
HAL Id: hal-01920362
https://hal.inria.fr/hal-01920362

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Software Update from Development to
Production

Pablo Tesone, Guillermo Polito, Noury Bouraqadi, Stéphane Ducasse, Luc
Fabresse

To cite this version:
Pablo Tesone, Guillermo Polito, Noury Bouraqadi, Stéphane Ducasse, Luc Fabresse. Dynamic Soft-
ware Update from Development to Production. The Journal of Object Technology, Chair of Software
Engineering, 2018, 17 (1), pp.1-36. <hal-01920362>

https://hal.inria.fr/hal-01920362
https://hal.archives-ouvertes.fr

Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Dynamic Software Update from
Development to Production

Pablo Tesoneab Guillermo Politoc Noury Bouraqadib

Stéphane Ducassea Luc Fabresseb

a. Inria Lille-Nord Europe, F- 59000 Lille, France

b. IMT Lille Douai, Univ. Lille, Unité de Recherche Informatique Au-
tomatique, F- 59000 Lille, France

c. Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille,
F-59000 Lille, France

Abstract
Dynamic Software Update (DSU) solutions update applications while

they are executing. These solutions are typically used in production to
minimize application downtime, or in integrated development environments
to provide live programming support. Each of these scenarios presents
different challenges, forcing existing solutions to be designed with only
one of these use cases in mind. For example, DSUs for live programming
typically do not implement safe point detection or instance migration,
while production DSUs require manual generation of patches and lack IDE
integration. Also, these solutions have limited ability to update themselves
or the language core libraries, and some of them present execution penalties
outside the update window.

We propose a DSU (gDSU) that works for both live programming
and production environments. Our solution implements safe update point
detection using call stack manipulation and a reusable instance migration
mechanism to minimize manual intervention in patch generation. Moreover,
it also offers updates of core language libraries and the update mechanism
itself. This is achieved by the incremental copy of the modified objects
and an atomic commit operation.

We show that our solution does not affect the global performance
of the application and it presents only a run-time penalty during the
update window. Our solution is able to apply an update impacting 100,000
instances in 1 second. In this 1 second, only during 250 milliseconds the
application is not responsive. The rest of the time the application runs
normally while gDSU is looking for the safe update point. The update
only requires to copy the elements that are modified.

Pablo Tesone, Guillermo Polito, Noury Bouraqadi, Stéphane Ducasse, Luc Fabresse. Dynamic Software
Update from Development to Production. Licensed under Attribution 4.0 International (CC BY 4.0).
In Journal of Object Technology, vol. V, no. N, 2011, pages M:1–36. doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

2 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Keywords atomic, dynamic software update, object-oriented, live environ-
ments

1 Introduction

A Dynamic Software Update (DSU) [HN05, PH13] engine is a tool that manages the
migration of a piece of software from version 1 to version 2 while it is running. Its basic
idea is to turn the stop, install, restart cycle into a simple update action [PDF+15].
DSU engines perform such migrations minimizing downtime and guaranteeing that
the software will continue working as expected. They are important because software
must constantly evolve, otherwise it becomes obsolete [LB85, DDN02]. Examples of
such evolution are adding new features, improving performance or fixing bugs and
security failures.

DSU solutions (from now on DSUs) are typically used in two scenarios: a production
DSU is designed to update long running applications e.g., Web application servers;
a development DSU is integrated within a development environment to provide live
programming support. Each of these scenarios presents different requirements, making
existing solutions to be specialized for only one of them. For example, a production
DSU requires safer guarantees while a development DSU requires incremental updates
and IDE integration.

Both kinds of DSUs share the challenges listed below and revisited in Section 2.
Table 1 summarises how the different kinds of DSUs choose to balance their features
to cope with these challenges:

• State Migration. Migrating the state of an application between versions is
not a trivial activity. On the one hand, it requires a technique to replace old
values by new values (e.g., pointer swapping, lazy proxies). On the other hand,
it requires a way to express value transformations which are usually application
dependent and cannot be produced automatically.

• Change Identification. Determining the set of changes to apply (e.g., classes
to create, methods to modify, instances to migrate) is error prone if done manually.
Moreover, doing it automatically lacks precision: the process may miss business
dependent value transformations required for state migration.

• Core Libraries and Self Update. Updating the core parts of the run-time en-
vironment (e.g., core language libraries) and the DSU itself is difficult [PDF+15].
Such updates introduce circular dependencies that may break the update and
require special mechanisms to ensure atomicity.

• Safe Point Detection. Detecting and deciding the best moment to execute
an update (Quiescence Point, Safe Update Point or Alterability Point) [NH09]
presents a challenge for those applications that were not designed for it. Looking
for a safe update point should be fast enough to minimize the suspension time
and smart enough to detect as soon as possible when such update point will
never happen.

• Execution Penalty. Implementing all the above requires smart strategies to
avoid performance penalties outside the update itself. For example, the usage
of lazy proxies for state migration introduces an additional level of indirection
affecting the overall application performance.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 3

Challenge Development DSUs Production DSUs

State Migration Limited Yes

Change Identification Automatic Manual

Core lib & Self Update Limited No

Safe Point Detection No Manual

Execution Penalties Most Most

Examples Jrebel, Javeleon, Smalltalk Rubah, DUSC, Pymoult

Table 1 – How different DSU solutions face the challenges.

Table 1 presents a summary of how the existing engines balance these requirements.
As shown, the different types of DSU engines are designed to maximize some of the
challenges (See Related Work in Section 7).

On the one hand, development DSUs such as Jrebel [Zer12], Javeleon [GJK+12],
and the one found in Smalltalk [GR83] work as follows: they first identify the changes
from the IDE usage, then they apply the changes immediately without performing
a safe point detection. These solutions provide limited state migration because they
do not support value transformations. On the other hand, production DSUs such as
Rubah [PH13], DUSC [ORH02] and Pymoult [MDB15] receive a manually generated
patch with all the changes to apply including the value tranformations, they detect
and wait for a safe update point, they pause the application threads and apply the
changes. Both kinds of DSUs have limitations: they only have limited or no support
for core libraries or self update. In addition they often present performance penalties
outside of the update window.

Contribution. We propose (gDSU), a DSU that is practical for both live program-
ming and production environments (Sections 3 and 4). The entry point of gDSU is a
patch containing the changes and migration rules to apply. gDSU uses a conservative
safe update point detection strategy to decide when it is best to apply such update,
based on call stack manipulation. To allow atomic core library and self updates and
avoid meta-circularity problems, gDSU performs a copy of all objects affected by
the update. It then leverages forwarders, a modern memory management technique
existing in the Pharo VM, to apply the commit operation with minimal performance
overhead [MB15].

To make gDSU practical for day-to-day usage, we implemented a state migration
mechanism via semi-automatically generated patches. We identify the changes that
should be included into a patch by inspecting the source code repository, or by listening
to IDE events. Such integration with existing tools minimises manual intervention
needed when identifying changes.

Even though our proposed solution is not the first one that is usable in both
scenarios, it is the first one to address in a practical way the problems of both update
scenarios. The other existing solutions are intended to be applied in one of the
scenarios, this design decision minimizes the applicability in the other scenario. We
demonstrate that our solution is applicable in both scenarios (Sections 5 and 7).

We implemented a working prototype of gDSU in Pharo [BDN+09]. We validated

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

4 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

our solution by updating applications both in development and production environ-
ments. We also show how our solution is able to update Pharo core libraries and the
update engine (gDSU) itself. Moreover, we present a set of benchmarks showing that
our solution is practical in both execution time and memory (Section 5). Our solution
is able to apply an update impacting 100,000 instances in 1 second. In this 1 second,
only during 250 milliseconds the application is not responsive. The rest of the time
the application runs normally while gDSU is looking for the safe update point. The
update only requires to copy the elements that are modified.

2 Challenges of Dynamic Software Update

In this section we present the challenges of applying a code change on a running
application through an example. We then stress the issues that a real DSU engine
should overcome to become practical in usage, such as performance impact and ease
of usage. Finally, we draw a requirement list for a complete DSU engine.

2.1 Change Challenges Illustrated

Let us consider an application running a 3D visualization on a continuous stream
of data. This application has a Window class that implements a drawOn: method
responsible for rendering a single frame of our visualization in a 3D canvas. This
application has a render thread with a loop invoking the drawOn: method. So,
Window continuously draws in its canvas instances of Vector3D class. Figure 1 shows
a screenshot of such application and Figure 2 illustrates its code.

Figure 1 – Window of the rendering application in action.

Let us consider now that a developer wants to change the coordinate system
from cartesian coordinates to spherical coordinates for performance reasons. Figure 3
presents the desired modification. This modification requires a number of different
changes:

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 5

x: 1
y: 1
z: 1

:Vector3D

length()

x:Number
y:Number
z:Number

Vector3DVector3D >> length
 ^ self squareSum sqrt

Vector3D >> squareSum
 ^ x^2 + y^2 + z^2

Window >> #drawOn:
"Updates the window, using
the operations and
Vector3D's instance
variables. It's called by the
drawing thread."

Figure 2 – Original version using cartesian coordinates

• The Window»drawOn: method will be updated to use the new coordinates of
Vector3D.

• The Vector3D»length method will be replaced to use the radius instance variable.

• The Vector3D»squareSum method will be removed, as it is not used anymore.

• The structure of the class Vector3D will be changed replacing the existing instance
variables with the new ones.

radius: 1.73
thetha: 0.78
phi: 0.95

:Vector3D

length()

radius:Number
thetha:Number
phi:Number

Vector3D
Vector3D >> length
 ^ radius

Window >> #drawOn:
"Updates the window, using
the operations and
Vector3D's instance
variables. It's called by the
drawing thread."

Figure 3 – New version using spherical coordinates

Applying these changes while the application is running is not a trivial task.
This example clearly shows the three problems that occur when updating a running
application:

State Inconsistency. Updating an application involves changing its internal state
representation. However, naively initializing such state may produce information
loss or even failures in the application. Most of the times, a migration is business
dependent. In our example, the Vector3D instances change: initializing the new
instance variables to null produces a null pointer exception, while initializing
them to 0 will produce a loss of previous application state. Instances should
be migrated from their cartesian coordinates to their corresponding spherical
coordinates. The logic of this migration is clearly business dependent and cannot
be generally inferred just from the changes in the classes and methods.

Change Interdependency. When updating an application, the modifications are
usually interdependent because they relate to the same entities (i.e., methods,
instance variables, classes). In the example, the new Vector3D»length imple-
mentation requires the previous introduction of the new radius instance variable.
Modifying this method before adding the instance variable is wrong, and it causes
application failures. These interdependencies appear also between methods. For
example, removing Vector3D»squareSum before updating Vector3D»length pro-
duces a missing method error during the execution of Vector3D»length.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

6 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Concurrency and Execution Inconsistency. While the application is running,
some of the methods to be updated are present in the execution stacks of running
threads. The update process should not lose or corrupt the application execution.
Such a corruption occurs when the update alters local variables or control-flow
of a method in any execution stack [HN12]. In our example, if the render
thread enters the Vector3D»length method and the update is applied before the
Vector3D»squareSum method is called, continuing the execution of the length
method will fail as the Vector3D » squareSum method does not exist anymore.

These issues make applying code changes a challenging and interesting task, to
which existing DSUs propose several techniques to solve. However, implementing a
solution in a way that it is applicable in a real scenario imposes new challenges. The
following section explores those challenges concerned with these more practical issues.

2.2 DSU Practical Concerns

DSUs usage presents a set of concerns that should be addressed to have a practical
solution.

Performance. Making a program updateable should impact its performance as little
as possible [HN05]. A DSU performance impact is divided in two stages: (1)
during normal execution (outside update-window) and (2) during an update
(inside update-window). A DSU should minimize the impact in both stages.
Examples of impact are memory consumption, execution overhead and downtime
during the update.

Ease of Use. The DSU engine should be easy to use by regular application developers.
The less complicated the updating process is, the less error-prone it will tend to
be [HN05]. A DSU solution should be integrated with the development tools
used in the language. Also it should minimize manual interactions and simplify
them when they are unavoidable. Finally, it should be present in the whole
life-cycle of the application providing solutions during the development as well
as during the evolution of systems in production.

Versatility. A DSU should be able to update any part of the running applica-
tion [HN05]. The running application is not the only part that may require
modifications. Core language libraries including the DSU engine itself also
require updates (e.g., adding new features, improving performance or fixing bugs
and security failures).

2.3 Requirements for a General DSU

We consider a general DSU as a tool capable of updating applications in development
and production scenarios. Taking in consideration the problems and concerns a
practical general DSU should overcome, we have enumerated a set of requirements.
Table 2 presents how the requirements cover the problems and concerns.

Atomicity. A DSU solution should perform atomically all changes in a single update.
All the changes should be applied at once, or at least, the execution and state of
the old and new versions should not be mixed.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 7

Problem Concerns
State Inconsistency State Migration.
Change Interdependency Atomicity.
Concurrence and
Execution Inconsistency

Automatic Safe Point Detection.

Performance
Small Run-time Penalty.
Minimal Application Downtime.

Versatility Self and Core Lib Update.

Ease of Use
Patch Generation.
Patch Reuse.
Broad Applicability.

Table 2 – Requirement mapping to the problems and concerns of a DSU.

State Migration. A DSU solution should provide the means to migrate the state
of the application from one version to the other. The needed migration logic
might be produced automatically or provided by the developer. The migration
logic for value transformations that depends on business logic cannot be gen-
erated automatically thus, a DSU solution should minimize required manual
interventions.

Automatic Safe Point Detection. A DSU solution should detect the safe points
to perform an update. As the application is running the program under update,
the update should be performed while it does not have any impact on the running
application or the solution should handle the impact. The detection should be
done minimizing developer intervention.

Patch Generation. A DSU should automatically calculate the set of changes needed
to pass from one version to the next one. This set of changes is a patch [SAM13].
A DSU should provide a clean integration with the development process providing
programmer transparency [MME12]. This integration minimizes the need of
manual intervention in patch creation.

Patch Reuse. If the DSU solution requires the participation of a developer, it should
allow the developer to reuse and compose these elements. The reusing and
composing of migration logic and patches ease the developers’ manual work.

Self Update and Core Lib Update. As the bugs and improvements not only oc-
curs in the application under modification, it is required that the DSU solution
allows the developer to modify the core libraries of the language and the DSU
itself.

Small Run-time Penalty. A DSU solution should minimize the performance impact
it has on the application during its normal execution i.e., outside the update
window. Ideally, the application should run as if there is no present DSU solution.
As a counter-example, techniques such as bytecode manipulation or lazy proxies
introduce an additional level of indirection affecting the normal performance of
the application.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

8 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Minimal Application Downtime. A DSU solution should minimize the downtime
of the application during the update window.

Broad Applicability. A DSU should be applicable during the whole life-cycle of the
application. It should be applicable in development and updating an application
in production.

3 Our Solution in a Nutshell

We propose a new DSU solution called General Dynamic Software Update (gDSU).
We call gDSU general because it is applicable to both productive and development
scenarios fulfilling all their requirements in a practical way. gDSU allows developers to
apply changes to an application, core language libraries and even on the DSU engine
itself.

3.1 Update Life-cycle in gDSU

The entry point of the gDSU engine is a patch. A patch is a collection of changes
that describe the update to perform. It includes the changes to apply in the code,
such as method and class modifications, and the corresponding state migration logic.
gDSU generates this patch semi-automatically by applying a VCS version diff or/and
by recording code changes made in the IDE during a development session. In both
approaches, business-related state migration policies should be provided by the devel-
oper (Sections 4.1 and 4.2).

If gDSU is used in production, the developer generates a patch in his development
environment. Afterwards, she applies the patch using the gDSU engine deployed
in the production environment. In the case of a development scenario, the patch is
generated and applied at the same moment in the development environment.

gDSU takes the patch as input and performs the following steps to safely apply the
update. These steps are the same regardless the update scenario. Figure 4 illustrates
such steps.

Original
Environment

New
Environment

4. Copy Environment

patch

6. Commit

Threads

1. Analyse
Patch

2. Create
Update Thread

3. Suspend
Threads

5. Apply
Patch

7. Resume
Threads

Figure 4 – Steps to apply an atomic update

1. Analyse Patch. gDSU analyses the patch and calculates the changes to perform

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 9

in the environment. This analysis is used to detect what live instances it should
migrate and the conditions to reach a safe update point (Sections 4.3 and 4.4).

2. Create Update Thread. gDSU spawns the update thread. This thread is re-
sponsible of monitoring the other running threads looking for a safe update point
and performing the update (Section 4.4).

3. Suspend Threads. When the safe point is reached, the update thread suspends
all the other threads and the update process can begin (Section 4.4).

4. Copy Environment. gDSU copies the instances and classes that are impacted
by the update inside an isolated environment (Section 4.3).

5. Apply Patch. gDSU performs all the changes in correct order on the new envi-
ronment. It also migrates the state of all affected live instances (Section 4.5).

6. Commit. gDSU replaces all the instances in the original environment affected
by the update with their corresponding instances in the new environment (Sec-
tion 4.7). This step is only performed if the resulting environment is valid. If
the validations are not correct, the new environment is just discarded and the
update is not applied (Section 4.6).

7. Resume Threads. The application threads are finally resumed (Section 4.4).

3.2 Requirement Assessment

This section analyses how gDSU satisfies each of the stated requirements:

Atomicity. We satisfy the atomicity requirement by applying the changes in an
isolated environment, and committing all the changes in a bulk replacement opera-
tion (Section 4.7).

State Migration. We satisfy state migration requirement through the use of mi-
gration policies (Section 4.5). The developer provides the required migration logic
implementing one or more migration policies. The migration policies are reused in
different updates and also the implementation provides generic migration policies (e.g.,
the migration logic required by an automatic refactoring is already provided).

Automatic Safe Point Detection. We satisfy safe point detection requirement
by the implementation of an automatic detection algorithm based on stack manip-
ulation. The developer does not need to provide extra information to detect safe
points (Section 4.4).

Patch Generation. We satisfy the patch generation requirement with a semi au-
tomatic patch generation (Section 4.2). Our proposed patch generation uses two
strategies: (1) getting the information from the version control system and (2) storing
the information while the developer changes the application. The first strategy is used
when the patch is generated to migrate one version of the application to another. The
second strategy is used when the application is modified using live programming. In
both strategies, the patch is not totally generated. The developer should provide the
business related migrations that are impossible to calculate.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

10 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Patch Reuse. Our proposed solution requires the implementation of custom mi-
gration and validation logic. However, the solution provides different mechanisms to
reuse and combine this custom logic (Sections 4.5 and 4.6).

Self Update and Core Lib Update. Our solution satisfies the self update and core
libraries update requirement using an atomic commit operation. Our solution performs
all the changes in a copied environment. This level of isolation allows us to modify
elements that are currently used by the update process. The real elements are replaced
in a single operation using a bulk instance replacement mechanism (Section 4.7).
This mechanism is implemented in the virtual machine and it is part of the garbage
collection operation.

Small Run-time Penalty. We minimize the run-time penalty through the usage
of eager migration of instances. Using eager migration does not require the use of lazy
proxies or bytecode instrumentation. Our solution does not add any impact in the
execution outside the update window. Moreover, no part of the gDSU engine runs
outside the update process. We validate this in Section 5.6.

Minimal Application Downtime. Our solution minimizes the downtime of the
application by minimizing the copy of objects. Only the modified parts of the
application are copied and replaced in an update. The efficient copy of updated
elements apply to live instances, classes and methods (Section 4.3). We validate this
in Section 5.6.

Broad Applicability. Our proposed solution is compatible with both development
and production update scenarios. The update life-cycle is exactly the same regardless
the environment of application. The differences that may arise in these scenarios
are attenuated by the gDSU support for automatic patch generation and safe point
detection stated above. We validate this in Section 5.3.

4 Practical General Dynamic Software Update

The gDSU architecture presented in the previous section provides the means to
perform safe atomic updates. However, a number of design issues have to be addressed
to implement it efficiently. In this section, we analyse these issues and propose a
solution to them: how is a patch composed (Section 4.1), how this patch is generated
(Section 4.2), how to efficiently copy the environment during the update (Section 4.3),
how to detect the safe update point (Section 4.4), how to make an efficient bulk
replacement of instances during the commit (Section 4.7), and how to create reusable
migration policies (Section 4.5) and validations (Section 4.6).

4.1 Design of Patch Content

gDSU requires a patch to contain all the information necessary to perform the update
in a single operation. The patch’s content consists of:

Structural Changes. A set of all changes to methods and class structures corre-
sponding to the new version. This includes new classes and methods, their
modifications and removals.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 11

Instance Migration Policies. A set of migration policies. A migration policy de-
scribes how to migrate live instances of one type from the current version to the
new version. Migration policies are further explained in Section 4.5.

Update Validations. A set of validations. These validations are meant to guarantee
that the application state and behaviour are consistent after the update is applied
but before the commit.

A patch describes the update in a declarative way, containing details of what to do.
The gDSU engine is responsible of determining when and how to perform the update.

4.2 Patch Generation

To help users using gDSU, gDSU provides several tools to help generate patches
semi-automatically:

VCS version Difference. gDSU calculates a patch from two versions of the appli-
cation in the version control system (VCS). This approach is useful when the
update target system is an application in production.

IDE Change Sets. gDSU records IDE events and stores code changes. This ap-
proach is most useful in a development environment, for example when using
automatic refactorings.

These tools automatically calculate the structural changes, system level validations
and basic migration policies. As an example of such a basic policy, if a class’ structure
changes the order of its instance variables, the gDSU engine proposes a migration
policy copying the instance variable values by name, as Figure 5 shows.

ByInstVarNameMigration >>
migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

new class instanceVariables do: [:newIV |
old class instanceVariableNamed: newIV name

ifFound: [:oldIV | newIV write: (oldIV read: old) to: new]].

Figure 5 – Reusable Migration Policy: it migrates all the instance variables’ values by
name. It is used when the instance variable order changes.

The developer can then extend the patch: modify the structural changes to apply,
add business related migration policies (Section 4.5) and validations (Section 4.6).
This patch can moreover be reused in posterior updates.

4.3 Efficient Partial Copy of the Original Environment

gDSU makes a partial copy of the original environment into a new environment to
guarantee that it can safely perform self-updates, core library updates and cancel
failing updates. First, making a copy transforms the meta-circular update into a
normal update because gDSU is not modifying itself but a copy of itself. Second,
scoping the changes into a copy allows one to avoid affecting the updated application
when problems appear during the update. Such problems can raise because of several
causes e.g., errors or bugs in the gDSU engine, the migration policies, or unsatisfied

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

12 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

validations. While handy, the copy of the original environment is a time consuming
operation, so limiting the number of copied objects reduces the overall execution time
of the update.

gDSU implements a partial copy of the environment that only includes objects
(classes and instances) affected by the update. gDSU calculates which objects are
affected using the structural changes and the migration policies in the patch. A class
is considered affected if there is a structural change on it or on one of its superclasses.
An instance is considered affected if its class is affected or if there exists a registered
migration policy for its class or any of its class’ superclasses. Informally speaking,
a structural change in a class will affect all the instances of that class and it will
recursively affect its subclasses. As methods are not down-copied in subclasses, a
change in a method only affects the class containing the method. The subclasses use
the updated method through the usual method lookup.

This copy process leaves the original objects intact and thus requires to replace
afterwards all references to the old objects with references to the new objects. gDSU
does such replacement during the bulk update in the commit operation, further
explained in Section 4.7.

In the example presented in Section 2, the only objects to copy are the Window
class (because its drawOn: method was modified), the Vector3D class (because its
structure was modified) and all instances of Vector3D (because its class structure has
changed).

4.4 Automatic Safe Update Point Detection

gDSU guarantees that the updated application is not running during the update by
suspending all its related threads. Process suspension contributes to the atomicity of
the update. To provide better guarantees and avoid creating execution inconsistencies,
the application should not be suspended at any moment but at a point considered
safe. During the update process the only running thread is the update engine thread.

An application is at a safe point if all its threads are at a safe point. A thread is
at a safe point if its call stack does not contain methods affected by the update i.e.,
the corresponding patch contains changes for that method.

When an update is required, the gDSU engine spawns a new thread. This thread
is responsible of performing the update. Then the gDSU engine waits until all other
threads are at a safe point before performing the update. The update thread monitors
all other threads using events rather than busy-waiting. When a thread returns from
the execution of an affected method, an event is produced. Upon an event, the update
thread checks if a safe point is reached, in which case starts applying the update. If
the application is not at a safe point, the update thread yields the processor and waits
for the next event to recheck.

gDSU implements such detection strategy with call-stack manipulation, as illus-
trated in Figure 6. It inserts in each thread call-stacks one notification call context just
before the context of oldest affected method in the stack. When the notification call
context is executed because the thread returns from the affected method, it suspends
all the running threads and re-checks for the occurrence of a safe update point.

While checking for safe update point condition gDSU will install new notification
call contexts in all threads that do not have one. This may happen because existing
threads may have returned from the notification call stacks or new threads include
affected methods in their call-stack. This conservative strategy may not converge if the
application never reaches a quiescence point [NH09]. gDSU will timeout an update

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 13

Activation of a
Method to be Modified

Legend

Inserted Notification
Call Context

Activation of a
Method in the Stack

Calling a Method
A

T1

B

C

Tx Thread

(a) Method A called B, and B called C.

T1 T2 T3 T4

(b) Threads using methods to be modi-
fied, in this state the update cannot
be applied.

T1 T2 T3 T4

(c) Context inserted in the call stacks
just before the methods that should
be updated.

T1 T2 T3 T4

(d) The gDSU checks, but the system
is not at a Safe Update point be-
cause T1 and T2 are still executing
methods to be modified.

T1 T2 T3 T4

(e) The gDSU checks, the system is at
a Safe Update Point. The update is
performed.

Figure 6 – Modification of call stack for the detection of Safe Update Points.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

14 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

after several of retries, aborting the update. The reasoning of this choice is discussed
in Section 6.

In the example presented in Section 2, the problematic thread is the drawing thread
which is calling the drawOn: method. If during the safe point detection the drawing
thread is executing the drawOn: method, the gDSU engine adds a notification call
context just before this method. When the drawOn: method ends, the thread executes
the notification call context and notifies the gDSU engine that is possible to suspend
all threads and execute the update.

4.5 Reusable Instance State Migrations

To preserve the application state after an update, gDSU migrates the state from
the old version to the new version with Migration Policies. A migration policy is a
meta-object in charge of the state conversion. Figure 7 shows the meta-object protocol
of such a migration policy.

migrate(oldInstance, newInstance,
 oldEnvironment, newEnvironment)

MigrationPoliciy

Figure 7 – Migration Policy interface

gDSU provides generic migration policies for common cases such as e.g., refactorings.
These generic migration policies are reused between different updates and even between
different applications. Figure 8 shows a pull-up instance variable refactoring and the
corresponding migration policy that is applicable every time the same refactoring is
applied.

name
birthday

Person

initialDate
id

Employee

id
name
birthday

Person

initialDate
Employee

From Version N to N+1

PullUpMigrationPolicy >>
migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

new class instanceVariables do: [:newIV |
old class instanceVariableNamed: newIV name

ifFound: [:oldIV | newIV write: (oldIV read: old) to: new]].

Figure 8 – Migrating instance variables per name: an example of application independent
change

Moreover, the developer may extend this protocol to define business dependent
migrations. For example, Figure 9 illustrates a policy to migrate cartesian to spherical
coordinates.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 15

x
y
z

Vector3D
radius
phi
theta

Vector3D
From Version N to N+1

CartesianToSphericalMigrationPolicy >>
migrateInstance: new fromOldInstance: old
inNewEnv: newEnv fromOldEnv: oldEnv

new radius: old length.
new thetha: (old z / new radius) arcCos.
new phi: (old y / old x) arcTan.

Figure 9 – Migrating Vector3D: an example of application dependent change.

4.6 Reusable Validations

To guarantee that an application state and behaviour are consistent after an update,
gDSU performs several Validations before committing the update. A Validation
is a predicate function that validates the copied environment. If all validations
are successful gDSU proceeds with the commit, otherwise the update is discarded.
Although the validations are not needed by the update engine, their presence improves
the stability of the updates avoiding invalid updates. We identify three different
categories of validations that are easily reused in different updates.

System Level Validation. It checks the consistency of the running platform. They
are independent of the update and the application, and they are executed in
all the updates for a given platform. For example, one validation checks if the
application meta-objects (classes and methods) and system structures have been
correctly migrated.

Application Validation. It checks application invariants that should be consistent
during all the life-time of the application. They are applied in all the updates of
this application and are useful to guarantee business rules before committing an
update. It is the responsibility of the developers to produce them. For example,
an application validation may check that all Employee instances have a name.

Single Update Validation. It checks a condition that should hold when the update
is applied. For example, if the structure of a core object is changed, it is useful
to check if the state migration was correct for every object. Once this update is
committed, this validation is not useful anymore and can be discarded. In the
running example presented in Section 2, the developer can include a validation
that asserts the correctness of all the points to prematurely detect and avoid
problems in the drawing thread. Figure 10 shows an example of such a validation.

4.7 Bulk Instance Replacement

gDSU implements the commit operation as a bulk swap of object references. In
other words, during the commit operation gDSU replaces all references to old affected
objects by references to their corresponding copies. Bulk replacement is done atomi-
cally, making the update a true atomic process. The bulk replacement operation is

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

16 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

CartesianToSphericalValidation >>
validateFrom: oldEnvironment to: newEnvironment

^ (newEnvironment allInstancesPairFor: #Vector3D)
allSatisfy:[:aPair | | old new |

old := aPair first.
new := aPair second.
(old length = new length) & (new phi = (old y / old x) arcTan).

].

Figure 10 – This validation is used to guarantee the correct migration of the Vector3D
from one coordinate system to the other.

crucial in the implementation of most DSUs. They are used in related works such as
Rubah [PH13] and are present in most Smalltalk implementations. However, a naive
implementation would not be satisfying from a performance point of view as it would
require to full scan the memory to perform pointer replacement [MB15].

Bulk replacement is implemented in our prototype as the primitive Virtual Machine
operation become:. become: takes two equal-sized arrays as arguments and performs a
pointer-swap between each object in the first array and the object that occupies the
same position in the second array. That is, a pointer swap between a and b makes all
objects in memory referencing a change and point to b and vice-versa. For the atomic
commit, gDSU uses a variant of become: called becomeForward:. becomeForward:,
also called one-way-become, only performs the pointer replacement from the first to
the second set of references. To efficiently implement become we leverage a novel
memory management technique called forwarders that is available in the Pharo Virtual
Machine. Forwarders allow one to perform lazy pointer swapping with the use of a
partial read-barrier thus avoiding the need of a memory full scan [MB15].

5 Validation

To validate our model we implemented gDSU in Pharo [BDN+09]. Pharo is a pure
object-oriented programming language and a powerful environment, focused on sim-
plicity and immediate feedback1. We selected Pharo because (1) it provides powerful
meta-level operations, (2) most of its runtime is implemented in itself, (3) it represents
basic concepts of the language and the environment as first-class objects. These
characteristics allow the implementation of gDSU as a library. Moreover, Pharo covers
all the platform requirements to implement our solution (Section 5.1).

This prototype is available in a Git repository2. It is loadable in the latest
version (Pharo 6) of the platform and it is intended to be included in future Pharo
versions.

gDSU is applicable not only for updating a running application, but also in
daily development. We validated our solution in the following three scenarios. Each
scenario has been validated as a long running application and using interactive live
programming:

• Update of Application Code with live instances (Section 5.3).
1http://pharo.org/
2https://github.com/tesonep/pharo-AtomicClassInstaller

Journal of Object Technology, vol. V, no. N, 2011

http://pharo.org/
https://github.com/tesonep/pharo-AtomicClassInstaller
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 17

• Update of the DSU engine itself (Section 5.4).

• Update of the core libraries of the language (Section 5.5).

We also validated that our solution is practical using a set of benchmarks. These
benchmarks show that the solution is viable in terms of execution time and used
memory (Section 5.6). Before presenting the validation, we give an analysis of the
requirements needed by our solution to be implemented in other platforms.

5.1 gDSU Platform Requirements

Implementing gDSU as a library requires that the underlying platform provides a
number of requisites:

Class manipulation. gDSU needs to be able to query, add and remove classes; and
change the superclass. It also needs to be able to add, remove and change instance
variables. Finally it needs to be able to add, remove and modify methods.

Instance manipulation. gDSU needs to be able to create new instances from a
given class, read and write all the instance variables in a given instance. And also, it
needs the ability to list all the instances of a given class.

Thread manipulation. gDSU needs the ability to inspect the call stack of threads,
stop and resume them. It needs to be able to modify the call stack inserting new
method activations.

Environment manipulation. gDSU needs the ability to read and modify the
elements in the global environment. It needs to make a copy of the environment and
replace the environment with this copy.

Bulk object swap. gDSU needs the ability to perform a bulk replacement of objects
as described in the Section 4.7.

IDE Integration. To be able to minimize the manual building of patches, gDSU
needs the ability to integrate with the language IDE. gDSU needs a way of getting
the changes performed by the user and the details of the program modified.

5.2 Validation Methodology

The following sections present three different scenarios we used to validate and bench-
mark our solution. These scenarios include the modification and refactoring of a
stateful chat application. The modifications are performed in the application, the DSU
and in the core system libraries. For each of these scenarios we applied the following
methodology for the development and production environment:

Development Environment. We set-up a development environment with our ap-
plication code. We run a simulation of requests to generate application objects.
This simulation produces around 30 000 live instances. After the simulation, we
have an environment with live instances that is useful to perform live program-
ming. This environment replicates a common development environment where
the developer has not only the code but also a set of data to try her changes.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

18 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Then, we perform modifications to the application. These modifications are
performed programmatically, but the result is the same if they are produced
using the existing IDE.

Production Environment. Using the same application a HTTP server is launched.
This HTTP server replicates a production server. This is designed to be deployed
as a productive application, as it uses the production ready frameworks and
technologies used in Pharo. We generated 10 concurrent requests to our server
during 2 minutes, generating an average of 700 requests per second. This
simulation generates the load expected in a production server. Then, we apply
the update at minute 1.

Finally, we apply measurements after the update is finished.
The scenario application, the set of test scripts and detailed instructions are

available in GitHub3. Also Appendix A describes detailed instructions to replicate the
validation experiments.

5.3 Validation 1: Application Update

Research Question. Is gDSU able to safely update a running stateful application
in a development or production scenario?

Scenario. Our scenario application is a chat application. This application stores all
the messages sent by all the users generating live instances in each request.

text:String
ChatMessage ChatUser

ChatRoom

user

room

Figure 11 – Original Scenario. In this scenario all the messages are of a single class
ChatMessage. This implementation has conditional code to handle the differences in
messages from the system and from users.

Figure 11 shows the model of the application in Version 1. For presentation
purposes, we show only the part that is relevant for the update. The application
handles two types of messages. The first type is the one sent by a user in a room, the
second type is the one produced by the room (e.g., when a user enters or leave). In
this version all the messages are instances of ChatMessage, when the message is an
info message (that is not produced by a user) the user field is left as null.

Figure 12 shows the model of the application in Version 2. In this version the
ChatMessage is refactored to include two subclasses. One for the user messages and the
other for the info messages. Going from a version to the other requires the migration
of live instances.

Results. gDSU updates correctly both the development and production applica-
tions. Instances are correctly migrated in an atomic fashion. No inconsistencies are
introduced.

5.4 Validation 2: Update of the DSU

Research Question. Is gDSU able to update itself?
3https://github.com/tesonep/chatServer.git

Journal of Object Technology, vol. V, no. N, 2011

https://github.com/tesonep/chatServer.git
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 19

text:String
ChatMessage

ChatUser

ChatRoom

user

room

UserMessage

InfoMessage

<Abstract>

Figure 12 – The application is refactored to extract the different behavior in the messages
in two subclasses (InfoMessage and UserMessage) to represent the messages sent by the
system and by a user.

Scenarios. We have performed three updates on gDSU code:

1. Update the safe point detection algorithm.

2. Update the application of structural changes.

3. Update the internal representation of the update (i.e., modifying a gDSU stateful
class with live instances during the update).

Results. All updates were successful. All of them show that gDSU can update
code and migrate instances that are related to and used by itself. Moreover, the first
experiment shows that the safe update detection works even if the affected method is
in the DSU thread.

5.5 Validation 3: Update of Language Core Libraries

Research Question. Is gDSU able to update core language libraries?

Scenarios. To validate the ability to update the language core libraries we experi-
mented with the following two scenarios:

1. Update the OrderedCollection class, adding a new instance variable holding the
size of the collection and modifying all related methods. The OrderedCollection
class is a key part of Pharo’s collections framework. It is the main collection
used in the whole environment. In any given Pharo environment there around
46 000 live instances of this class. Also this class is extensively used by gDSU.

2. Update the class builder modifying the methods gDSU uses to create classes.
All the operations modifying a class in Pharo are performed through the class
builder. This component is a crucial part of the live programming capabilities of
Pharo. Also, it is used as a key part of gDSU.

As said before, both elements are used during the execution of the update, intro-
ducing circularity issues similar to the changing gDSU itself.

Results. All updates were successful. These experiments demonstrate that the
running core libraries are indeed isolated from the update. Otherwise, modifying the
core libraries while performing the update risks to compromise the whole application
stability.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

20 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

5.6 Validation 4: Benchmarks

To evaluate the performance of our solution we have performed two series of benchmarks.
The first one analyses how the number of live instances to migrate affects the update
time. The second benchmark analyses the impact of the update process on the response
time of a running application. The benchmark has been executed using Pharo 6.1
32-bits, in a machine running OS X 10.12.6 having a 2,6 GHz Intel Core i7 and 8 Gb
of 1600 MHz RAM memory.

Number of Migrated Instances. This benchmark shows the behaviour in terms
of memory and time with a varying number of instances to migrate. We performed
172 updates varying zero to ten million instances and analysed the time and memory
required to perform the migration. The results, in Figure 13, show that (1) the memory
consumption is linear and it grows with the number of instances to migrate and (2) the
time to execute the update is almost constant (around 1 second) below ten thousand
instances and then it grows linearly.

Figure 13 – Impact in memory space and execution time depending the number of in-
stances to migrate.

The first result is due to the copy of the affected instances. The DSU process
copies the modified instances and classes to perform the changes. The number of
affected instances has a baseline of 13 instances when there are not live instances of
the modified class to migrate. This set of instances are the core objects modified in the
system i.e., package manager, package, classes, global environment. So, any change
will include at least these 13 instance to migrate. These instances are the minimum
affected by an update. Starting from this baseline the update process only copies the
instances to migrate.

The second result is due to two causes. The first one is that the detection of a safe
update point takes an average of 750 milliseconds. During this time the application is
running normally and the update process is just waiting. The second cause is that the
bulk replacement takes a constant time of 250 milliseconds in average to create the

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 21

forwarders. If the number of forwarders does not fit in the available free memory, the
bulk update runs a garbage collection and performs a traditional pointer swapping
with a full scan [MB15]. Our benchmark shows that bulk replacement is able to handle
about 25 thousand instances per second.

Server Response Time. This benchmark shows time measurements on the server
application described in Section 5.2. The results, illustrated in Figure 14, shows the
application response time. The response time during the update windows is of 1400
ms, with a number of instances to migrate around 28500. Contrastingly, the response
time outside the update window ranges from 5 to 200 ms, with an average of 22 ms.
This benchmark shows that the impact in response time is inside the parameters of
the first benchmark.

Figure 14 – The response time is only affected briefly during a small update window.

6 Discussion

Conservative Safe Update Points. We decided to look for safe update points
instead of reconstructing the threads’ call stack after the update. This decision
simplifies the solution and permits the execution of any change in the instance structure
or in the methods. Our solution does not stop the execution of the application while
it is waiting for a safe update point, the application is running freely until this safe
point is reached.

Rewriting the call stack allows the execution of the update in any moment, without
needing to wait for reaching a safe update point. However, stack reconstruction tech-
niques are limited in the number of method changes it can handle without developers’
manual intervention, specially with loops and recursive methods. They also require
full instrumentation of the code and enough history of previous runs.

Our solution provides a way of automatically detecting safe update points in a
pretty conservative manner. We are aware that the proposed safe point detection does
not always arrive to a safe point, since some programming patterns produce programs
that never reach a safe point in our definition. For example, patterns such as the one
in Figure 15 produces a method that never returns so it never reaches a safe update

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

22 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

point. We left the analysis of these programming patterns and how they could be
detected, handled or rewritten outside the scope of this paper, but it is a good topic
for future research.

execution
[true] whileTrue: [

self doAction1.
...
self doAction2.

]

Figure 15 – Example of a Programming Pattern that does not allow the program to reach
a safe update points if this method is updated in the patch

We have decided that aborting the update is better than performing the update
without the guarantees needed to continue normal execution. Less restrictive conditions
are possible, but these conditions are more complex to detect and they do not provide
enough guarantees to execute all the possible changes. Other solutions [PH13, MME12]
require explicit update points to handle these situations.

Eager vs. Lazy Migration. We have decided to use eager instance migration
instead of lazy migration because lazy instance migration requires the use of proxies.
By using eager migration, the penalty during the normal execution of the application
is zero. During the normal execution of the application there is no need to execute
code of the DSU solution.

Manual Development. In our solution the developer has to implement part of the
patch i.e., migration policies and validations. We have decided to do that because most
of these components are heavily coupled with the application under update. However,
the gDSU tool is shipped with already implemented versions of such elements. The
shipped implementations cover the common scenarios, and provide a way of extending
them. The shipped system validations assert the correct state of the Pharo environment
after an update. We consider the validations and the migration policies as elements
that are equivalent to unitary tests. The required elements are part of the application
code base and they are created during the whole life cycle of the application.

7 Related Work

In this section we compare existing DSU approaches to our proposed solution. To
compare these solutions we use the requirements stated in Section 2.3. Table 3 presents
the results of the comparison using the proposed requirements.

We have classified existing solutions so far in two categories: DSUs designed to
be used in production environments (Section 7.2) and DSUs designed to be used in
development environments (Section 7.3).

It is true that many of these solutions are usable in both scenarios. However, as they
are designed to satisfy the requirements of one of these scenarios, the other scenario’s
requirements are not fully satisfied. For example, DSUs designed for production
environments do not provide automatic generation of patches limiting its usability as
a development tool, but they provide an extensive API for state migration that is not
present in DSUs for development environments.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 23

We have been considering classical Live Programming environments such as Lisp
or Smalltalk (Section 7.1) within the development oriented DSUs. However, in this
section we study them separately. Although they provide programming language
support for DSU scenarios, they are not fully engineered for this task and considering
them amongst development DSUs would be unfair.

Category

Requirements

Examples

A
to
m
ic
it
y

St
at
e
M
ig
ra
ti
on

A
ut
om

at
ic

Sa
fe

P
oi
nt

D
et
ec
ti
on

Sm
al
lR

un
-t
im

e
P
en
al
ty

M
in
im

al
D
ow

nt
im

e

B
ro
ad

A
pp
lic
ab
ili
ty

P
at
ch

G
en
er
at
io
n

P
at
ch

R
eu
se

Se
lf
an

d
C
or
e
U
pd
at
e

Classical Live
Programming # G# # # A # G#

Lisp, Clos,
Smalltalk

Development
DSUs # # # G# # A # #

Jrebel,
Javeleon,
Jvolve

Production
DSUs G# # # M G#

Rubah,
DuSTM,
Pymoult

Our Solution S

 : Yes #: No G#: Limited
A: Automatic M: Manual S: Semi-Automatic

Table 3 – Comparison Table of Related Work and Our solution

7.1 Classical Live Programming Environments

Live programming environments [San78], such as Lisp [Ste90], CLOS [KR90], Smalltalk
[GR83] and Javascript environments allow developers to modify the code while the
program is running. These tools allow hot update of running code. When the class
structure changes, the structure of live instances is updated. Often these languages offer
a Meta-Object Protocol (MOP) [KdRB91] to support version migration of instances
and code modification [Riv96].

However, the migration support is limited. For example, when new fields are
added, these new fields are left uninitialized. These solutions do not apply the changes
atomically. They apply the modifications one at the time. As they do not implement
atomicity, the sequencing of changes is mandatory. As sequencing is not always
possible [PDF+15] they have limited ability to update core libraries. Also they do not
handle the concurrency or the detection of safe update points. Contrastingly, gDSU
performs changes atomically and it is able to update core libraries. Also, it performs
the changes only when the application is in a safe update point.

These solutions are designed to be used during development. The required support
is implemented in the language infrastructure and they do not produce additional

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

24 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

run-time impact. Patch generation is done automatically because the IDE is integrated
with the update tools. gDSU is designed to be used during development as it is
also fully integrated with the IDE. Also, gDSU leverages language infrastructure and
existing VM techniques. It does not produce additional run-time impact.

Finally, live programming tools for Javascript (e.g., Nodemon4, Firebug5, Chrome
Dev Tools6) do not handle the migration of live instances. gDSU migrates the state
of live instances.

7.2 Production DSUs

DSUs designed for production provide the means for applying an update atomically
and provide state migration mechanisms. They are designed to minimize the downtime
during the execution of the update. While they require the manual generation of the
patch, they provide reusable elements to compose the patches. Also the patches allows
the expression of limited instance migration logic. They provide limited self and core
update. gDSU is also designed to minimize the application downtime. However, it
automatises the task of patch generation and provides a full support for self and core
update.

Production DSUs present run-time impact. Pymoult [MDB15] requires modi-
fications in the VM. DuSTM [PC11] and DUSC [ORH02] implement a Java DSU
that requires bytecode transformations, and use lazy proxys to handle migration of
data. Thus, they generate an impact in the size of the program and a penalty in
the execution. Rubah [PH13] is a Java DSU implementation that uses also bytecode
rewriting techniques and lazy proxy for instance migration. This solution presents
an execution penalty during the normal execution of the application, affecting the
application outside the update window. gDSU leverages existing VM techniques and
it does not introduce run-time penalty outside the update window.

Regarding patch generation, Rubah [PH13] and Pymoult [MDB15] implement
an API for the update of a program. The developer should express the changes
implementing the update logic. This logic is executed and it is the responsible of
performing all changes. The update objects can extend already implemented solutions.
Contrastingly, gDSU is integrated with the language IDE and reduces the need of
manual patch writing.

7.3 Development DSUs

Development DSUs such as Javeleon [GJK+12], Jvolve [SHM09], DCEVM [WWS10]
and JRebel [Zer12] are intended to be used during the development of the application.
They are integrated with the language IDE and generates the patches automatically.
However, they do not allow custom state migrations. gDSU is not only integrated
with the IDE but it also allows expressing business state migration logic.

As they are designed to be used during development, these solutions were not
designed with performance impact in mind. DCEVM requires a modification in the
Java VM to run. JRebel does not require VM modifications but the amount of changes
it can handle is limited (e.g., it does not allow hierarchy changes). Jvolve implements
a virtual machine level DSU, so it needs a special version of the Java Virtual Machine
to run. JavAdaptor [PKC+13] uses proxies and delegation, having an impact in

4https://github.com/remy/nodemon
5https://addons.mozilla.org/en-US/firefox/addon/firebug/
6https://developer.chrome.com/devtools

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 25

the execution of the application. JavAdaptor includes some of the characteristics of
Production DSUs, although it lacks support to express complex instance structure
migration (i.e., renaming variables, changing the type of variables, changing from a
native value to an object). Lacking this support is not a problem in development
environments, but it limits its usability for production environments.

Javeleon requires bytecode instrumentation and class modification during the
bootstrap of the application.

In all these solutions, the DSU related code is running all the time impacting the
global performance of the application even outside the update window. Contrastingly,
gDSU is designed to minimize the run-time impact.

Development DSUs are not able to apply changes to the DSU engine or the language
core libraries, on the contrary gDSU allows core libraries update.

7.4 Related Techniques

The literature describes many other techniques that are not a full DSU implementation
but could be applied to one. In this section we compare several such solutions with
the design choices we included in gDSU.

Regarding safe point detection techniques, Cazzola et al. [CJ16] propose an auto-
matic way to determine unsafe update points. Their technique uses static analysis
of the changes to detect unsafe update points. Then the update process uses this
information to avoid performing an update in those points. This solution could not
handle the case when the problems arise from third party libraries, where the source
code is not available.

Makris et al. [MB09] propose a way of updating software, without waiting for a safe
update point, but in their solution the application source code should be instrumented
before execution. Contrastingly, gDSU automatically detects update points in a
conservative way. It does not require to anticipate them with code instrumentation
or explicit code changes. This makes our solution simpler to use and has a smaller
performance penalty at run time.

Regarding atomicity, Denker et al. [DGL+07] and Mattis et al. [MRH17] propose
to isolate the applied changes during the execution of the application using a copy
of the environment. Mattis et al. duplicate the modified methods and introduces
a method lookup strategy that selects the correct version of the method to execute
depending the running context. Also they modify the classes to store the values in a
thread-scoped structure. As in our solution, they also limit the copy of instances to the
affected ones. As our solution they look for safe update points. Denker et al. copy not
only the modified methods but also the modified objects and classes. However, they
do not address the problem of committing the changes or the migration of instances
from one environment to the other, or the handling of globally shared state.

Penney et al. [PS87] propose a way of handling modifications, but they require
modifications in the virtual machine. Wernli et al. [WLN13] propose to manage
isolation using a copy and keeping alive both the old and new environment. The access
to the modified objects is done through a lazy proxy, adding an execution penalty to
the application after the update. This also produces problems with the identity of
objects because the updated instances are duplicated. Our solution solves isolation
with a copy of the environment. This copy is only used during the update window and
replaces entirely the old objects on a commit operations. gDSU has a small run-time
penalty because it copies only modified objects and it leverages existing support from
the VM to do the atomic commit.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

26 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Regarding the safety guarantees provided by the DSU, Tedsuto [PH16] is a tool that
provides a general framework for testing updates and detecting if they are successful.
However, it requires manual intervention to create the validations and the invalid
environment should be discarded so it cannot be applied to a productive environment.
gDSU performs all validations in an isolated environment. This allows one to easily
validate and cancel the update without affecting the running application.

There are also architectural alternatives to DSU [KM85, OMT98, PBJ98]. However,
these solutions should manually take care of replication and persistence of application
state. They require more complex and manual update schemes and special handling
of running instances and processes. Also, they are only designed to handle anticipated
update situations. Because of this, we left these solutions out of the scope of this
paper.

8 Conclusion

In this paper, we described the existing problems in applying an update in a running
application. We showed that safely applying an update requires an atomic dynamic
software update engine. However, existing solutions so far are only applicable to either
development or production scenarios but not both of them.

We proposed gDSU, a general DSU engine that proves useful to safely update
applications in both kind of scenarios. With this purpose, gDSU implements safe
update point detection, a partial copy of the environment and an efficient atomic
commit that leverages existing VM technology. Moreover, gDSU provides several
facilities to ease its usage: it provides automatic patch generation, it can update itself
and the core language libraries.

We have validated our solution with a prototype in Pharo. We show that our
solution is applicable to both use cases in several scenarios, and introduces only an
execution penalty during the update window. Our solution is able to apply an update
impacting 100,000 instances in 1 second. In this 1 second, only during 250 milliseconds
the application is not responsive. The rest of the time the application is still running
normally while gDSU is looking for the safe update point. The update only requires
to copy the elements that are modified.

In the future, we will work on the automatic generation of patches and the
integration with software development tools as automatic refactorings, providing more
support to autogenerated migration policies and validations. We will be also working
on a better implementation and on performance improvements. Our project’s objective
is not only to have an atomic DSU solution, but to provide a useful tool for developers.
Another possible evolution path is to work on improved detection of safe update points,
and the impact of different strategies to find them. Finally, other interesting approach
could be an empirical study to analyse the manual work required in producing a patch
and detect the required automations to improve its use in daily development.

A Instructions to Reproduce Validation Experiments

To validate the proposed solution we need to use a stateful bench application. We
implemented a stateful chat server. This simple application presents all the problems
and requirements described in this work. This application allows us to replicate and
evaluate the design decisions in our proposed solution.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 27

The bench application is used to validate the following scenarios:

• Updating application code while migrating live instances.

• Updating kernel libraries of the environment.

• Updating the DSU tool itself.

• Benchmarking the DSU implementation.

A.1 Installation

The bench application, tests scripts and more documentation are available in a GitHub
repository. This repository is located in https://github.com/tesonep/chatServer.

The first step to install the bench application is to clone the given repository in
a local machine. For the results included in this paper the validations have been
executed in a machine running OS X 10.12.6 having a 2,6 GHz Intel Core i7 and 8
Gb of 1600 MHz RAM memory. However, the same validations will run in Linux or
Windows machines.

The bench application runs in Pharo 6.17. A basic knowledge of Pharo is required
to execute the validations. The documentation of Pharo and beginner instructions are
also available in the Pharo web site.

A 32-bits image and VM are needed to run the validations. They are available at
the download site.

On this fresh image the bench application and the DSU tool should be installed.
To do so, Listing 1 should be executed in the image.

EpMonitor current disable.
Deprecation showWarning: false.
Deprecation raiseWarning: false.

Metacello new
baseline: ’ChatServer’;
repository: ’filetree://pathToClonedRepository’;
load.

EpMonitor current enable.

Listing 1 – Installing Bench Application

This script will install the bench application and all the required libraries. Including
the DSU tool. For the DSU tool it uses a release called JOTPaperVersion.

To simplify the installation in the repository we provide a script that download
the required elements and install them inside the build subdirectory. The file install.sh
is the simplified installation script.

A.2 Executing Validations

All the validations have been executed using the same image. For running the image
in development mode there is a script in the root of the repository called run.sh. This
script runs the image in interactive mode.

Also this script opens a Pharo Playground to execute different statements. The
Playground is a REPL to execute Smalltalk code. It is similar to the Scala Worksheet

7http://pharo.org

Journal of Object Technology, vol. V, no. N, 2011

https://github.com/tesonep/chatServer
http://pharo.org
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

28 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

or the old Workspace in other Smalltalk dialects. These are the pieces of code to
replicate the experiments.

In the Pharo Playground to evaluate a line, the line should be selected and with
the context menu execute Do it.

A.2.1 Preparation

To execute the different validations, live instances are needed. Generation of instances
is performed by executing listing 2. This script generates the users and messages
instances to execute the validations. The number of instances can be modified to
reflect different scenarios.

"Generate Instances"
ChatUpdate new generateInstances: 10000.

Listing 2 – Generating Bench Instances

The generated instances, and the code of the application is accessible to browse.
Listing 3 presents the code needed to open the instance inspector and the source code
browser. Checking the instances is needed to see if the instance migration is correctly
performed.

"Inspect User Instances"
ChUser allInstances inspect.
"Inspect Message Instances"
ChMessage allSubInstances inspect.

"Browse Model"
’ChatServer−Model’ asPackage browse.

Listing 3 – Browsing Code and Instances

A.2.2 Running Validations

For all the validations we have to execute the preparation steps.
For Validation 1, listing 4 shows the code to apply and revert the application

update. Once the application is updated (or reverted) the changes are seen in the
instance inspectors and in the source code browser.

"Update Model"
ChatUpdate new updateV1ToV2.

"Revert Update Model"
ChatUpdate new updateV2ToV1.

Listing 4 – Updating the Bench Application

Even more, there are tests in the code base of the bench application to test it.
For Validation 2, listing 5 shows the code to apply and revert the update on the

DSU tool. After doing the update we can execute any of the other validations to see
that the DSU tool is operative.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 29

"Update DSU"
ChatUpdate new updateAtomicProcess.

"Revert DSU"
ChatUpdate new revertUpdateAtomicProcess.

Listing 5 – Updating the DSU itself

For Validation 3, listing 6 shows the code to apply and revert the update in the
OrderedCollection class, and in the class builder. This classes are used by the DSU
process and they are part of the kernel of Pharo language.

"Update Kernel libraries"
ChatUpdate new updateKernel.

"Revert Kernel Libraries"
ChatUpdate new revertUpdateKernel.

Listing 6 – Updating Core Libraries

To achieve repeatability we have scripted the changes in the methods that are used
for each of the updates. These methods can be easily browsed to see the executed
changes. Moreover, these methods can be modified to perform other updates. For
example, the 3rd validation updates is implemented in the method updateKernel of
the ChatUpdate class.

A.3 Executing Benchmarks

We implemented two different benchmarks, the first one measures the memory con-
sumption of the DSU process and the second one the downtime during an update.

A.3.1 Memory Consumption

To measure memory consumption, we have implemented a benchmark that executes
the application update 8 times. Using 1 to 10,000,000 live instances (using 10n where
n is in [0,8]). Listing 7 shows the code executing during this benchmark. This process
outputs the results in the standard output of the terminal. Listing 8 shows the code
to evaluate to run the benchmark.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

30 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

ChatUpdateMeter >> doTest
((0 to: 7) collect:[:e | 10 ∗∗ e]) collect:[:q |

Stdio stdout << q asString.
Stdio stdout << (q −> (ChatUpdateMeter new testWith:q)) asString.
Stdio stdout crlf ; flush.

].

Smalltalk garbageCollect.

ChatUpdateMeter >> testWith: numberOfInstances
| user room duration |

ChUser initialize.
ChRoom initialize.

(1 to: 3 do: [:e | Smalltalk garbageCollect]).

user := ChUser registerUser: ’username’ firstName: ’firstName’ lastName: ’lastName’.
room := ChRoom addRoom: ’roomName’.

instances := OrderedCollection new: numberOfInstances.
1 to:numberOfInstances do:[:i |

instances add:(i % 2 = 0 ifTrue:[
ChMessage from: user to: room text: ’Generic user message’

] ifFalse:[
ChMessage in: room text: ’Generic info message’.

])
].

self assert: instances size = numberOfInstances.
duration := [ChatUpdate new updateV1ToV2] timeToRun .
"The garbage collector runs many times to force the instances
to move to the old space. Doing so we test a scenario that
is closer to a long running application."
(1 to: 3 do: [:e | Smalltalk garbageCollect]).

"Perform the update"
ChatUpdate new updateV2ToV1.
^ duration.

Listing 7 – Memory Consumption Benchmark

"Executing memory and time benchmark per instance quantity. (Long to execute). It outputs in the
Standard Output the different test executed, listing number of instances and time consumed.
From 1 instance to 10.000.000"

ChatUpdateMeter new doTest.

Listing 8 – Launching Memory Consumption Benchmark

A.3.2 Server Response Time

The second benchmark is designed to validate the downtime of the application during
an update. In this benchmark, the application is running in server mode. It implements
a REST server to receive request through HTTP.

The server is launched and stopped from the image. Listing 9 shows the Smalltalk
code to start and stop the server instance.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 31

REST URL Action
http://localhost:1701/updateV1ToV2 Updates from V1 to V2.
http://localhost:1701/updateV2ToV1 Updates from V2 to V1.
http://localhost:1701/updateKernel Updates the Kernel implemen-

tation of OrderedCollection.
http://localhost:1701/revertUpdateKernel Reverts the Kernel implemen-

tation of OrderedCollection.
http://localhost:1701/updateAtomicProcess Updates the DSU implementa-

tion.
http://localhost:1701/revertUpdateAtomicProcess Reverts the DSU implementa-

tion.

Table 4 – Update REST Entry points

"Starting the HTTP test to run the benchmark with JMeter. The REST server is listening in port 1701
"

ChatServer uniqueInstance start.

"Stopping server"
ChatServer uniqueInstance stop.

Listing 9 – Controlling the Bench Server

Once the server is started, the update process can be requested via REST calls.
We implemented a different REST request for each of the updates. Table 4 shows the
REST entry points that can be used to perform different updates while the server is
running.

To simulate the load of the server we use a JMeter8 script. This script is designed
to perform 10 concurrent requests during 2 minutes. It generates an average of 700
requests per second. The script is located in the root of the git repository, and it is
named chatServer.jmx. We refer to the documentation of JMeter on how to run the
given script.

In the benchmark, we execute the JMeter script and after one minute we perform
one of the update REST calls. Once the JMeter scripts ends it presents the results of
the benchmark.

References

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. Pharo by Example. Square Bracket
Associates, Kehrsatz, Switzerland, 2009. URL: http://pharobyexample.org/
,http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf.

[CJ16] Walter Cazzola and Mehdi Jalili. Dodging unsafe update points in java
dynamic software updating systems. In Software Reliability Engineering
(ISSRE), 2016 IEEE 27th International Symposium on, pages 332–341.
IEEE, 2016. doi:10.1109/ISSRE.2016.17.

8http://jmeter.apache.org/

Journal of Object Technology, vol. V, no. N, 2011

http://localhost:1701/updateV1ToV2
http://localhost:1701/updateV2ToV1
http://localhost:1701/updateKernel
http://localhost:1701/revertUpdateKernel
http://localhost:1701/updateAtomicProcess
http://localhost:1701/revertUpdateAtomicProcess
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://dx.doi.org/10.1109/ISSRE.2016.17
http://jmeter.apache.org/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

32 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. URL: http://www.iam.
unibe.ch/~scg/OORP, doi:10.1109/ICSM.2005.67.

[DGL+07] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz, Lukas
Renggli, and Pascal Zumkehr. Encapsulating and exploiting change with
Changeboxes. In Proceedings of the 2007 International Conference on
Dynamic Languages (ICDL 2007), pages 25–49. ACM Digital Library,
2007. URL: http://rmod.inria.fr/archives/papers/Denk07c-ICDL07-Changeboxes.
pdf, doi:10.1145/1352678.1352681.

[GJK+12] Allan Raundahl Gregersen, Bo Nørregaard Jørgensen, Kai Koskimies,
et al. Javeleon: An integrated platform for dynamic software updating
and its application in self-* systems. In Engineering and Technology (S-
CET), 2012 Spring Congress on, pages 1–9. IEEE, 2012. doi:10.1109/
SCET.2012.6341955.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and
its Implementation. Addison Wesley, Reading, Mass., May 1983. URL:
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf.

[HN05] Michael Hicks and Scott Nettles. Dynamic software updating. ACM
Transactions on Programming Languages and Systems, 27(6):1049–1096,
nov 2005. doi:10.1145/1108970.1108971.

[HN12] Christopher M Hayden and Iulian Neamtiu. Report on the third work-
shop on hot topics in software upgrades (hotswup’11). ACM SIGOPS
Operating Systems Review, 46(1):93–99, 2012. doi:10.1145/2146382.
2146399.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[KM85] Jeff Kramer and Jeff Magee. Dynamic configuration for distributed
systems. IEEE Trans. Softw. Eng., 11(4):424–436, 1985. doi:10.1109/
TSE.1985.232231.

[KR90] Gregor Kiczales and Luis Rodriguez. Efficient method dispatch in pcl.
In Proceedings of ACM conference on Lisp and Functional Programming,
pages 99–105, Nice, 1990. doi:10.1145/91556.91600.

[LB85] Manny Lehman and Les Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985. URL:
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf.

[MB09] Kristis Makris and Rida A Bazzi. Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction. In USENIX Annual Technical
Conference, volume 2009, 2009.

[MB15] Eliot Miranda and Clément Béra. A partial read barrier for efficient
support of live object-oriented programming. In International Symposium
on Memory Management (ISMM ’15), pages 93–104, Portland, United
States, June 2015. URL: https://hal.inria.fr/hal-01152610, doi:10.1145/
2754169.2754186.

[MDB15] Sébastien Martinez, Fabien DAGNAT, and Jérémy Buisson. Pymoult
: On-Line Updates for Python Programs. In ICSEA 2015 : 10th In-
ternational Conference on Software Engineering Advances, pages 80 –

Journal of Object Technology, vol. V, no. N, 2011

http://www.iam.unibe.ch/~scg/OORP
http://www.iam.unibe.ch/~scg/OORP
http://dx.doi.org/10.1109/ICSM.2005.67
http://rmod.inria.fr/archives/papers/Denk07c-ICDL07-Changeboxes.pdf
http://rmod.inria.fr/archives/papers/Denk07c-ICDL07-Changeboxes.pdf
http://dx.doi.org/10.1145/1352678.1352681
http://dx.doi.org/10.1109/SCET.2012.6341955
http://dx.doi.org/10.1109/SCET.2012.6341955
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://dx.doi.org/10.1145/1108970.1108971
http://dx.doi.org/10.1145/2146382.2146399
http://dx.doi.org/10.1145/2146382.2146399
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1109/TSE.1985.232231
http://dx.doi.org/10.1145/91556.91600
ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf
https://hal.inria.fr/hal-01152610
http://dx.doi.org/10.1145/2754169.2754186
http://dx.doi.org/10.1145/2754169.2754186
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 33

85, Barcelone, Spain, nov 2015. URL: https://hal.archives-ouvertes.fr/
hal-01247603.

[MME12] Emili Miedes and Francesc D Munoz-Escoı. Dynamic software update.
Technical report, Technical Report ITI-SIDI-2012/004, 2012.

[MRH17] Toni Mattis, Patrick Rein, and Robert Hirschfeld. Edit transactions:
Dynamically scoped change sets for controlled updates in live program-
ming. The Art, Science, and Engineering of Programming, 1, 2017. URL:
http://arxiv.org/abs/1703.10862, doi:10.22152/programming-journal.
org/2017/1/13.

[NH09] Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-
threaded programs. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’09, pages 13–24, New York, NY, USA, 2009. ACM. URL: http:
//doi.acm.org/10.1145/1542476.1542479, doi:10.1145/1542476.1542479.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-
based runtime software evolution. In Proceedings of the 20th International
Conference on Software Engineering, ICSE ’98, pages 177–186, Washing-
ton, DC, USA, 1998. IEEE Computer Society. URL: http://dl.acm.org/
citation.cfm?id=302163.302181, doi:10.1109/ICSE.1998.671114.

[ORH02] Alessandro Orso, Anup Rao, and Mary Jean Harrold. A technique for
dynamic updating of java software. In Software Maintenance, 2002.
Proceedings. International Conference on, pages 649–658. IEEE, 2002.
doi:10.1109/ICSM.2002.1167829.

[PBJ98] F. Plasil, D. Balek, and R. Janecek. Sofa/dcup: architecture for compo-
nent trading and dynamic updating. In Proceedings. Fourth International
Conference on Configurable Distributed Systems (Cat. No.98EX159),
pages 43–51, May 1998. doi:10.1109/CDS.1998.675757.

[PC11] Luıs Pina and Joao Cachopo. Dust’m-dynamic upgrades using software
transactional memory. 2011. doi:10.1109/hotswup.2012.6226612.

[PDF+15] Guillermo Polito, Stéphane Ducasse, Luc Fabresse, Noury Bouraqadi,
and Max Mattone. Virtualization support for dynamic core library
update. In Onward! 2015, 2015. URL: http://rmod.inria.fr/archives/
papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf, doi:10.1145/2814228.
2814233.

[PH13] Luis Pina and Michael Hicks. Rubah: Efficient, general-purpose dynamic
software updating for java. In HotSWUp, 2013. doi:10.1.1.711.3281.

[PH16] Luís Pina and Michael Hicks. Tedsuto: A general framework for testing
dynamic software updates. In Software Testing, Verification and Vali-
dation (ICST), 2016 IEEE International Conference on, pages 278–287.
IEEE, 2016. doi:10.1109/ICST.2016.27.

[PKC+13] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz,
Alexander Grebhahn, Reimar Schröter, and Gunter Saake. Javadaptor-
flexible runtime updates of java applications. Software: Practice and
Experience, 43(2):153–185, 2013. doi:10.1002/spe.2107.

[PS87] D. Jason Penney and Jacob Stein. Class modification in the gemstone
object-oriented DBMS. In Proceedings OOPSLA ’87, ACM SIGPLAN

Journal of Object Technology, vol. V, no. N, 2011

https://hal.archives-ouvertes.fr/hal-01247603
https://hal.archives-ouvertes.fr/hal-01247603
http://arxiv.org/abs/1703.10862
http://dx.doi.org/10.22152/programming-journal.org/2017/1/13
http://dx.doi.org/10.22152/programming-journal.org/2017/1/13
http://doi.acm.org/10.1145/1542476.1542479
http://doi.acm.org/10.1145/1542476.1542479
http://dx.doi.org/10.1145/1542476.1542479
http://dl.acm.org/citation.cfm?id=302163.302181
http://dl.acm.org/citation.cfm?id=302163.302181
http://dx.doi.org/10.1109/ICSE.1998.671114
http://dx.doi.org/10.1109/ICSM.2002.1167829
http://dx.doi.org/10.1109/CDS.1998.675757
http://dx.doi.org/10.1109/hotswup.2012.6226612
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://rmod.inria.fr/archives/papers/Poli15b-Onward-CoreLibrariesHotUpdate.pdf
http://dx.doi.org/10.1145/2814228.2814233
http://dx.doi.org/10.1145/2814228.2814233
http://dx.doi.org/10.1.1.711.3281
http://dx.doi.org/10.1109/ICST.2016.27
http://dx.doi.org/10.1002/spe.2107
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

34 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Notices, volume 22, pages 111–117, December 1987. doi:10.1145/38807.
38817.

[Riv96] Fred Rivard. Smalltalk: a reflective language. In Proceedings of REFLEC-
TION ’96, pages 21–38, April 1996. doi:10.1.1.111.5354.

[SAM13] Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshkenani.
A survey of dynamic software updating. Journal of Software: Evolution
and Process, 25(5):535–568, 2013. doi:10.1002/smr.1556.

[San78] Erik Sandewall. Programming in an interactive environment: The “lisp”
experience. ACM Comput. Surv., 10(1):35–71, March 1978. URL: http:
//doi.acm.org/10.1145/356715.356719, doi:10.1145/356715.356719.

[SHM09] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic
software updates: A vm-centric approach. SIGPLAN Not., 44(6):1–
12, June 2009. URL: http://doi.acm.org/10.1145/1543135.1542478, doi:
10.1145/1543135.1542478.

[Ste90] Guy L. Steele. Common Lisp The Language. Digital Press, second edition,
1990.

[WLN13] Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental dy-
namic updates with first-class contexts. Journal of Object Technology,
12(3):1:1–27, August 2013. URL: http://www.jot.fm/contents/issue_2013_
08/article1.html, doi:10.5381/jot.2013.12.3.a1.

[WWS10] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic
code evolution for java. In Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java, PPPJ ’10, pages
10–19, New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/
1852761.1852764, doi:10.1145/1852761.1852764.

[Zer12] ZeroTurnAround. What developers want: The end of application re-
deployes. http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf,
2012.

About the authors

Pablo Tesone is a PhD student at IMT Lille Douai, France. He is studying Dynamic
Software Update Solutions applied to Live programming environments, distributed
systems and robotic applications. He is interested in improving the tools and the daily
development process. He is an enthusiast of the object oriented programming and
their tools. He collaborates with different open source projects like the ones in the
Pharo Community9 and the Uqbar Foundation10.

Guillermo Polito is a coding enthusiast, software engineer and researcher. He
is research engineer at CNRS working currently in the RMoD11 and Emeraude12
teams. His research targets programming language abstractions and tool support for
modular long-lived systems. For this, he studies how reflective systems can evolve

9http://pharo.org/
10http://www.uqbar-project.org/
11http://rmod.lille.inria.fr
12http://www.cristal.univ-lille.fr/emeraude/

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1145/38807.38817
http://dx.doi.org/10.1145/38807.38817
http://dx.doi.org/10.1.1.111.5354
http://dx.doi.org/10.1002/smr.1556
http://doi.acm.org/10.1145/356715.356719
http://doi.acm.org/10.1145/356715.356719
http://dx.doi.org/10.1145/356715.356719
http://doi.acm.org/10.1145/1543135.1542478
http://dx.doi.org/10.1145/1543135.1542478
http://dx.doi.org/10.1145/1543135.1542478
http://www.jot.fm/contents/issue_2013_08/article1.html
http://www.jot.fm/contents/issue_2013_08/article1.html
http://dx.doi.org/10.5381/jot.2013.12.3.a1
http://doi.acm.org/10.1145/1852761.1852764
http://doi.acm.org/10.1145/1852761.1852764
http://dx.doi.org/10.1145/1852761.1852764
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

DSU from Development to Production · 35

while maintaining these properties. He is interested in how these concepts combine
with distribution and concurrency. He obtained the 13 of April 2015 his PhD entitled
Virtualization support for application runtime specialization and extension under the
direction of Stéphane Ducasse (Inria Rmod team) and the supervision of Noury
Bouraqadi and Luc Fabresse (CAR team of Mines Douai). He loves coding and spends
a lot of my free time helping the amazing community of Pharo. He also participates
in several projects such as the Pharo’s database driver suite (DBXTalk), its shortcut
framework, or the static web page generator Ecstatic.

Noury Bouraqadi is a full professor at IMT Lille Douai, France since 2001. His re-
search addresses mobile and autonomous robots from two complementary perspectives:
Software Engineering (SE) and artificial intelligence (AI). From the SE perspective,
he studies software architectures, languages and tools for controlling individual robots.
He mainly focuses on reflective and dynamic languages, as well as component models,
for a modular and agile development of robotic software architectures. From the AI
perspective, he studies coordination and cooperation in robotic fleets. He mainly
focuses on communication models as well as emerging or predefined organizations for
multi-agent robotic systems.

Stéphane Ducasse is directeur de recherche at Inria. He leads the RMoD13 team.
He is expert in two domains: object-oriented language design and reengineering. He
worked on traits, composable groups of methods. Traits have been introduced in
Pharo, Perl, PHP and under a variant into Scala and Fortress. He is also expert
on software quality, program understanding, program visualisations, reengineering
and metamodeling. He is one of the developer of Moose14, an open-source software
analysis platform. He created Synectique15 a company building dedicated tools for
advanced software analyses. He is one of the leader of Pharo16 a dynamic reflective
object-oriented language supporting live programming. The objective of Pharo is to
create an ecosystem where innovation and business bloom. He wrote several books
such as Functional Programming in Scheme, Pharo by Example, Deep into Pharo,
Object-oriented Reengineering Patterns, Dynamic web development with Seaside.
According to Google his h-index is 53 for more than 12000 citations. He would like to
thanks all the researchers referencing his work!

Luc Fabresse is associate professor at IMT Lille Douai, France. His researches aims
at easing the development of mobile and constrained software using dynamic and
reflective languages such as Pharo. One of his goal is to support live programming of
mobile and autonomous robots in an efficient way. He is the co-author of multiple
research papers (http://car.mines-douai.fr/luc) and he concretizes all these ideas (models
and tools) in Pharo to develop, debug, test, deploy, execute and benchmark robotics
applications. Each year, Luc also gives computer science lectures, co-organizes events
(technical days, conferences, ...) and promotes Smalltalk as an ESUG (European
Smalltlak User Group) board member.

13http://rmod.lille.inria.fr
14http://www.moosetechnology.org/
15http://www.synectique.eu/
16http://www.pharo.org/

Journal of Object Technology, vol. V, no. N, 2011

http://car.mines-douai.fr/luc
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

36 · Tesone, Polito, Fabresse, Bouraqadi, Ducasse

Acknowledgments This work was supported by Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council, CPER Nord-Pas de Calais/FEDER
DATA Advanced data science and technologies 2015-2020.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Challenges of Dynamic Software Update
	Change Challenges Illustrated
	DSU Practical Concerns
	Requirements for a General DSU

	Our Solution in a Nutshell
	Update Life-cycle in gDSU
	Requirement Assessment

	Practical General Dynamic Software Update
	Design of Patch Content
	Patch Generation
	Efficient Partial Copy of the Original Environment
	Automatic Safe Update Point Detection
	Reusable Instance State Migrations
	Reusable Validations
	Bulk Instance Replacement

	Validation
	gDSU Platform Requirements
	Validation Methodology
	Validation 1: Application Update
	Validation 2: Update of the DSU
	Validation 3: Update of Language Core Libraries
	Validation 4: Benchmarks

	Discussion
	Related Work
	Classical Live Programming Environments
	Production DSUs
	Development DSUs
	Related Techniques

	Conclusion
	Instructions to Reproduce Validation Experiments
	Installation
	Executing Validations
	Preparation
	Running Validations

	Executing Benchmarks
	Memory Consumption
	Server Response Time

	Bibliography
	About the authors

