding Address. As the validation is successful, the modified objects
in the old environment are replaced with the ones in the new environment.
The bulk swap operation replaces all the instances updating the references
to them. The logic to validate if the refactoring has been correctly applied
is provided by the refactoring solution based on each of the refactorings.
(Figure 9)

name
Citizen street

number
city

Address
address

name = 'Bart'
:Citizen street = 'Evergreen Terrace'

number = 742
city = 'Springfield'

:Address
address

Figure 9: The New environment replaces the old environment

5.2. Implementation details of gDSU: Dynamic Software Update from Develop-
ment to Production

This section provides a glance of some implementation details of gDSU. These
implementations details are key to understand the applicability of our proposed
atomic refactoring solution and the requirements that should be present in any
alternative Atomic DSU tool used by our solution.

Although the complete analysis of gDSU [52] is published as an independent
work and it is outside the scope of this work. For the sake of completeness of
this paper we analyse some implementations details of gDSU.

Update Window. gDSU executes the refactoring in an atomic way. To achieve
this objective, gDSU requires an update window. During the atomic update
window gDSU is the only thread modifying the environment. Before starting to
perform the update, gDSU tool suspends all running threads. The threads are
suspended to guarantee that no new live instances of the old version are created
during the application of the update. Running threads cannot be suspended in
any moment, they should be in a safe quiescence point [56].

Safe Point Update. An unsafe point is when there is a thread that has in its
execution stack one or more of the methods to be modified by the update
process. Performing an update during an unsafe point produces corruption in
live instances or in the execution stack. The former is produced when the method
code access or modifies live instances that have their structure modified. The
later is produced when the thread tries to execute code that is no longer valid
(e.g., sending a message that does not exist or executing a method that has been
changed).

20

Safe Point Definition. gDSU tool defines a safe quiescence point when none of
the threads has methods to be modified in their execution stack. The threads
using instances that should be migrated does not represent a problem to the
ADSU. As all the instances are migrated using the bulk swap operation. This
operation modifies the object stack of the running threads as the heap. This
operation, that is natively implemented in the VM, traverses the heap and the
stack replacing all references to a given instance with the references to the new
instances. This operation is needed to already support live programming and
replacing of live instances.

Safe Point Detection. gDSU detects the safe point to perform the update by
monitoring the running threads. When the ADSU tool is invoked to perform
the update process, it checks all the running threads to see if they are in a safe
quiescence point. If the threads are in a safe point, the threads are suspended
and the update process is performed. However, if one or more of the threads
are in an unsafe point, gDSU will wait until all the threads are in a safe point.
gDSU has to detect the moment when all the threads are at a safe point. To
perform this, the ADSU tool modifies the execution stack of the threads that are
not at a safe point. gDSU tool inserts a new method activation in the execution
stack, just after the execution of the methods that should be modified. Each
time a thread exits a method to be modified, the ADSU tool is activated to
recheck all the threads. This process continues until a safe point is achieved,
or after a number of retries, gDSU cancels the update because the threads are
never getting to a safe point.

Execution During the Update Window. During the update window, the only
thread running is the gDSU thread. So, the update window should be as short
as possible. To minimize the time, gDSU only copies the classes that need to be
modified. The set of classes and instances to be copied are calculated during the
update process. It is calculated from the set of changes, as the changes includes
the classes they affect. The old environment is only accessed in a single point.
In this point, the classes and instances are copied to the new environment.

Atomic Application of Changes. gDSU applies all the changes in the new envi-
ronment in a bulk swap operation, as said before this operation is implemented
in the Smalltalk Virtual Machine. However, the existent implementation needs
to update the whole memory [57], extending the time required in the update
window. So that, gDSU is using the Miranda [57] et al. implementation that
reduces the update window time.

5.3. Limitations
Our proposed atomic refactoring solution does heavy usage of the underlying

Atomic DSU tool. It generates all the information required to perform the
refactoring and the the ADSU tool is the one that executes the update.

So, the selection of the ADSU to use limits the capabilities of our solution.
Selecting gDSU allows us to perform updates in production and development

21

environments while this environments are executing. Moreover, it allows our
solution to perform self updates and updates in the Pharo core libraries.

However, we are aware of the limitations of any existing ADSU solution. Even
more, our proposed refactoring solution will never be able to execute refactorings
that require updates not provided by the ADSU tool.

One of the advantages of selecting gDSU is that it uses a safe-first protocol
to update the application. It is designed to discard any update that cannot pass
the validations, allowing us to guarantee that the refactoring has been correctly
applied. We consider this approach adds value to the solution, because we
consider that a partial applied refactoring affects the stability of the application
and we prefer to cancel the whole refactoring and notify the user.

One of the known limitations of selecting gDSU is that it still may not find
suitable update-points or even may produce crashes due to an incorrect detection
of safe-update points. This is a known overcome of the DSU solutions using
activeness checking [59, 58].

We consider, that the analysis and the solutions to the different problems and
limitations of a given DSU solution is outside the scope of this paper. However,
our proposed solution could be adapted to generate patches for other ADSU
solution. Allowing us to use an alternative solution in case of finding that the
limitations of gDSU make the atomic refactorings impractical.

6. Validation

To validate our proposed solution we have implemented atomic refactorings as
an extension of the Pharo Refactoring Browser. Our validation implementation
uses gDSU as its Atomic DSU tool. This implementation is intended to run
in Pharo 6.1. We have stated in previous sections the motivations for choosing
Pharo and gDSU.

This implementation presents an atomic variation for all the Pharo Refac-
toring Browser refactorings that introduce instance corruption. This set of
refactoring includes 17 different refactorings.

As our proposed solution performs heavy use of an atomic DSU tool, we need
to have a clear difference between the validations of our proposed solution and
the validation of the underlying ADSU.

Our proposed solution generates all the information required by gDSU to
correctly apply the changes. Once the patch is produced is the task of the ADSU
to correctly execute it. The patch contains all the changes to execute, all the
migration strategies needed and all the validations to perform in each refactoring.

The correct generation of the patch and the generation speed is under analysis.
The correctness and speed of the atomic update process is outside the scope of
this work.

6.1. Validation Methodology
To validate our proposed solution we executed instance corrupting refactorings

in three different scenarios. We used to set-up this scenario a test application

22

that mimics a REST Server application. This application implements a stateful
chat between the connected users. The code of the application, instructions and
scripts to set-up it are available in Github4.

Development Scenario. We set-up a development environment with our applica-
tion code. We run a simulation of requests to generate application objects. This
simulation produces around 30 000 live instances. After the simulation, we have
an environment with live instances that is useful to perform live programming
refactorings. This environment replicates a common development environment
where the developer has not only the code but also a set of data to try her
changes.

Production Scenario. Using the same application, a HTTP server is launched.
This HTTP server replicates a production server. This is designed to be deployed
as a productive application, as it uses the production ready frameworks and
technologies used in Pharo. We generated 10 concurrent requests to our server
during 2 minutes, generating an average of 700 requests per second. This
simulation generates the load expected in a production server. Then, we apply
the refactoring at minute 1.

Pharo. Pharo is a fully reflective, self constrained language, tools and IDE. So,
all the development tools and libraries are developed in Pharo, and these libraries
are used to modify Pharo itself. When developing Pharo tools and libraries is
frequent to get corrupted instances. As it is a live programming environment,
corrupted instances produces the crash of the whole development environment.
This self-modification nature constitutes a perfect test bench for validating our
proposed solution.

All the validations and benchmarks have been executed using Pharo 6.1
32-bits, in a machine running OS X 10.12.6 having a 2,6 GHz Intel Core i7 and
8 Gb of 1600 MHz RAM memory.

6.2. Validation 1: Correctness of the implementation
Research Question. Does our solution complies with the existing behaviour of
Pharo Refactoring Browser?

Scenario. The Pharo implementation of the Refactoring Browser includes an
extensive set of tests to validate their execution and the impact on the classes
and methods each refactoring operation modify.

To validate our extension we executed all the tests included in the old Pharo
implementation.

Results. All the tests execute correctly, the results of executing the old imple-
mentation or the new implementation is the same. We can guarantee that the
atomic refactorings executes the same modifications in classes and methods that
the reference implementation.

4https://github.com/tesonep/chatServer.git

23

6.3. Validation 2: Updating live instances
Research Question. Is our solution capable of performing atomic refactorings in
an application with a high number of instances?

Scenario. In this validation we have the objective to test the ability of our
proposed solution of correctly applying refactorings while preserving the state of
live instances.

This validation is performed in the Development Scenario.
For doing so, we executed the following refactorings on live instances of the

application:

• Extract Class

• Pull-up instance variable

• Extract Subclass

• Introduce Local Extension

• Replace Array with Object

These refactorings where selected because presents different scenarios of
migration policies, validations and changes.

We executed the refactorings in isolation, executing only one at the time.
And all together, all the refactorings executed in sequence.

After each isolated execution and the combined execution we validate the live
instances to guarantee that all the instances have preserved their state. By using
a test application that we designed to present all the situations required to test
the validity of the solution; we have performed the validation in two different
ways. First, a manual analysis of some of the migrated instances, checking that
the logic of the migrated application is still valid, the live instances correctly
migrated and the test of some of the application features. And secondly, a set of
tests to validate that all the instances have correctly state and the automatic
validations performed during the application of the migration are covering all
migration scenarios. The checks were performed on a representative set of
objects.

This validation is complementary with Validation 3. This validation is taking
a sample of instances to directly validate allowing us to correctly detect which
of the refactorings is failing. Then in Validation 3 we perform the analysis on
all instances indirectly by executing the application.

Results. The migrated instances preserves correctly their state. All the valida-
tions executed on the objects are correct.

6.4. Validation 3: Updating live instances during execution
Research Question. Is our solution capable of performing atomic refactorings in
an application with a high number of instances while the application is executing
and adding / modifying live instances?

24

Scenario. In this validation we have the objective to test the ability of our
proposed solution of correctly applying refactorings while preserving the state of
live instances while the application is under heavy usage.

This validation is performed in the Production Scenario.
For doing so, we executed the following refactorings on live instances of the

application:

• Split Class

• Pull-up instance variable

• Extract Subclass

• Introduce Local Extension

• Replace Array with Object

These refactorings where selected because presents different scenarios of
migration policies, validations and changes.

We executed the refactorings in isolation, executing only one at the time.
And all together, all the refactorings executed in sequence.

The execution of the refactorings is performed while the application is receiv-
ing 10 concurrent request with an average of 700 request per second.

After each isolated execution and the combined execution we validate the
live instances to guarantee that all the instances have preserved their state.

Results. The migrated instances preserves correctly their state. All the valida-
tions executed on the objects are correct.

We have validated the correct migration of the state by continuing with the
normal execution of the application. As the load on the application is using the
migrated instances, the correct execution of the second half of the test guarantee
that all the migrated instances are correct.

This validation is complementary to Validation 2, as this validation performs
an indirect check of all the migrated instances.

6.5. Validation 4: Self Modification
Research Question. Is our solution capable of performing atomic refactorings in
the executing Pharo libraries, including the atomic refactoring engine and the
ADSU?

Scenario. For this validation we execute the following refactoring in Pharo
library classes that are used in the system.

• Split Class

• Pull-up instance variable

• Extract Subclass

25

• Introduce Local Extension

• Replace Array with Object

We target the refactorings to the Collections framework, the UI framework
and the atomic refactoring engine.

Results. The refactorings have been correctly applied without affecting the
stability nor the state of the Pharo IDE. This validation checks indirectly the
result of the migration. As the Pharo IDE and environment is continuously using
the affected code and instances. This is guarantee as any error in the migration
of instances or in the application of the refactoring results in an unusable system.

6.6. Validation 5: Benchmarks
Research Question. Does the generation of the patch generates an impact in the
duration of the update?

Scenario. This validation asserts that our solution does not introduce a noticeable
impact in performance nor memory footprint in the generation of the patch.

For doing so we have compared the execution of a hand-crafted patch and
the execution of the atomic refactoring tool.

The baseline time and memory consist of only the execution of the hand-
crafted patch. This allows us to measure the memory and time impact of
executing the atomic update.

The measures using our solution includes both the generation of the patch
from the analysis of the state of the system and the execution of the update.

The execution have been performed on a running system using the Production
Scenario, with 10 concurrent request and 700 request per second. This generates
between 30.000 live instances to migrate.

The selected refactoring to test is Split Class.

Results. The execution of this validation does not present a noticeable impact
in memory nor time in the execution of the baseline test and our solution test.

Executing both tests produce an average memory footprint of 10MB and an
average execution time of 300 ms.

7. Related Works

The Rewrite Engine [41, 7] provides a complete refactoring tool. Since 1996,
it has been used in different Smalltalk implementations like Pharo, Dolphin
Smalltalk, VisualWorks and VASmalltalk. However, this tool does not support
migration of live instances. Our solution handles the correct migration of live
instances.

Dynamic Software Update tool as DCEVM [25], JRebel [26], Gosh! [60],
Rubah [61] and JavAdaptor [27] provides the means to perform dynamic software
update in Java. However, they are not integrated with refactoring tools. The

26

refactoring operations are performed on the source code. Even though having
the support to migrate the instances, the developer is in charge of generating
the migration patch and not the refactoring tools. The refactoring tools are
not aware of the DSU tools, and the IDEs handle the changes statically only.
Our solution introduces the integration of both tools. In the related works, the
tools are not correctly integrated, depending on the developer to implement the
changes performed by the refactoring by a DSU tool.

Moreover, in the work describing JavAdaptor, it have been used to implement
automatic refactoring but the migration of instances have not been addressed.
The lack of instance migration reduces the applicability of the solution. Our
solution provides an integrated solution.

Working with a dynamic language does not change the disconnection between
the ADSU tools and refactoring tools. An example of this is Pymoult [28], that
provides the support to migrate live instances after a refactoring operation. But
none of the tools working on a live Python environment uses this support.

The dynamic nature of Javascript allows the change of the running code and
modification of the instances. However, the refactoring tools present in Javascript
development environments such as WebStorm [62], Grasp [63], Atom [64] and
Visual Studio [65] handle all the changes in source code level, without caring
about live programming.

Also the live programming tools for Javascript as Nodemon [29], Firebug [30]
or Chrome Dev Tools [31] do not handle the migration of live instances. They only
migrate the code generating these instances. The live programming experience
in these environments is not comparable, as they are not intended to implement
complex automatic refactorings.

As we shown, the infrastructure to integrate DSU tools and automatic
refactorings in IDE exist in the related work, although the transparent integration
that we propose is not present in the related work.

8. Conclusion

In this paper, we identify the problem of refactorings corrupting instances
when there are live instances of the modified classes. We propose a categorization
of the instance corruption. And we show that 36.11% of refactorings described
in the literature present this problem. Moreover, we proposed a refactoring
implementation mechanism which solves this problem.

Our Atomic Refactorings mechanism preserves instances’ state. It is suitable
for live programming environments because it does not corrupt instances of
refactored classes. We use an Atomic Dynamic Software Update engine (gDSU),
this engine offers the possibility of modifying all the objects in a separated
environment. When all the changes are performed, it replaces all the modified
objects at once.

Our solution is integrated with a refactoring tool existing in an industrial plat-
form. The use of this new extension is transparent to the developer. Developers
perform the refactorings without thinking to regenerate the live instances.

27

As a future work, we can extend this atomic behaviour to all the changes
performed in the live programming environment not only automatic refactorings.
Providing ways to the developer of changing the code with the guarantee that
the live instances are always consistent. Detecting the nature of the changes
and the intention of the developer is not straight forward when the changes
are constrained to automatic refactorings. So, one interesting future work is
providing the developer a way of expressing the required missing information
with the minimum bureaucracy.

Acknowledgement

This work was supported by Ministry of Higher Education and Research,
Nord-Pas de Calais Regional Council, CPER Nord-Pas de Calais/FEDER DATA
Advanced data science and technologies 2015-2020.

28

References

References

[1] S. Demeyer, F. V. Rysselberghe, T. Gîrba, J. Ratzinger, R. Marinescu,
T. Mens, B. D. Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger,
H. Gall, M. Wermelinger, M. El-Ramly, The LAN-simulation: A re-
search and teaching example for refactoring, in: Proceedings of IWPSE
2005 (8th International Workshop on Principles of Software Evolution),
IEEE Computer Society Press, Los Alamitos CA, 2005, pp. 123–131.
doi:10.1109/IWPSE.2005.30.
URL http://scg.unibe.ch/archive/papers/Deme05aLANRefactoring.pdf

[2] J. Koskinen, H. Lahtonen, T. Tilus, Software maintenance cost estimation
and modernization support, in: ELTIS-project, University of Jyväskylä,
2003.

[3] W. F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, Uni-
versity of Illinois (1992).
URL ftp://st.cs.uiuc.edu/pub/papers/refactoring/http://www.laputan.org/pub/
papers/opdyke-thesis.pdf

[4] M. Lehman, L. Belady, Program Evolution: Processes of Software Change,
London Academic Press, London, 1985.
URL ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf

[5] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton, Measure it?
manage it? ignore it? software practitioners and technical debt, in: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2015, ACM, New York, NY, USA, 2015, pp. 50–60.
doi:10.1145/2786805.2786848.
URL http://doi.acm.org/10.1145/2786805.2786848

[6] M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley Professional, 1999.

[7] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk,
Theory and Practice of Object Systems (TAPOS) 3 (4) (1997) 253–263.

[8] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans-
action on Software Engineering 30 (2) (2004) 126–139. doi:10.1109/
TSE.2004.1265817.

[9] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring chal-
lenges and benefits, in: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, ACM, 2012,
p. 50.

29

http://scg.unibe.ch/archive/papers/Deme05aLANRefactoring.pdf
http://scg.unibe.ch/archive/papers/Deme05aLANRefactoring.pdf
http://dx.doi.org/10.1109/IWPSE.2005.30
http://scg.unibe.ch/archive/papers/Deme05aLANRefactoring.pdf
ftp://st.cs.uiuc.edu/pub/papers/refactoring/ http://www.laputan.org/pub/papers/opdyke-thesis.pdf
ftp://st.cs.uiuc.edu/pub/papers/refactoring/ http://www.laputan.org/pub/papers/opdyke-thesis.pdf
ftp://st.cs.uiuc.edu/pub/papers/refactoring/ http://www.laputan.org/pub/papers/opdyke-thesis.pdf
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
http://doi.acm.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
http://dx.doi.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817

[10] Z. Xing, E. Stroulia, Refactoring practice: How it is and how it should be
supported-an eclipse case study, in: Software Maintenance, 2006. ICSM’06.
22nd IEEE International Conference on, IEEE, 2006, pp. 458–468.

[11] D. Dig, R. Johnson, The role of refactorings in API evolution, in: Pro-
ceedings of 21st International Conference on Software Maintenance (ICSM
2005), 2005, pp. 389–398.

[12] M. Kim, T. Zimmermann, N. Nagappan, An empirical study of refactor-
ingchallenges and benefits at microsoft, IEEE Transactions on Software
Engineering 40 (7) (2014) 633–649.

[13] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, F. Palomba, An ex-
perimental investigation on the innate relationship between quality and
refactoring, Journal of Systems and Software 107 (2015) 1–14.

[14] E. Sandewall, Programming in an interactive environment: The “lisp”
experience, ACM Comput. Surv. 10 (1) (1978) 35–71. doi:10.1145/
356715.356719.
URL http://doi.acm.org/10.1145/356715.356719

[15] G. L. Steele, Common Lisp The Language, 2nd Edition, Digital Press, 1990.

[16] A. Goldberg, D. Robson, Smalltalk 80: the Language and its Implementation,
Addison Wesley, Reading, Mass., 1983.
URL http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

[17] F. David, JavaScript: The Definitive Guide, 5th Edition, O’Reilly Media,
Inc., 2006.

[18] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, J. Kato, It’s alive! continuous feedback in ui programming, in:
ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 95–104.

[19] C. M. Hancock, Real-time programming and the big ideas of computational
literacy, Ph.D. thesis, Massachusetts Institute of Technology (2003).

[20] S. Bragagnolo, L. Fabresse, J. Laval, P. Estefó, N. Bouraqadi, Pharos: a ros
client for the pharo language (2014).

[21] M. Campusano, J. Fabry, Live robot programming: The language, its imple-
mentation, and robot api independence, Science of Computer Programming
133 (2017) 1–19.

[22] J. Lim, Live programming for robotic fabrication, Journal of Professional
Communication 3 (2).

[23] S. Adam, U. P. Schultz, Towards interactive, incremental programming of
ros nodes, arXiv preprint arXiv:1412.4714.

30

http://doi.acm.org/10.1145/356715.356719
http://doi.acm.org/10.1145/356715.356719
http://dx.doi.org/10.1145/356715.356719
http://dx.doi.org/10.1145/356715.356719
http://doi.acm.org/10.1145/356715.356719
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

[24] A. Chiş, O. Nierstrasz, A. Syrel, T. Gîrba, The moldable inspector, in:
2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), Onward! 2015, ACM,
New York, NY, USA, 2015, pp. 44–60. doi:10.1145/2814228.2814234.
URL http://doi.acm.org/10.1145/2814228.2814234

[25] T. Würthinger, C. Wimmer, L. Stadler, Dynamic code evolution for java,
in: Proceedings of the 8th International Conference on the Principles and
Practice of Programming in Java, PPPJ ’10, ACM, New York, NY, USA,
2010, pp. 10–19. doi:10.1145/1852761.1852764.
URL http://doi.acm.org/10.1145/1852761.1852764

[26] ZeroTurnAround, What developers want: The end of application redeployes,
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf (2012).

[27] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schröter,
G. Saake, Javadaptor—flexible runtime updates of java applications, Soft-
ware: Practice and Experience 43 (2) (2013) 153–185.

[28] S. Martinez, F. Dagnat, J. Buisson, Pymoult : On-Line Updates for Python
Programs, in: ICSEA 2015 : 10th International Conference on Software
Engineering Advances, Barcelone, Spain, 2015, pp. 80 – 85.
URL https://hal.archives-ouvertes.fr/hal-01247603

[29] Nodemon, https://github.com/remy/nodemon.

[30] Firebug, https://addons.mozilla.org/en-US/firefox/addon/firebug/.

[31] Chrome dev tools, https://developer.chrome.com/devtools.

[32] A. Orso, A. Rao, M. J. Harrold, A technique for dynamic updating of
java software, in: Software Maintenance, 2002. Proceedings. International
Conference on, IEEE, 2002, pp. 649–658.

[33] S. McDirmid, Living it up with a live programming language, SIGPLAN
Not. 42 (10) (2007) 623–638. doi:10.1145/1297105.1297073.
URL http://doi.acm.org/10.1145/1297105.1297073

[34] S. L. Tanimoto, Viva: A visual language for image processing, Journal
of Visual Languages & Computing 1 (2) (1990) 127 – 139. doi:https:
//doi.org/10.1016/S1045-926X(05)80012-6.
URL http://www.sciencedirect.com/science/article/pii/S1045926X05800126

[35] B. Shneiderman, Direct manipulation: A step beyond programming lan-
guages, IEEE Computer 16 (8) (1983) 57–69.

[36] M. Hicks, S. Nettles, Dynamic software updating, ACM Transactions on
Programming Languages and Systems 27 (6) (2005) 1049–1096. doi:
10.1145/1108970.1108971.

31

http://doi.acm.org/10.1145/2814228.2814234
http://dx.doi.org/10.1145/2814228.2814234
http://doi.acm.org/10.1145/2814228.2814234
http://doi.acm.org/10.1145/1852761.1852764
http://dx.doi.org/10.1145/1852761.1852764
http://doi.acm.org/10.1145/1852761.1852764
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
https://hal.archives-ouvertes.fr/hal-01247603
https://hal.archives-ouvertes.fr/hal-01247603
https://hal.archives-ouvertes.fr/hal-01247603
https://github.com/remy/nodemon
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.chrome.com/devtools
http://doi.acm.org/10.1145/1297105.1297073
http://dx.doi.org/10.1145/1297105.1297073
http://doi.acm.org/10.1145/1297105.1297073
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://dx.doi.org/https://doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/https://doi.org/10.1016/S1045-926X(05)80012-6
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://dx.doi.org/10.1145/1108970.1108971
http://dx.doi.org/10.1145/1108970.1108971

[37] H. Seifzadeh, H. Abolhassani, M. S. Moshkenani, A survey of dynamic
software updating, Journal of Software: Evolution and Process 25 (5) (2013)
535–568.

[38] F. Rivard, Évolution du comportement des objets dans les langages à classes
réflexifs, Ph.D. thesis, Ecole des Mines de Nantes, Université de Nantes,
France (1997).

[39] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker,
Pharo by Example, Square Bracket Associates, Kehrsatz, Switzerland, 2009.
URL http://pharobyexample.org/,http://rmod.inria.fr/archives/books/Blac09a-
PBE1-2013-07-29.pdf

[40] L. Tokuda, D. Batory, Evolving object-oriented designs with refactorings,
Automated Software Engineering 8 (1) (2001) 89–120.

[41] D. Roberts, J. Brant, R. E. Johnson, B. Opdyke, An automated refactoring
tool, in: Proceedings of ICAST ’96, Chicago, IL, 1996.

[42] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, B. van Ryseghem,
Bootstrapping reflective systems: The case of pharo, Science of Computer
Programming, 2014.
URL http://rmod.inria.fr/archives/papers/Poli14c-BootstrappingASmalltalk-
ScienceOfComputerProgramming.pdf

[43] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, A bootstrapping infras-
tructure to build and extend pharo-like languages, in: Onward!, 2015.
URL http://rmod.inria.fr/archives/papers/Poli15a-Onward-Bootstrapping.pdf

[44] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, M. Mattone, Virtualiza-
tion support for dynamic core library update, in: Onward!, 2015.
URL http://rmod.inria.fr/archives/papers/Poli15b-Onward-
CoreLibrariesHotUpdate.pdf

[45] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 227–242. doi:
10.1145/38765.38828.

[46] G. Bracha, Newspeak programming language draft specification version 0.06
(2010).

[47] The strongtalk type system for smalltalk, http://bracha.org/nwst.html.
URL http://bracha.org/nwst.html

[48] S. Subramanian, M. Hicks, K. S. McKinley, Dynamic software updates: A
vm-centric approach, SIGPLAN Not. 44 (6) (2009) 1–12. doi:10.1145/
1543135.1542478.
URL http://doi.acm.org/10.1145/1543135.1542478

32

http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://rmod.inria.fr/archives/papers/Poli14c-BootstrappingASmalltalk-ScienceOfComputerProgramming.pdf
http://rmod.inria.fr/archives/papers/Poli14c-BootstrappingASmalltalk-ScienceOfComputerProgramming.pdf
http://rmod.inria.fr/archives/papers/Poli14c-BootstrappingASmalltalk-ScienceOfComputerProgramming.pdf
http://rmod.inria.fr/archives/papers/Poli15a-Onward-Bootstrapping.pdf
http://rmod.inria.fr/archives/papers/Poli15a-Onward-Bootstrapping.pdf
http://rmod.inria.fr/archives/papers/Poli15a-Onward-Bootstrapping.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828
http://bracha.org/nwst.html
http://bracha.org/nwst.html
http://doi.acm.org/10.1145/1543135.1542478
http://doi.acm.org/10.1145/1543135.1542478
http://dx.doi.org/10.1145/1543135.1542478
http://dx.doi.org/10.1145/1543135.1542478
http://doi.acm.org/10.1145/1543135.1542478

[49] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, R. E.
Johnson, Use, disuse, and misuse of automated refactorings, in: Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12,
IEEE Press, Piscataway, NJ, USA, 2012, pp. 233–243.
URL http://dl.acm.org/citation.cfm?id=2337223.2337251

[50] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, D. Dig, A comparative
study of manual and automated refactorings, in: 27th European Conference
on Object-Oriented Programming, 2013, pp. 552–576.

[51] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know
it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

[52] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, S. Ducasse, Dynamic
software update from development to production, Journal of Object Tech-
nologydoi:10.5381/jot.2018.17.1.a2.

[53] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, S. Ducasse, Instance
migration in dynamic software update, in: Workshop on Meta-Programming
Techniques and Reflection, 2016.

[54] A. Goldberg, Smalltalk 80: the Interactive Programming Environment,
Addison Wesley, Reading, Mass., 1984.

[55] O. Nierstrasz, A survey of object-oriented concepts, in: W. Kim, F. Lo-
chovsky (Eds.), Object-Oriented Concepts, Databases and Applications,
ACM Press and Addison Wesley, Reading, Mass., 1989, pp. 3–21.
URL http://scg.unibe.ch/archive/osg/Nier89aSurveyOfOOConcepts.pdf

[56] I. Neamtiu, M. Hicks, Safe and timely updates to multi-threaded programs,
in: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, ACM, New York, NY,
USA, 2009, pp. 13–24. doi:10.1145/1542476.1542479.
URL http://doi.acm.org/10.1145/1542476.1542479

[57] E. Miranda, C. Béra, A partial read barrier for efficient support of live
object-oriented programming, in: International Symposium on Memory
Management (ISMM ’15), Portland, United States, 2015, pp. 93–104. doi:
10.1145/2754169.2754186.
URL https://hal.inria.fr/hal-01152610

[58] L. Pina, M. Hicks, Tedsuto: A general framework for testing dynamic
software updates, in: Software Testing, Verification and Validation (ICST),
2016 IEEE International Conference on, IEEE, 2016, pp. 278–287. doi:
10.1109/ICST.2016.27.

[59] C. M. Hayden, E. K. Smith, E. A. Hardisty, M. Hicks, J. S. Foster, Evalu-
ating dynamic software update safety using efficient systematic testing,
IEEE Transactions on Software Engineering 38 (6) (2012) 1340–1354,

33

http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dx.doi.org/10.5381/jot.2018.17.1.a2
http://scg.unibe.ch/archive/osg/Nier89aSurveyOfOOConcepts.pdf
http://scg.unibe.ch/archive/osg/Nier89aSurveyOfOOConcepts.pdf
http://doi.acm.org/10.1145/1542476.1542479
http://dx.doi.org/10.1145/1542476.1542479
http://doi.acm.org/10.1145/1542476.1542479
https://hal.inria.fr/hal-01152610
https://hal.inria.fr/hal-01152610
http://dx.doi.org/10.1145/2754169.2754186
http://dx.doi.org/10.1145/2754169.2754186
https://hal.inria.fr/hal-01152610
http://dx.doi.org/10.1109/ICST.2016.27
http://dx.doi.org/10.1109/ICST.2016.27

accepted September 2011. doi:http://doi.ieeecomputersociety.org/
10.1109/TSE.2011.101.

[60] A. R. Gregersen, M. Rasmussen, B. N. Jorgensen, Dynamic software
updating with gosh! current status and the road ahead, 2013. doi:
10.5220/0004562302200226.

[61] L. Pina, M. Hicks, Rubah: Efficient, general-purpose dynamic software
updating for java., in: HotSWUp, 2013.

[62] Jetbrains webstorm, https://www.jetbrains.com/webstorm/.

[63] Grasp, http://www.graspjs.com/.

[64] Atom, https://atom.io/.

[65] Microsoft visual studio, https://www.visualstudio.com/.

34

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2011.101
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2011.101
http://dx.doi.org/10.5220/0004562302200226
http://dx.doi.org/10.5220/0004562302200226
https://www.jetbrains.com/webstorm/
http://www.graspjs.com/
https://atom.io/
https://www.visualstudio.com/

Appendix A. Detailed Analysis of Refactoring: Improving the De-
sign of Existing Code

After analysing the impact to live instances of the refactorings described in
Refactoring: Improving the Design of Existing Code [6], we present here the
detailed analysis of all the refactorings in the book.

There are 46 refactorings that does not affect live instances, 6 refactorings
with complex corruption, 11 with class corruption, and 9 with internal corruption.

Appendix A.1. Refactoring without Corruption
The following refactorings do not have any impact in live instances. The

class structures are not affected.
Refactoring Page
Add Parameter 275
Change Reference to Value 183
Consolidate Conditional Expression 240
Consolidate Duplicate Conditional Fragments 243
Convert Procedural Design to Objects 368
Decompose Conditional 238
Encapsulate Collection 208
Encapsulate Downcast 308
Encapsulate Field 206
Extract Interface 341
Extract Method 110
Form Template Method 345
Hide Delegate 157
Hide Method 303
Inline Method 117
Inline Temp 119
Introduce Assertion 267
Introduce Explaining Variable 124
Introduce Foreign Method 162
Introduce Parameter Object 295
Move Method 142
Parameterize Method 283
Preserve Whole Object 288
Pull Up Constructor Body 325
Pull Up Method 322
Push Down Method 328
Remove Assignments to Parameters 131
Remove Control Flag 245
Remove Middle Man 160
Remove Parameter 277
Remove Setting Method 300
Rename Method 273

35

Refactoring Page
Replace Constructor with Factory Method 304
Replace Error Code with Exception 310
Replace Exception with Test 315
Replace Magic Number with Symbolic Constant 204
Replace Method with Method Object 135
Replace Nested Conditional with Guard Clauses 250
Replace Parameter with Explicit Methods 285
Replace Parameter with Method 292
Replace Record with Data Class 217
Replace Temp with Query 120
Self Encapsulate Field 171
Separate Query from Modifier 279
Split Temporary Variable 128
Substitute Algorithm 139

36

Appendix A.2. Refactoring with Complex Corruption
Refactoring Page Explanation
Change Bidirectional Asso-
ciation to Unidirectional

200 One of the sides of the bidirectional
association should be dropped. One
of the two classes involved in the
association will drop one instance
variable.

Change Unidirectional As-
sociation to Bidirectional

197 The modified instances need the ob-
jects referencing to them to con-
struct the bidirectional association.
This information is not present in
the modified instances.

Change Value to Reference 179 All the client instances of this object
should be updated to reference the
same object.

Introduce Null Object 260 All the clients using null in this field
should be updated to use the newly
created object. If this object should
be shared, it should be done in the
migration process.

Move Field 146 The field can come from any class in
the system, the original and target
classes are not related. The logic to
match from the original instances
to the target instances should be in
the migration process.

Replace Data Value with
Object

175 It exposes the same problems of Ex-
tract Class but the new instances
should be shared, it makes more
complex the migration process.

Replace Type Code with
Class

218 It exposes the same problems of Ex-
tract Class but the new instances
should be shared, it makes more
complex the migration process.

37

Appendix A.3. Refactoring with Class Corruption
Refactoring Page Explanation
Collapse Hierarchy 344 All the instances of the subclass

should be migrated to the super-
class. As the subclass does not
exist any more.

Extract Hierarchy 375 Some of the modified instances
should be migrated to the new
subclasses. The migration process
should manage the determination
of which class to instantiate in each
case.

Extract Subclass 330 Some instances should be migrated
to the new subclass. Also, the
structure of the main class is
changed.

Extract Superclass 336 A new superclass is extracted from
the common part in two classes.
The live instances need a migration
if the class structure changed.

Introduce Local Extension 164 Some instances should be migrated
to the new class. Establishing
which instances to migrate is a re-
sponsibility of the migration pro-
cess.

Replace Conditional with
Polymorphism

255 A new set of subclasses are cre-
ated, the live instances should be
migrated to these subclasses ac-
cording to the values of the orig-
inal instance variables. Also, the
instance variables of the subclasses
might be renamed.

Replace Delegation with In-
heritance

355 A pair of collaborating objects is
integrated into the same hierarchy.
Making the client of the delegation
a subclass of the delegate. The in-
stances of the client should be mi-
grated to the new subclass, and all
the instance variables of the del-
egate should be migrated to the
client.

38

Refactoring Page Explanation
Replace Inheritance with
Delegation

352 As a subclassification is replaced
with a delegation, all the internal
state of the single instance should
be migrated to the new collabo-
ration. Also, the delegate object
should be created.

Replace a Subclass with
Fields

232 All the instances of the subclass
should be migrated to the super-
class. Preserving the subclass state
and adding the needed fields to
distinguish from the superclass in-
stances.

Replace Type Code with
Subclasses

223 The instances should be migrated
to new subclasses depending on the
value of the type code.

Tease Apart Inheritance 362 As the hierarchy is split, the live
instances should be split in the
same way, putting the original in-
stance state to the corresponding
instances.

39

Appendix A.4. Refactoring with Internal Corruption
Refactoring Page Explanation
Duplicate Observed Data 189 As Extract Class, with the addition

that the extracted has a reference
to the original instance it was ex-
tracted from.

Extract Class 149 The live instances of the original
class should be split in the new
version of the mother instances and
the newly created child instance.

Inline Class 154 The internal state of the child ob-
ject should be migrated to the
mother instance.

Pull Up Field 320 The structure of the class has
changed, all the fields should be
migrated to their new position in
the object.

Push Down Field 329 The structure of the class has
changed, all the fields should be
migrated to their new position in
the object.

Replace Array with object 186 The same problematic of Extract
Class.

Replace Type Code with
State/Strategy

227 The same problematic of Extract
Class, only having more possible
subclasses.

Separate Domain From Pre-
sentation

370 The same problematic of Extract
Class.

40

Vitae

Pablo Tesone is a research engineer at Pharo Consortium 5. He obtained the
17 of December 2018 his PhD entitled Dynamic Software Update for Production
and Live Programming Environments under the direction of Stéphane Ducasse
(Inria Rmod team) and Luc Fabresse(CAR team of IMT Lille Douai Douai).
His research topics include Dynamic Software Update Solutions applied to Live
programming environments, distributed systems and robotic applications. He is
interested in improving the tools and the daily development process. He is an
enthusiast of the object oriented programming and their tools. He collaborates
with different open source projects like the ones in the Pharo Community 6 and
the Uqbar Foundation 7.

Guillermo Polito is a coding enthusiast, software engineer and researcher.
He is research engineer at CNRS working currently in the RMoD 8 and Emer-
aude 9 teams. His research targets programming language abstractions and
tool support for modular long-lived systems. For this, he studies how reflective
systems can evolve while maintaining these properties. He is interested in how
these concepts combine with distribution and concurrency. He obtained the 13
of april 2015 his PhD entitled Virtualization support for application runtime
specialization and extension under the direction of Stéphane Ducasse (Inria
Rmod team) and the supervision of Noury Bouraqadi and Luc Fabresse(CAR
team of Mines Douai). He loves coding and spends a lot of my free time helping
the amazing community of Pharo. He also participates in several projects such
as the Pharo’s database driver suite (DBXTalk), its shortcut framework, or the
static web page generator Ecstatic.

5http://pharo.org/
6http://pharo.org/
7http://www.uqbar.org/
8http://rmod.lille.inria.fr
9http://www.cristal.univ-lille.fr/emeraude/

41

Luc Fabresse is associate professor at IMT Lille Douai, France. His re-
searches aims at easing the development of mobile and constrained software
using dynamic and reflective languages such as Pharo. One of his goal is to
support live programming of mobile and autonomous robots in an efficient way.
He is the co-author of multiple research papers (http://car.mines-douai.fr/luc) and
he concretizes all these ideas (models and tools) in Pharo to develop, debug, test,
deploy, execute and benchmark robotics applications. Each year, Luc also gives
computer science lectures, co-organizes events (technical days, conferences, ...)
and promotes Smalltalk as an ESUG (European Smalltlak User Group) board
member.

Noury Bouraqadi is a full professor at IMT Lille Douai, France since 2001.
His research addresses mobile and autonomous robots from two complementary
perspectives: Software Engineering (SE) and artificial intelligence (AI). From
the SE perspective, he studies software architectures, languages and tools for
controlling individual robots. He mainly focuses on reflective and dynamic
languages, as well as component models, for a modular and agile development of
robotic software architectures. From the AI perspective, he studies coordination
and cooperation in robotic fleets. He mainly focuses on communication models
as well as emerging or predefined organizations for multi-agent robotic systems.

Stéphane Ducasse is directeur de recherche at Inria. He leads the RMoD 10

team. He is expert in two domains: object-oriented language design and reengi-
neering. He worked on traits, composable groups of methods. Traits have been

10http://rmod.lille.inria.fr

42

http://car.mines-douai.fr/luc

introduced in Pharo, Perl, PHP and under a variant into Scala and Fortress. He
is also expert on software quality, program understanding, program visualisations,
reengineering and metamodeling. He is one of the developer of Moose 11, an
open-source software analysis platform. He created Synectique 12 a company
building dedicated tools for advanced software analyses. He is one of the leader
of Pharo 13 a dynamic reflective object-oriented language supporting live pro-
gramming. The objective of Pharo is to create an ecosystem where innovation
and business bloom. He wrote several books such as Functional Programming in
Scheme, Pharo by Example, Deep into Pharo, Object-oriented Reengineering
Patterns, Dynamic web development with Seaside. According to google his
h-index is 51 for more than 11000 citations. He would like to thanks all the
researchers referencing his work!

11http://www.moosetechnology.org/
12http://www.synectique.eu/
13http://www.pharo.org/

43

	Introduction
	Class Refactorings that break Instances
	Challenges in refactorings: Two examples of corrupting refactoring
	Pull Up Instance Variable
	Split Class Refactoring

	Refactoring Impact Categories
	Ubiquity of the problem

	Our Solution: Atomic Refactorings for Live Programming
	Description of the Atomic Refactoring Application
	Atomic Dynamic Software Update Mechanism

	Preserving Instance State when Applying Refactorings with our ADSU
	Pull Up Instance Variable
	Split Class Refactoring

	Implementation
	Application of the Refactoring step by step
	Implementation details of gDSU: Dynamic Software Update from Development to Production
	Limitations

	Validation
	Validation Methodology
	Validation 1: Correctness of the implementation
	Validation 2: Updating live instances
	Validation 3: Updating live instances during execution
	Validation 4: Self Modification
	Validation 5: Benchmarks

	Related Works
	Conclusion
	Detailed Analysis of Refactoring: Improving the Design of Existing Code
	Refactoring without Corruption
	Refactoring with Complex Corruption
	Refactoring with Class Corruption
	Refactoring with Internal Corruption

