
Object Graph Isolation with Proxies

Camille Teruel, Damien Cassou, Stéphane Ducasse

To cite this version:

Camille Teruel, Damien Cassou, Stéphane Ducasse. Object Graph Isolation with Proxies.
DYLA - 7th Workshop on Dynamic Languages and Applications, Collocated with 26th Euro-
pean Conference on Object-Oriented Programming - 2013, Jul 2013, Montpellier, France. 2013.
<hal-00834320>

HAL Id: hal-00834320

https://hal.inria.fr/hal-00834320

Submitted on 14 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00834320

Object Graph Isolation with Proxies

Camille Teruel
Inria Lille Nord-Europe

camille.teruel@inria.fr

Damien Cassou
University of Lille 1, Inria

damien.cassou@inria.fr

Stéphane Ducasse
Inria Lille Nord-Europe

stephane.ducasse@inria.fr

ABSTRACT
More and more software systems are now made of multiple collab-
orating third-party components. Enabling fine-grained control over
the communication between components becomes a major require-
ment. While software isolation has been studied for a long time in
operating systems (OS), most programming languages lack support
for isolation.

In this context we explore the notion of proxy. A proxy is a sur-
rogate for another object that controls access to this object. We are
particularly interested in generic proxy implementations based on
language-level reflection. We present an analysis that shows how
these reflective proxies can propagate a security policy thanks to the
transitive wrapping mechanism. We present a prototype implemen-
tation that support transitive wrapping and allows a fine-grained
control over an isolated object graph.

1. INTRODUCTION
Modern software systems tend to aggregate independently de-

veloped third-party components. It is the case in software that can
be extended with plugins or in web pages known as mashups that
aggregate functionalities from multiple sources. These components
may not trust each other. In such kind of situations, a component
may want to be isolated from the others.

Software isolation has been studied for a long time in operating
systems (OS) where the classical solution is process isolation [2,8].
A process is isolated from other processes and has its own permis-
sions.

Surprisingly, most programming languages lack support for iso-
lation mechanisms. In this paper we study the notion of proxy. A
proxy is a surrogate for another object that controls access to this
object. Proxies have a wide range of use cases: from basic access
control to complex dynamic analysis [14]. In this paper, we are
particularly interested in generic proxy implementations based on
language-level reflection. We present an analysis that shows how
these reflective proxies can propagate a security policy to isolate an
object graph.

The paper is organized as follows: Section 2 presents the general
notion of proxies and the need for generic proxies. It also presents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

generic proxies implementation based on the language reflective
facilities which set the context for the rest of the paper. Section
3 presents transitive wrapping [12, 16], a propagation mechanism
based on reflective proxies. Section 4 presents conclusion and fu-
ture works.

2. PROXIES
A proxy controls accesses to another object called its target [6].

There are many use cases for proxies: A proxy can for example
check some access-control policy on the target, can forward re-
quests to a remote object, and can log and analyze communications.
Two main categories of use cases can be distinguished [16]:

• Wrappers: A wrapper is a proxy that wraps around a target
object. The target is an object in the sense that the wrapper’s
runtime must recognize it as an object. This usually implies
that the wrapper and the proxy live in the same address space.
Wrappers are used for logging, profiling, checking contracts
[15] or access control, etc.

• Virtual objects: A virtual object is a proxy that emulates an
object behavior for an arbitrary target. The target does not
need to be recognized as an object by the proxy’s runtime
because the proxy’s job is precisely to fake its target as if it
were an ordinary object. In other words, it doesn’t matter
what the target really is since the proxy tells the runtime how
it can be handled as an object. For example, the target can
be an object in another address space (e.g., where the proxy
implements transparent remote communication), it can be in
a serialized form on a disk (e.g., for application-level virtual
memory [14]), or stored in a database (e.g., for transparent
automatic persistence).

When using a proxy for access control or other security-related
concerns, this proxy is likely to be a wrapper. In such a situation,
an important requirement is the absence of target leaking: it should
not be possible to obtain access to the target from the proxy itself.
Otherwise, code can just use the target it obtains to bypass the se-
curity policy that the proxy is supposed to enforce.

2.1 Generic Proxies
A naive way to implement proxies consists in creating a class

with the same interface as the class whose instances need to be
proxyfied. However, this kind of implementation has drawbacks.
Firstly, the newly created proxy class works only for the intended
target class; if one wants to wrap objects of other classes the logic
has to be duplicated. Secondly, this implementation often involves
code duplication for each altered method. Finally, the mechanisms
implemented by these proxies may be difficult to reuse and com-
pose. One needs a way to write a proxy in a generic manner. To
overcome this problem, multiple solutions can be designed based

proxy

handler

meta-level

base-level

receive: #message: proxy: proxy arguments: { arg }

message: arg

message send

object composition

normal object

proxyhandler
Legend

target

(optional)

instance-of

Figure 1: A message is sent to a proxy, triggering a hook in its
handler.

on aspects [10] or generative programming [4] for example. Some
programming languages such as Smalltalk [11], Java [5], and the
future ECMAScript 6 [17] added support for some sort of generic
proxies. These implementations rely on the reflective abilities of
their respective programming languages.

In object-oriented languages, reflection is often provided by an
extensible interpreter. Such an interpreter manipulates metaobjects
that represent some constructions of the language (such as objects,
classes and methods). A metaobject can define hooks that are trig-
gered by the interpreter when specific events occur. The set of
hooks an extensible interpreter offers is called its metaobject pro-
tocol (MOP) [9].

When reflection is used to implement the proxy mechanism, the
behavior of each proxy is often described by another object called
its handler. A handler has the possibility to define some hooks that
will be triggered when specific events on the proxy happens. These
hooks are referred as traps [16].

A proxy can thus be regarded as a base-level object, its handler
as its metaobject and the set of available traps as a metaobject pro-
tocol. Using a separate object as handler permits to ensure that the
base-level and the meta-level are not conflated. This principle is
called stratification [3].

The most common trap is the one that is triggered when a proxy
receives a message. This trap is the only one available for Java’s
dynamic proxies for example. Beyond this basic trap, some lan-
guages such as EcmaScript provide state-access and state-assignment
traps among others.

Figure 1 shows a message sent to a proxy; this message is in-
tercepted and the trap corresponding to a received message (here
receive:proxy:argument:) is triggered in the handler. Similarly, other
traps may be triggered depending on what the MOP has to offer.

In the context of reflective proxies with stratification, a proxy
must encapsulate its handler in addition to its target: one should not
be able to retrieve the handler from the proxy. Indeed, if a piece of
code can retrieve a proxy’s handler, the policy can be altered. If the
MOP offers object-state access traps, the default implementation
for proxies is thus to forward the request to the target if there is one
or to raise an error if there is none. In no case the proxy should
return its actual state i.e., its handler and its target.

Logger

AClass

targetproxy

foo
 ^ 42foo

bar bar
 ^ self foo

bar

Figure 2: A wrapper proxy and its target

2.2 Discussion: Self-rebinding
This subsection briefly discusses the propagation of interception

in the context of self-sends. Consider the situation described in
Figure 2. In this situation, a generic wrapper proxy wraps a target
whose class defines two methods foo and bar where bar performs a
self send to foo. We want the proxy to log each message send so
we attach it a Logger handler. When the proxy receives the mes-
sage bar, two different outputs may be generated depending on the
handler’s policy: either simple forwarding or self-rebinding.

2.2.1 Simple forwarding
When the handler’s policy is a simple forward, the handler first

logs the received message and then forwards it to the target. The
target then executes its bar method that calls its foo method and
finally returns 42. In the end the output is the following:

Message bar has been sent.

2.2.2 Self-rebinding
When the handler’s policy is self-rebinding, the execution is slightly

different. The execution begins the same, the proxy receives the
message bar that is trapped and the handler logs the message. Then,
instead of simply forwarding the message to the target, the handler
searches for the method the target would have executed and then
executes it but with the proxy as the receiver. Consequently in this
execution, the self reference in the body of the foo method refers
to the proxy instead of the target. As a result, the handler hooks
are triggered for the whole execution of the message sent, not just
for the initial message. So the proxy executes the bar method of
the target and sends foo to itself. The handler’s hook for message
reception is thus triggered a second time. In the end, the output is
the following:

Message bar has been sent.
Message foo has been sent.

We give the following definition:

DEFINITION 1. A proxy is said to support self-rebinding if in-
stead of forwarding messages to the target, its handler executes the
body of the method the target would have executed with the self
reference bound to the proxy.

Note that self-rebinding makes sense only in the context of wrap-
per proxies. It is impossible for a virtual-object to support self-
rebinding since there is no target method to lookup.

Java’s dynamic proxies don’t enable self-rebinding whereas EC-
MAScript 6 proxies enable self-rebinding by default.

In our opinion, a proxy framework should support both simple
forwarding and self-rebinding to let the user specify its needs with
fine control.

2.2.3 Requirements
There are two requirements to allow self-rebinding. First, the

runtime must provide a way to execute a method upon an arbi-
trary receiver. For example Pharo1 has such a feature through the
CompiledMethod’s receiver:withArguments:executeMethod: primitive
method. Secondly, the metaobject protocol must provide hooks for
accessing an object’s state so that a proxy’s handler can intercept
such accesses to manage them (usually by forwarding state access
requests to the target).

2.3 Prototype Implementation
Here we describe our current prototype implementation of prox-

ies done in Pharo, a Smalltalk environment. This implementation
is based on the early design of Ghost [11]. Right now, this imple-
mentation only supports the trap for message reception. Modifying
the compiler to instrument the bytecode allows us to send specific
messages on some events like instance variables or global variable
accesses. New traps are then available at the cost of additional mes-
sage sends and conflation of base and meta-level.

We implemented the message reception trap by forcing an ex-
ceptional situation where the virtual machine (VM) cannot send a
normal message to an object. In this situation, the VM sends a
message that is normally implemented as an error signal. The trick
is to redefine this message and to delegate message processing to
a handler. This exceptional situation is the absence of a method
dictionary in a class. When the VM performs the message lookup
algorithm and finds a class that has no method dictionary, the VM
sends a message cannotInterpret: with the reified message as an ar-
gument to the receiver. With this message send, the lookup starts
in the superclass of the class that has no method dictionary. Other-
wise, there would be an infinite loop.

Our implementation consists of a class Proxy. This class’ meta-
class has an instance variable that is an anonymous subclass of
Proxy. This anonymous subclass has no method dictionary. The
class Proxy overrides the cannotInterpret: method to perform the del-
egation to the handler. A new proxy is created as follows:

proxy := Proxy handler: someHandler target: someObject.

Here is the implementation of the handler:target: class-side method:

handler: aHandler target: anObject
| newProxy |
newProxy := self new

handler: aHandler;
target: anObject;
yourself.

self anonymousSubclass adoptInstance: newProxy.
^ newProxy

First, a new instance of proxy is instantiated and its handler and
target are set. Then the anonymous subclass “adopts” the new
proxy: that means that the class of newProxy is changed from Proxy
to the anonymous subclass (adoptInstance: is a primitive method
provided by Pharo). Likewise, when the VM performs the message
lookup it doesn’t find the method dictionary of the anonymous sub-
class. Consequently, the VM sends cannotInterpret: to the proxy
but starts the lookup in the superclass of the anonymous subclass:
Proxy. Proxy redefines cannotInterpret: as follows:

cannotInterpret: aMessage
^ handler respondTo:

(Interception message: aMessage target: target proxy: self)
1http://www.pharo-project.org/home

This method creates an interception that is used to store the mes-
sage, the proxy and the target. This method then asks the handler
to perform its policy for the interception.

We provide a default handler class that can be used in most sit-
uations. An instance of this class can define its policy in term of
different actions:

• deny: and denyAll: are used to forbid one or several selectors
to be sent.

• forward: and forwardAll: are used to forward one or several
selectors to the target.

• selfRebind: and selfRebindAll: are used to perform a self-
rebinding for one or several selectors.

• on:do: and onAll:do: are used to specify some custom ac-
tion for one or several selectors. The second argument is a
Smalltalk block2 that takes an interception as argument.

Finally a default action is defined for selectors that have no spe-
cific action.

This set of methods permits to customize the access policy with
a fine-grained control. One still can define its own handler for more
complex message processing.

This prototype has the advantage to not rely on virtual machine
modifications, but it also has drawbacks. First, this implementa-
tion has only one primitive trap for message sending interception.
Other traps can be implemented in term of the primitive one by in-
strumenting bytecode. Then this implementation also conflates the
base-level and the meta-level. A better implementation would be
to rely on a mirror-based architecture [3] to avoid base-level and
meta-level conflation.

3. OBJECT GRAPH ISOLATION
In this section we explain how proxies can be used to isolate a

whole object graph from the rest of the objects, thanks to the tech-
nique of transitive wrapping. This technique can be used to execute
an untrusted piece of code in an environment confined with a cus-
tom policy for example. Transitive wrapping is a powerful tech-
nique that allows one to isolate a graph of objects behind a layer
of proxies created lazily. Transitive wrapping’s goal is to wrap all
objects crossing the boundary of the graph in both directions. A
membrane [12, 16] uses transitive wrapping to ensure that every
object obtained from the isolated object graph is revocable 3. Usu-
ally, a membrane begins its life by wrapping a single object that is
the root of the graph one wants to isolate. When a message is sent
to this wrapper proxy, the arguments are wrapped as well as the re-
turn value of the message. Likewise, all objects obtained from the
root wrapper are wrapped and all objects passed as argument to an
object of the graph are wrapped too. The membrane can then be re-
voked and all the references obtained from the membrane or passed
to it are revoked too. If a membrane offers a revocable graph, the
underlying transitive wrapping mechanism can be applied to other
policies.

Figure 3 shows a scenario where a graph of two objects is iso-
lated (obj2 and obj3). In the beginning there is only one object
wrapped (obj2), that represents the entry point of the isolated graph.
An object (client) sends a message (message:) to the root wrapper
(prx2) with another object (obj1) as an argument (step 1). Then, the
wrapper wraps the arguments with a new proxy (prx1) and forwards
the message with arguments wrapped (step 2). When this message
is received, the target responds another object (obj3, step 3) that is
wrapped with a new proxy (prx3, step 4).

2Smalltalk blocks are similar to closures.
3A revocable object reference allows one to share an object with
some other objects and then revoke this access.

obj2client

obj1

obj3

returnobj2client

obj1

obj3

return

obj2client

obj1

obj3

message:obj2client

obj1

obj3

message:

1 2
3 4

prx2 prx2

prx1

prx2

prx1

prx3

prx2

prx1

outside the graph isolated graph outside the graph isolated graph

outside the graph isolated graphoutside the graph isolated graph

arg arg

Figure 3: Scenario describing transitive wrapping. Handlers are not shown for the sake of simplicity. In step 1, the object client sends a
message to a proxy proxy with obj1 as an argument. In step 2, the handler of proxy wraps the argument obj1 with a new proxy prx1. In step 3,
the object target returns obj2. Finally, in step 4, the handler of proxy wraps the return with a new proxy prx2.

3.1 Discussion

Separating inside-out and outside-in policies.
In the context of isolation, it can be useful to differentiate be-

tween proxies that wrap objects from graph (outside-in proxies)
from the ones that wrap objects that are not in the graph (inside-
out). Outside-in proxies (such as prx2 and prx3 in Figure 3) are
supposed to transform message arguments into inside-out proxies
(such as prx1 in Figure 3) whereas inside-out proxies are supposed
to transform message arguments into outside-in proxies and to en-
sure some policy. In such a configuration, outside-in proxies are
just used as a facility to mark their target as untrusted to auto-
matically wrap arguments of message send to it to protect them.
Symmetrically, inside-out proxies ensure some policy and wrap
arguments of messages to mark them untrusted. This means that
inside-out and outside-in proxies have different policies. Typically
the policy of outside-in proxies is almost empty.

Auto-unwrapping.
When a proxy receives a message, it is supposed to wrap the

arguments. But what happens if one of the arguments is already a
proxy for an object of the other side (e.g., if client sends a message
to prx2 with prx3 as an argument)? The first solution is to ignore
this fact and to still wrap this proxy. Wrapping wrapper this way
is both inefficient and useless. The second solution is to unwrap
objects that come back to the side they belong to. Likewise an
object is at most wrapped once when it is referenced from the other
side but is always unwrapped when it is referenced from its side.

Identity preservation.

In a naive implementation, a proxy is created each time an object
crosses the boundaries, i.e., if an object crosses twice, two different
proxies are created. This approach is inefficient because a proxy
that already exists can be reused. A more important issue is that
object identity is not preserved across the boundaries, potentially
breaking code that rely on object identity. To ensure that an object
has at most one proxy, a solution is to use a dictionary. Precautions
need to be taken to ensure that garbage collection behaves correctly.
The usage is to use a data structure called a weak map. A weak map
is like a dictionary that removes its associations whose key could
be garbage collected. Thanks to this data structure, it is possible
to have reference cycles in the associations and still permit garbage
collection. Weak maps are similar to ephemeron tables [7] except
that objects are not warned before getting garbage collected.

3.2 Implementation
In our implementation, when one wants to wrap an object graph,

two wrappers are created: one is the handler of outside-in proxies
and the other one is the handler of inside-out proxies (as shown in
Figure 4). These wrappers thus always come by pair. Each wrapper
has a reference to its co-wrapper, a weak map to preserve identity
and a separate policy handler to encapsulate the policy. We cre-
ated these co-wrapper pairs to avoid two symmetric wrapping log-
ics and code duplication. We add a separate policy handler to make
a distinction between the wrapper that is a handler executing the
propagation logic and the separate handle that implements some
policy. Likewise, handlers that are not aware of the propagation
mechanism can be used in graph isolation. This approach favors
composability and reusability of policies.

When a wrapper is asked to wrap an object it executes the fol-

obj2client

obj1

obj3

prx2

prx1

prx3

outside the graph isolated graph

outside-in
wrapper

inside-out
wrapper

obj3
obj2prx2

prx3
obj1prx1outside-in

policy
inside-out

policy
map mappolicyHandler policyHandler

otherSide
otherSide

handler handler handler

target

target

target

Figure 4: Shows a transitive wrapper pair with their respective map
and policy handler in the context of the scenario of Figure 3

lowing code:

wrap: anObject
(self map includesKey: anObject)

ifTrue: [^ anObject].
^ self map

keyAtIdentityValue: anObject
ifAbsentPut: [Proxy handler: self target: anObject]

If the object is already a proxy in the wrapper’s map, the wrapper
just returns this proxy. This ensure that an object is not wrapped
twice. Then the wrapper looks if its map already contains a proxy
wrapping the object. Otherwise, the wrapper creates a new proxy
and adds a new entry in the map. In both cases a proxy on the object
is returned.

The following code shows the message interception logic:

respondTo: anInterception
| response |
anInterception arguments

replace: [:arg | self map at: arg ifAbsent: [self otherSide wrap: arg]].
response := self policyHandler respondTo: anInterception.
^ self otherSide map at: response ifAbsent: [self wrap: response]

When a proxy receives a message it asks its co-wrapper to wrap
all the arguments. The wrapper then delegates the message pro-
cessing to its associated policy handler. The response can either be
a proxy or an object of the other side. In the case of a proxy the
wrapper looks for the associated object into its co-wrapper map to
unwrap the proxy. If it is an object, the wrapper just wraps it.

Example.
The following code shows our prototype implementation at work.

"Create the wrapper"
outInWrapper := TransitiveWrapper new.

"Set prefixes that are used in object printing"

outInWrapper policyHandler prefix: ’suspicious’.
outInWrapper otherSide policyHandler prefix: ’protected’.

"Create an association and wrap it"
association := Association key: Person new value: Circle new.
wrapped := outInWrapper wrap: association.
"Prints: suspicious<a Person->a Circle>"

wrapped key.
"Prints: suspicious<a Person>"

wrapped key: Object new.
"Prints: suspicious<protected<an Object>->a Circle>"

wrapped key.
"Prints: an Object"

First a transitive wrapper is created. The inside-out policy mod-
ifies the print of wrapped objects by prefixing the normal string
with suspicious. Similarly, the outside-in policy prefixes the print
string of objects with protected. Then an association4 of two ob-
jects is wrapped. If one prints the wrapped object, one observes the
suspicious prefix; it means that the inside-out policy is taken into
account. Then if wrapped is asked for its key a wrapped version of
the original key is returned with an inside-out policy. If one sets
the key of wrapped to be a new object, this object is wrapped with
an outside-in policy, as the presence of the protected prefix demon-
strates. Finally, if wrapped is asked for its newly setted key, this
latter is automatically unwrapped as the absence of prefix shows.

4. CONCLUSION AND FUTURE WORK
We presented the concept of proxy, that is an object that repre-

sents another object called its target to change its behavior. We
saw the need to express proxy policies in a generic way. A com-
mon solution is to rely on the reflective facilities of programming
languages to implement generic proxies. The behavior of such a
reflective proxy is specified in a handler. We presented a prototype
implementation of reflective proxies in Pharo.

We showed how transitive wrapping can be used to isolate an
object graph with two separate policies: one managing inside-out
communications and the other one managing outside-in communi-
cations.

In the future we want to add new traps such as object state reads
and writes and class environment accesses. This future solution
needs to be stratified to ensure a clean separation of the base and
meta-level. Such an infrastructure will be the testbed for other iso-
lation mechanisms like virtual copies [13], worlds [18] and han-
dles [1].

Acknowledgements
This work was supported by DGA, Inria Lille - Nord Europe, Min-
istry of Higher Education and Research, Nord-Pas-de-Calais Re-
gional Council, FEDER through the ’Contrat de Projets État Ré-
gion (CPER) 2007-2013’.

5. REFERENCES
[1] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel,

and M. Suen. Read-only execution for dynamic languages. In
Proceedings of the 48th International Conference Objects,
Models, Components, Patterns (TOOLS’10), Malaga, Spain,
June 2010.

4An association is just an object referencing two other objects as
its key and its value

[2] G. Back, W. Hsieh, and J. Lepreau. Processes in kaffeos:
Isolation, resource management and sharing in java. In 4th
USENIX International Symposium on Operating System
Design and Implementation (OSDI), 2000.

[3] G. Bracha and D. Ungar. Mirrors: design principles for
meta-level facilities of object-oriented programming
languages. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

[4] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[5] P. Eugster. Uniform proxies for Java. In Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
OOPSLA ’06, pages 139–152, New York, NY, USA, 2006.
ACM.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[7] B. Hayes. Ephemerons: A new finalization mechanism. In
Proceedings OOPSLA ’97, ACM SIGPLAN Notices, 1997.

[8] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fahndrich, C. Hawblitzel, O. Hodson, S. Levi,
N. Murphy, et al. An Overview of the Singularity Project.
Technical Report MSR-TR-2005-135, Microsoft Research,
oct 2005.

[9] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings ECOOP ’97, volume 1241 of LNCS, pages
220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

[11] M. Martinez Peck, N. Bouraqadi, M. Denker, S. Ducasse,
and L. Fabresse. Efficient proxies in Smalltalk. In
Proceedings of ESUG International Workshop on Smalltalk
Technologies (IWST’11), Edinburgh, Scotland, 2011.

[12] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[13] S. Mittal, D. G. Bobrow, and K. M. Kahn. Virtual copies —
at the boundary between classes and instances. In
Proceedings OOPSLA ’86, ACM SIGPLAN Notices,
volume 21, pages 159–166, Nov. 1986.

[14] M. M. Peck, N. Bouraqadi, M. Denker, S. Ducasse, and
L. Fabresse. Marea: An efficient application-level object
graph swapper. Journal of Object Technology, 12(1):2:1–30,
jan 2013.

[15] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and
M. Flatt. Chaperones and impersonators: Run-time support
for contracts on higher-order, stateful values. Technical
report, NU-CCIS-12-01, 2012.

[16] T. Van Cutsem and M. S. Miller. Proxies: design principles
for robust object-oriented intercession APIs. In Dynamic
Language Symposium, volume 45, pages 59–72. ACM, oct
2010.

[17] T. Van Cutsem and M. S. MILLER. On the design of the
ecmascript reflection api. Technical report, Technical Report

VUB-SOFT-TR-12-03, Vrije Universiteit Brussel, 2012.
[18] A. Warth, Y. Ohshima, T. Kaehler, and A. Kay. Worlds:

Controlling the scope of side effects. In ECOOP 2011.
LNCS, 2011.

	Introduction
	Proxies
	Generic Proxies
	Discussion: Self-rebinding
	Simple forwarding
	Self-rebinding
	Requirements

	Prototype Implementation

	Object Graph Isolation
	Discussion
	Implementation

	Conclusion and Future Work
	References

