
Contact us / Contactez nous: nparc.cisti@nrc-cnrc.gc.ca.

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=fr

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

NRC Publications Record / Notice d'Archives des publications de CNRC:
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5209032&lang=en

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5209032&lang=fr

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en

NRC Publications Archive

Archives des publications du CNRC

An Examination of Software Engineering Work Practices
Singer, Janice; Lethbridge, T.; Vinson, Norman; Anquetil, N.

http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=fr
http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5209032&lang=fr

An Examination of Software Engineering Work Practices1

Janice Singerα, Timothy Lethbridgeβ,
Norman Vinsonα, Nicolas Anquetilβ

1 This work is supported by NSERC and the company serving as the site of the study.. This work was sponsored by
the Consortium for Software Engineering Research (CSER). The IBM contact for CSER is Patrick Finnigan.

α Institute for Information Technology
National Research Council, Ottawa, ON, K1A OR6

β School of Information Technology and Engineering
University of Ottawa, Ottawa, ON, K1N 6N5

Abstract

This paper presents work practice data of the daily
activities of software engineers. Four separate studies
are presented; one looking longitudinally at an
individual SE; two looking at a software engineering
group; and one looking at company-wide tool usage
statistics. We also discuss the advantages in
considering work practices in designing tools for
software engineers, and include some requirements
for a tool we have developed as a result of our
studies.

1. Introduction
The Knowledge Based Reverse Engineering Project’s
goal is to provide software engineers (SEs) in an
industrial telecommunications group with a toolset to
help them maintain their system more effectively. To
achieve this goal, we have adopted a user-centered
design approach to tool development [6, 7, 8].
However, unlike traditional user-centered approaches,
we have focused on the SEs’ work-practices. This
represents a new approach [15] to tool design.

This approach borrows from several different
fields in an effort to more accurately assess users’
behavior and then provide them with tools that
enhance, rather than displace or replace, these work
practices. The rationale is that the tools that are built
will actually be used because they have been created
to mesh with existing behavior. This paper will
describe our experiences with this approach and what
we have learned about the work practices of one
group of SEs at a large telecommunications company.

The rest of this introduction will first critically
examine the more traditional uses of psychology in
the program comprehension literature, and second
describe the study of work practices. We will then
outline some results of a study we conducted at a
large telecommunications company. Finally, we will
discuss the implications of these results for tool
design .

1.1 Empirical Studies of Programmers
(ESP)

One human-computer interaction approach to the
design of tools has been to study the cognitive
processes of programmers as they attempt to
understand programs [19, 20, 21]. The results of such
studies are supposed to provide the basis for
designing better tools. In other words, understanding
the mental processes involved in programming will
permit the design of tools that mesh with the
programming process.

In this vein, ESP research has identified a number
of programmers’ approaches to the comprehension
‘problem’ including the top-down [12], bottom-up
[4], and as-needed strategies [9], and the integrated
meta-model [21].

There are three problems with this research,
though, as it pertains to tool design. First, the vast
majority of the research has been conducted with
graduate and advanced undergraduates serving as
expert programmers (but c.f., [21]). It is not at all
clear that these subjects accurately represent the
population of industrial programmers. Consequently,

the results of studies involving students cannot be
generalized to programmers in industry.

Second, to control extraneous variables,
researchers have used programs that are very small
(both in terms of lines of code and logic) relative to
industrial software. This poses a generalization
problem as well: it is not clear that approaches to
comprehending small programs scale up to the
comprehension of very large programs.

Third, there is an assumption that understanding
the programmer’s mental model is an efficient route
to designing effective tools. However, it is not at all
obvious how to design a tool given a specification of
the programmer’s mental model. For instance, how
does knowing that programmers will sometimes use a
top-down strategy to understand code [12] inform tool
design? It doesn’t tell us what kind of tool to build, or
how to integrate that tool into the workplace or the
programmer’s work. Furthermore, given this
knowledge, it is not clear how to help the programmer
build that mental model; how to help her apply it; or
how to help her use it effectively in software
engineering activities.

These three problems with the ESP approach
suggest that an alternative approach to tool design
may be more effective.

1.2 Human Computer Interaction
Currently, there is a strong focus on usability in the
field of human-computer interaction [10]. That is,
designers attempt to ensure that prospective users can
use the software without encountering interface
difficulties. For instance, it should be clear to users
what action they should take at each step, preferably
without referring to documentation. Another aspect of
usability is the minimization of the number of steps
and the amount of time needed to accomplish a task.
To determine whether software is sufficiently usable,
prospective users are observed using the software for
a few, or several minutes. Reaction times, errors,
backtracking to previous states and failures to
accomplish the task are recorded along with the
conditions under which they occurred. These data are
then used to fix the interface and, ideally, more of
these test-redesign iterations take place until the
software is sufficiently usable.

However, we see problems with this approach.
While it may increase the usability of systems, it does
not guarantee that the systems that are built will be
genuinely useful [2, 18]. The usability approach

cannot speak to the issue of whether a user will adopt
and use a new tool in the workplace because that is
not the point, or the focus, of usability. Moreover,
several features of the usability approach prevent it
from informing the designers about the acceptance of
the tool in the workplace. Usability testing usually
takes place outside the normal work setting,
sometimes in a room especially designed for that
purpose. This method of testing prevents the user
from behaving in a normal manner because it isolates
him from resources that are not part of the software
(such as colleagues, documentation, notes). In other
words, it prevents the user from engaging in his day-
to-day work practices. In addition, during usability
testing, the user is essentially forced to use the
software. In consequence, it is impossible to collect
data on whether the user would use the software if he
were given a choice between his existing work
practices and the new software.

The lack of tool adoption and use is a major
problem in the area of tool design for software
engineering. However, because of its features and
techniques, usability cannot inform designers on this
issue. We believe that to build tools that are actually
used, designers must first understand what it is that
SEs do when they work. This is the reason for our
focus on work practices in designing software
engineering tools.

1.3 Work Practices
The study of work practices is a relatively new field
[2, 3, 18] which seeks to understand how work occurs
and, from this understanding, suggest appropriate
technologies for the workplace. Work practices have
been studied in such diverse fields as law, navigation,
document use, etc.

In studies of work practices, data are generally
collected by following and recording the work that
people do. Researchers often rely on ethnographic
methodologies producing diverse sets of data. The
challenge, then, is to take work practice data sets, and
put them into a form that is useful to designers.

Our approach to this problem has been to
implement many different data collection techniques2

and see if the evidence from each converges. Then we
will use these data to decide what types of tools

2 These methods are detailed more precisely in [7, 8,
13]

would best solve the problems that SEs face in their
daily activities.

The first thing that struck us when we entered the
work place was that we did not know exactly what it
was that the SEs did on a day-to-day basis. That is,
we knew neither the kinds of activities they
performed, nor the frequency with which these
various activities took place. As far as we could tell,
there were many hypotheses about the kinds of things
SEs do, but no clear ‘cataloging’ as such of exactly
how SEs go about solving problems. Consequently,
we decided to begin our study of work practices by
finding out what it is that SEs do when they do their
work. First, we will briefly describe the
characteristics of the workplace. Then, the rest of this
paper will present the findings from several studies
we conducted to answer this first question.

2. Workplace Characteristics
The group we are studying maintains a large
telecommunications system that is one of the key
products of the company. The management of the
group is fairly informal, with group members able to
select the problems on which they work.

Group members work in close proximity and
often walk over to each other’s desks with questions.
The group also makes use of a laboratory in which the
target hardware is installed.

2.1 The System
The system includes a real-time operating system and
interacts with a large number of different hardware
devices. The system contains several million lines of
code with over 16000 routines in over 8000 files. It is
also divided into numerous layers and subsystems
written in a proprietary high-level language.

The system was first fielded in the early 1980s
and has since been continually updated. Its
importance to the company and its evolution are
expected to continue for many years to come.

Approximately 13 people actively work on
various aspects of the system at the current time.

Over 100 people have made changes to the source
code during the life of the system.

2.2 Software Engineering Process And
Tools In The Group

The group follows a well-defined process for creating
new system features. They also keep detailed records
of problem reports and the consequent changes to the
system. Other important documents include the
‘practices’ that are followed by those who install and
run the system in the field.

Careful attention is paid to quality control in the
form of design reviews, informal code inspections,
and an independent test team.

Development work is done on the Sun platform,
although the SEs must also spend considerable time
installing and running the software on various
configurations of the target hardware.

3. SE Activities
We collected five basic types of SE work practice
data. First, using a web questionnaire, we simply
asked the SEs what they do. Second, we followed an
individual SE for 14 weeks as he went about his
work. Third, we individually shadowed 9 different
SEs for one hour as they worked. Fourth, we
performed a series of interviews with software
engineers. Finally, we obtained company-wide tool
usage statistics. The next several sections will outline
more precisely our methodologies and results from
these various studies.

3.1 Questionnaire Study
We began this research by administering a web-based
questionnaire. The questionnaire covered many
different aspects of the SEs’ work. Here we report
their answers to a question on what they spend their
time doing. Six SEs in the group of 13 responded.
The question was open-ended, i.e., the SEs had to
decide how to describe their work, rather than
choosing certain activities from a list.

On average, SEs said that they spend 57% of their
time fixing bugs, and 35% of their time making
enhancements to the system. Table 1 shows more
specifically the things they reported that they engaged
in, and the percentage of people reporting that
activity.

The most reported activity was reading
documentation. SEs also reported that they spend
time looking at source, writing documentation,
attending meetings, and writing code. Other activities
include consulting, both answering and asking
questions, working with the hardware, testing,
designing, and fixing bugs.
Because of the questionable validity of self-reports,
we felt it was extremely important to not just rely on
what SEs said they did, but to actually observe them
as they worked. Hence the next sections of the paper
describe two studies that we undertook towards this
goal.

3.2 Individual study
We have been following one SE longitudinally from
the time he joined the company (November, 1996).
For the first six months, we spent about 1-1/2 hours
per week with B. However, as B has become more
expert, we have found that it makes more sense to
meet once every 3 weeks. This is both because new
things happen less frequently (e.g., experience with a
new tool) and because B is more busy with ‘real’
tasks. B is an experienced SE (was previously a team-
leader), thus while he is new to the company, he is
certainly new to neither maintenance nor
telecommunications software.

Our sessions with B consist of 3 distinct
components. First we talk about what has transpired
since the last time we met. This could be anything
from code review to learning about a new tool to
reading documentation, etc. Second, we ask B to look
at a diagram of the system that he previously
constructed and ask him to modify it if it does not
reflect his current understanding of the system.
Finally, we ‘shadow’ B as he works for 1/2 hour. In
this paper, we report the data from the shadowing.

3.2.1 Method

3.2.1.1 Subject

B has worked in the software industry for many years.
Prior to joining the telecommunications company, he
worked as a team leader for a nearby competitor.

There, B maintained a product in the same category
as the current product, but developed on a much
smaller scale.

B has experience in several languages, but prior to
joining the company, considered himself to be an
expert only in an in-house proprietary language.
Likewise, while he has experience in several
platforms, prior to joining the company, B considered
himself to be an expert only in an in-house
proprietary 68K development platform. B has worked
on 5 different systems, 3 of which have involved
development, 2 of which have involved maintenance.

B joined the company in November, 1996. Before
then B had no experience in the company’s in-house
Pascal-based proprietary language. Nor did B have
any experience in Pascal, although he had
programmed in other structured languages. B had
utilized VI before coming to the company, but
planned on switching to the Emacs editor at the
company. Similarly, he had used Grep previously, but
was switching to use of Egrep and Fgrep at the
company. B did not have previous experience with
the other tools available at the company

3.2.1.2 Procedure and Data

The shadowing data result from 14 half-hour sessions
ranging from October 17, 1996 to February 27, 1997.
Some days are missing because of vacation or

Activity % of
people

Read documentation 66%
Look at source 50%
Write documentation 50%
Write code 50%
Attend meetings 50%
Research/identify alternatives 33%
Ask others questions 33%
Configure hardware 33%
Answer questions 33%
Fix bug 33%
Design 17%
Testing 17%
Review other’s work 17%
Learn 17%
Replicate problem 17%
Library maintenance 17%

Table 1: Questionnaire results of work
practices (6 responses).

schedule conflicts. For the most part, however, these
dates reflect weekly meetings with B.

For half an hour, we would sit behind B and write
down the things he did. For instance, if he used Grep,
that would be recorded (using pencil and paper). If he
read documentation, or wrote notes to himself, that
was written down.

We recorded B’s activities in detail, but not to the
point of exactly what he typed or said. For example,
we would record that B edited a file or interacted with
the hardware, while not detailing the exact nature of
his involvement with these activities.

A new activity was recorded each time a switch in
activity occurred. So, for instance, if B did 6 Greps in
a row, that was recorded as a single instance of the
event Grep. Then if he did 4 Diffs, a single Diff event
would be recorded. Taking that to its extreme, if all B
did was Grep for 1/2 hour, that is the single activity
that would have been recorded for that 1/2 hour. No
time measures were taken. Thus, we do not know the
duration of B’s involvement in each distinct event.
We followed the shadowing procedure regardless of
the nature of B’s work. Sometimes that meant that we
observed B reading documentation only. Other times
B was engaged in a wide variety of tasks.

As a general note, there is probably some self-
selection of activities involved in B’s choices of
things to do. For instance, it is highly unlikely that B

would have chosen to respond to personal email when
he was being shadowed by us. As a rule, he was
always directly involved in work activities. We do not
consider this to be too much of a problem, however,
because our goal is, after all, to build tools that help
SEs work.

3.2.2 Results

The shadowing events were categorized into 14
distinct categories which are described in Table 2.
Each of B’s events was then classified as belonging to
one of these event categories.

The data were then examined in two distinct
ways. First, Figure 1 shows the percentage of days
(for a 14 day span) on which an event occurred at
least once. For example, if B searched for information
one day, the search count would be incremented by 1,
regardless of whether B searched 1 time, 4 times, or
24 times on that particular day.

Searching and interacting with the hardware were
the most likely events to occur on a daily basis, each
occurring on 8 of the 14 days. B looked at the source
code on 6 of the 8 days. The reason that B searched
on more days than he looked at the source code is
because searching was an activity that also occurred
when interacting with the hardware and debugging. B
only looked at documentation on 2 of the 14 days.
This is surprising because, at the time, B was still a

Activity Description

Call trace Looking at an execution trace of the program

Consult Either being consulted or consulting someone else

Compile Linking or compiling a program

Configuration Mgt Entering and using the in-house configuration management system (sometimes for
updating, and sometimes to search for past updates)

Debug Using either the high-level or low-level debugger

Documentation Looking at documentation

Edit Actually making a change to source code

Management General software activities, such as meetings, code reviews, etc.

In-house tools Using one of the in-house tools, primarily static software analysis tools

Notes Taking notes, or reading past notes

Search Using Grep, in-house search tools, or searching in an editor

Source Looking at source code using editors or code viewers

Hardware Interacting with the hardware, e.g., loading software, running software, configuring the
hardware, etc.

UNIX Issuing a general UNIX command such as LS, CD, etc.

Table 2: Categories of activities observed when shadowing software engineers

relative novice to the software system and it is
commonly assumed that novices will spend much of
their time reading the documentation to get a handle
on what they are doing. The data show that this was
not the strategy B pursued. However, because B was
a novice, it was not surprising to find that , editing
code, compiling, and management were each only
done on 1 of the 14 days.

Figure 2 shows the proportion of each event type
out of the total of 156 distinct events. Unlike Figure
1, Figure 2 shows the total count, so that if B
searched 8 times on one day, that is counted as 8
instances of search.

Again, we see that overall B searched more often
than he did anything else (37 times). He also
frequently looked at the source code (33 times).
While B was likely on any particular day to work
with the hardware (see Figure 1), he did so on only 22
distinct occasions.

Remember, however, that these data do not
include time measurements, but simply activity
switches. So, for instance, while B did management
activities on only 1 day, the code review that was

undertaken took the entire 1/2 hour.
Thus overall, in terms of both daily activities and

frequency of different activities, search for
information about the system, whether through Grep,
in-house search tools, or within a particular editor or
debugger, figures most prominently. A significant
amount of effort was also expended interacting with
the hardware and looking at the source code.

3.3 Group study
To generalize our findings, we have conducted
several studies that focus on different aspects of the
work of an entire group of SEs.

We have collected four types of data from the
group. First, we asked the SEs to draw a diagram or
picture of their current understanding of the system, a
conceptual map, if you will. Second, we conducted
intensive interviews with the SEs as they solved a real

0%

10%

20%

30%

40%

50%

60%

S
ea

rc
h

H
ar

dw
ar

e

S
ou

rc
e

U
N

IX
N

ot
es

C
on

fig
ur

at
io

n
M

gt

C
al

l_
tr

ac
e

D
eb

ug

In
-h

ou
se

 to
ol

s
D

oc
um

en
ta

tio
n

C
on

su
lt

E
di

t
C

om
pi

le
M

an
ag

em
en

t

Figure 1. Percentage of days on which B
engaged at least once in a particular activity.

0%

10%

20%

30%

40%

50%

60%

S
ea

rc
h

S
ou

rc
e

H
ar

dw
ar

e

C
al

l_
tr

ac
e

D
eb

ug

U
N

IX
N

ot
es

C
on

fig
ur

at
io

n
M

gt
D

oc
um

en
ta

tio
n

In
-h

ou
se

 t
oo

ls

E
di

t
C

on
su

lt

C
om

pi
le

M
an

ag
em

en
t

Figure 2. Percentage of times each type of
event occurred out of a total of 156 distinct
events.

problem with the software. This generally involved 1
hour interviews over the course of several days.
Third, we asked the SEs to recount how they solved a
recently encountered problem. Finally, we spent one
hour shadowing each SE as they went about their
work. This report focuses on this fourth type of data;
the shadowing data.

3.3.1 Method

3.3.1.1 Subjects

Eight group members participated in the shadowing
study. Their experience ranged from the most expert
member of the group (8 years) to the least
experienced (6 months - recent college graduate). All
but one of the shadowed subjects worked on the main
controller of the hardware. One of the subjects
worked primarily on the database component.

The subjects were expert in a wide variety of
platforms and languages, and had experience in both
development and maintenance environments.

3.3.1.2 Procedure and Data

The shadowing occurred in the same manner as for B:
we sat behind the SEs and recorded the activities they

engaged in. Again, a new activity was recorded when
there was a switch in activity, so 9 Greps in a row
counted as one instance of the activity search.
Durations of activities were not recorded.

We recorded activities in gross, not fine, detail;
e.g., we did not record the arguments to particular
commands.

Shadowing schedules were not chosen to reflect
any particular activity, but rather were scheduled at
times convenient for the SEs. Shadowed times were
relatively free from stress, i.e., SEs were not
shadowed as deadlines approached.

Again, there is probably some self-selection
involved in the activities that the SEs pursued.
However, it was very clear that they were all working
on ‘real’ problems as evidenced by their concern with
the problem report’s contents.

3.3.2 Results

Like B’s data, the shadowed events were categorized
into 14 distinct categories which are described in
Table 2. Each of the events was then classified as
belonging to one of these event categories. 356
distinct events were recorded.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
ou

rc
e

S
ea

rc
h

E
d

it
U

N
IX

C
on

fig
ur

at
io

n
M

gt

C
om

pi
le

C
on

su
lt

D
oc

um
en

ta
tio

n
N

ot
es

H
ar

dw
ar

e
D

eb
ug

In
-h

ou
se

 to
ol

s
C

al
l_

tr
ac

e

M
an

ag
em

en
t

Figure 3. Percentage of users who engaged
in a particular type of activity.

Figure 3 shows the proportion of users who
engaged in a particular type of activity at least once
during the shadowed hour. All 8 SEs looked at the
source, conducted a search, and changed the source
code at least once during the hour. Most of the SEs
also engaged at least once in several other activities,
with 5 of the 8 SEs interacting with the hardware,
debugger, or the in-house tools. On the other hand,
only 3 SEs looked at a call trace, while only one SE
performed a management activity.

Figure 4 shows the percentage of times a
particular type of event occurred out of the total of
357 events (totaled over the 8 SEs). Issuing a UNIX
command was the most frequent activity, occurring
54 times. A close second was looking at the source
which was done 52 times. Interacting with the
hardware or the debugger, searching, or changing the
source code was done on 36, 32, 31, and 30 occasions
respectively. Configuration management, consulting,
compiling, and looking at in-house tools were each
done about 20 times.

Surprisingly enough, reading the documentation,
although done by 6 of the 8 SEs accounted for only
12 separate events. Clearly, the act of looking at the
documentation is more salient in the SEs’ minds (as
evidenced by the questionnaire data) than its actual
occurrence would warrant.

SEs only occasionally wrote notes, looked at the
call trace or did management activities. This is not to
say that these events are not important, but merely
that they did not occur as frequently as other events.

As B did, the group frequently examined the
source code. Every SE in the group made at least one
search during their shadowing session, but search was
less prominent than in B’s activities. Search ranked as
the most frequent event type for B, while it was the
4th most frequent for the group.

Code editing and compiling were more prominent
activities in the group data. This is probably because
B was still learning the system at the time we
shadowed him, so he was not yet in a position to
make many changes. This may also explain the higher
prominence of call trace in his data: call trace may be
effective in gaining an initial understanding of a
system.

Interestingly, in-house tools and documentation
were both relatively infrequent activities for both the
group and B.

The group data converge with B’s data to suggest
that looking and searching through the source code
are prominent activities for SEs. Editing and

compiling also seem important. This concurs with
what we would expect in that the code is the focus of
their work.

3.4 Company Study
The final study we report concerns company-wide
tool usage statistics. These data were obtained from
the company’s tool group. This group is responsible
for acquiring, updating, and maintaining the
company’s tools. Collecting usage statistics is part of
their mission.

3.4.1 Results

The data presented here represent one week of Sun
tool usage by 367 users in late May. Note that this
week occurred before ‘vacation season,’ so is fairly
representative of peak tool usage. There were 79,295
separate tool calls logged from the Sun operating
system. Each call counts as one usage event. These
tool calls were classified according to the scheme
presented in Table 3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
N

IX
S

o
u

rc
e

H
ar

d
w

ar
e

D
eb

u
g

S
ea

rc
h

E
di

t
C

on
fig

ur
at

io
n

M
gt

C
on

su
lt

C
om

pi
le

In
-h

ou
se

 to
ol

s
D

oc
um

en
ta

tio
n

N
o

te
s

C
al

l_
tr

ac
e

M
an

ag
em

en
t

Figure 4. Proportion of times a particular type of
event occurred out of the total of 357 events.

Figure 5 shows the proportion of times that each
type of tool was used. Compilers, which accounted
for 32,422 calls, or 41% of all calls are not included
in this graph. This is because the compiler data
include all the automatic software builds done nightly
and by the various testing and verification groups.

These data are therefore not representative of the SEs
real work practices.

The overwhelming finding from the company data
is that search is done far more often than any other
activity. In fact, search accounts for 21,146 events
over the course of the week, or an average of about 58
searches per individual user. Compression and un-
compression tools are also used often. We never
actually observed anyone using these tools. Perhaps
they are used by the verification groups.

The configuration management system was
activated 2819 times, accounting for approximately
4% of all events. At this company, the configuration
management system is central to the work process,
both for retrieving files, filing changes, and searching
through past changes (along with associated
documentation).

Editors and viewers account for approximately
3190 events, or 4% of the total number of events.
This low frequency could be due to counting
particularities that apply only to editors. In the
company tool data, an editor command is counted
only when the editor is opened. Once an editor is
open, it generally stays open, regardless of how many
changes are made, or how many files are viewed. In
contrast, in the shadowing data, an edit was recorded
each individual time the source was changed, and a
source event was counted each time the source was
examined, whether the editor was already open or not.
Consequently, it comes as no surprise that the
shadowing data edit and source frequency is higher
than that of the company data.

Tool Description
Compilers Compilers, assemblers, linkers
Compression Compression tools such as zip and unzip
Configuration Mgt Make and an in-house configuration management tool
Debuggers General and in-house debuggers
Editors Emacs, VI, and various others
Formatters Tools such as latex and groff
Graphics Tools Tools to create and display graphics
Hardware Connectors In-house tools to connect to hardware
Internet Tools Web browsers, news readers, and email programs
In-house Tools Primarily software static analysis tools
Operating System Windowing, terminal, and various other OS tools
Search Primarily variations of Grep, but some in-house tools
Viewers Document viewers such as More and Less
Other A collection of various other tools

Table 3. Classification of the types of Sun tools.

0%

10%

20%

30%

40%

50%

S
ea

rc
h

C
o

m
p

re
ss

io
n

C
o

n
fig

u
ra

tio
n

 M
g

t

E
d

ito
rs

V
ie

w
er

s

O
p

er
at

in
g

 S
ys

te
m

In
-h

o
u

se
 t

o
o

ls
H

ar
d

w
ar

e
C

o
n

n
ec

to
rs

In
te

rn
et

 t
o

o
ls

G
ra

p
h

ic
s

T
o

o
ls

D
eb

u
g

g
er

s

F
o

rm
at

te
rs

O
th

er

Figure 5. Proportion of all tool calls accounted
for by each tool type.

Again, the in-house tools are not used very
frequently, but that belies their importance. These
tools are important because they perform necessary
functions that cannot be performed by other tools.

Search is the most frequently used tool at the
company wide level. Grep and its variants are the
most frequently used search tools, accounting for
21,117 separate invocations. Clearly, search is an
important aspect of SEs work practices.

3.5 Discussion
This examination of work practices suggests that
search is an important component of real, day-to-day,
software engineering. It is therefore quite reasonable
to think that an improvement in search tools would
help SEs to do their job better. In fact, the KBRE
group has decided to focus its efforts in this direction.
Currently, we are implementing a source code
exploration tool [6] and investigating ways to
introduce it into the workplace.

In order to improve these new tools, we are
continuing our study of SE work practices in several
ways. First, we are examining the source code search
activity: identifying the kinds of things SEs search
for, how many searches they need to find a particular
piece of information, etc. Second, we are continuing
our longitudinal study of B’s work and our
involvement with the group. Finally, we are talking to
SEs at other companies to determine whether our
findings generalize to their work practices.

Our shadowing studies indicate that SEs also
expend a significant amount of effort in just looking
at the source. This suggests that intelligent viewers
might prove valuable. Indeed, the process of reading
and navigating huge pieces of source code can be
considered to be a type of navigation and information
retrieval problem [16]. In the future, we plan on
exploiting this perspective on code viewing,
especially in terms of the relationship between
viewers and search.

4. Application or Work-Practices
Studies to the Development of
Tool Requirements

We have used the data gathered during the work-
practices studies described in section 3, in order to

develop requirements for software engineering tools.
This section describes those requirements.

4.1 The Software Engineering Task that
We Address: Just in Time
Comprehension of Source Code

Almost all the SEs we have studied spend a con-
siderable proportion of their total working time in the
task of trying to understand source code prior to
making changes. We call the approach they use Just
in Time Comprehension (JITC) [14]; the reason for
this label will be explained below. We choose to
focus our research on this task since it seems to be
particularly important, yet lacking in sufficient tool
support.

The ‘changes’ mentioned in the last paragraph
may be either fixes to defects or the addition of
features: The type of change appears to be of little
importance from the perspective of the approach the
SEs use. In either case the SE has to explore the
system with the goal of determining where
modifications are to be made.

A second factor that seems to make relatively
little difference to the way the task is performed is
class of user: Two major classes of users perform this
task: Novices and experts. Novices are not familiar
with the system and must learn it at both the
conceptual and detailed level; experts know the
system well, and may have even written it, but are
still not able to maintain a complete-enough mental
model of the details. The main differences between
novice and expert SEs are that novices are less
focused: They will not have a clear idea about which
items in the source code to start searching, and will
spend more time studying things that are, in fact, not
relevant to the problem. It appears that novices are
less focused merely because they do not have enough
knowledge about what to look at; they rarely set out
to deliberately learn about aspects of the system that
do not bear on the current problem. The vision of a
novice trying to ‘learn all about the system’, therefore
seems to be a mirage.

As described in section 3, we observe that SEs
repeatedly search for items of interest in the source
code, and navigate the relationships among items they
have found. SEs rarely seek to understand any part of
the system in its entirety; they are content to under-
stand just enough to make the change required, and to
confirm to themselves that their proposed change is

correct (impact analysis). After working on a
particular area of the system, they will rapidly forget
details when they move to some other part of the
system; they will thus re-explore each part of the
system when they next encounter it. This is why we
call the general approach, just-in-time comprehension
(JITC). Almost all the SEs we have studied confirm
that JITC accurately describes their work paradigm –
the only exceptions were those who did not, in fact,
work with source code (e.g. requirements analysts).

4.2 List of Key Requirements for a
Software Exploration Tool

As a result of our work-practices studies (section 3),
we have developed a set of requirements for a tool
that will support the just-in-time comprehension
approach presented in the last section. Requirements
of relevance to this paper are listed and explained in
the paragraphs below. Actual requirements are in
italics; explanations follow in plain text.

The reader should note that there are many other
requirements for the system whose discussion is
beyond the scope of this paper. The following are
examples:
• Requirements regarding interaction with con-

figuration management environments and other
external systems.

• Requirements regarding links to sources of
information other than source code, such as
documentation.

• Detailed requirements about usability.

Functional requirements. The system shall:

F1 Provide search capabilities such that the user
can search for, by exact name or by way of
regular expression pattern-matching, any named
item or group of named items that are
semantically significant3 in the source code.

3 We use the term semantically significant so as to
exclude the necessity for the tool to be required to
retrieve ‘hits’ on arbitrary sequences of characters in
the source code text. For example, the character
sequence ‘e u’ occurs near the beginning of this
footnote, but we wouldn’t expect an information
retrieval system to index such sequences; it would
only have to retrieve hits on words. In software the
semantically significant names are filenames, routine
names, variable names etc. Semantically significant

The SEs we have studied do this with high
frequency. In the case of a file whose name they
know, they can of course use the operating
system to retrieve it. However, for definitions (of
routines, variables etc.) embedded in files, they
use some form of search tool (see section 4.3).

F2 Provide capabilities to display all relevant
attributes of the items retrieved in requirement
F1, and all relationships among the items.

We have observed SEs spending considerable
time looking for information about such things as
the routine call hierarchy, file inclusion
hierarchy, and use and definitions of variables
etc. Sometimes they do this by visually scanning
source code, other times they use tools discussed
in section 4.3. Often they are not able to do it at
all, are not willing to invest the time to do it, or
obtain only partially accurate results.

F3 Provide capabilities to keep track of separate
searches and problem-solving sessions, and
allow the navigation of a persistent history.

This requirement hhas come about because we
observe users working on multiple problems and
subproblems over a span of many days. We also
observe them losing information they had
previously found and redoing searches.

Non-functional requirements. The system will:

NF1 Be able to automatically process a body of
source code of very large size, i.e. consisting of
at least several million lines of code.

As we are concerned with systems that are to be
used by real industrial Ses, an engineer should be
able to pick any software system and use the tool
to explore it.

NF2 Respond to most queries without perceptible
delay.

This is one of the hardest requirements to fulfill,
but also one of the most important. In our

associations include such things as routine calls and
file inclusion.

observations, SEs waste substantial time waiting
for tools to retrieve the results of source code
queries. Such delays also interrupt their thought
patterns.

NF3 Process source code in a variety of pro-
gramming languages.

The SEs that we have studied use at least two
languages – a tool is of much less use if it can
only work with a single language. We also want
to validate our tools in a wide variety of software
engineering environments, and hence must be
prepared for whatever languages are being used.

NF4 Wherever possible, be able to interoperate with
other software engineering tools.

We want to be able to connect our tools to those
of other researchers, and to other tools that SEs
are already using.

NF5 Permit the independent development of user
interfaces (clients).

We want to perform separate and independent
research into user interfaces for such tools. This
paper addresses only the overall architecture and
server aspects, not the user interfaces.

NF6 Be well integrated and incorporate all fre-
quently-used facilities and advantages of tools
that SEs already commonly use.

It is important for acceptance of a tool that it
neither represent a step backwards, nor require
work-arounds such as switching to alternative
tools for frequent tasks. In a survey of 26 SEs
[7], the most frequent complaint about tools
(23%) was that they are not integrated and/or are
incompatible with each other; the second most
common complaint was missing features (15%).
In section 4.3 we discuss some tools the SEs
already use for the program comprehension task.

NF7 Present the user with complete information, in a
manner that facilitates the JITC task.

Some information in software might be described
as ‘latent’. In other words, the software engineer
might not see it unless it is pointed out. Examples

of such information are the effects of conditional
compilation and macros.

Acceptable limitations:

L1 The server component of the tool may be limited
to run on only one particular platform.

This simplifies implementation decisions without
unduly restricting SEs.

L2 The system is not required, at the present time, to
handle object oriented source code.

We are restricting our focus to SEs working on
large bodies of legacy code that happens to be
written in non-object-oriented languages.
Clearly, this decision must be subsequently lifted
for the tool to become universally useful.

L3 The system is not required, at present, to deal
with dynamic information, i.e. information about
what occurs at run time.

This is the purview of debuggers, and dynamic
analysis tools. Although it would be useful to
integrate these, it is not currently a requirement.
We have observed software engineers spending
considerable time on dynamic analysis (tracing,
stepping etc.), but they consume more time
performing static code exploration.

4.3 Why Other Tools are Not Able to
Meet these Requirements

There are several types of tools used by SEs to
perform the code exploration task described in section
4.1 This section explains why, in general, they do not
fulfill our requirements:

Grep: Our studies described in section 3.4 indicated
that over 25% of all command executions were of one
of the members of the Grep family (Grep, Egrep,
Fgrep, Agrep and Zgrep). Interviews show that it is
the most widely used software engineering tool. Our
observations as well as interviews show that Grep is
used for just-in time comprehension. If SEs have no
other tools, it is the key enabler of JITC; in other
situations it provides a fall-back position when other
tools are missing functionality.

However, Grep has several weaknesses with
regard to the requirements we identified in the last
section:

• It works with arbitrary strings in text, not semantic
items (requirement F1) such as routines, variables
etc.

• SEs must spend considerable time performing
repeated Greps to trace relationships (requirement
F2); and Grep does not help them organize the
presentation of these relationships.

• Over a large body of source code Grep can take a
large amount of time (requirements NF1 and NF2).

Search and browsing facilities within editors: All
editors have some capability to search within a file.
However, as with Grep they rarely work with
semantic information. Advanced editors such as
Emacs (used by 68% of a total of 127 users of text-
editing tools in our study) have some basic abilities to
search for semantic items such as the starts of
procedures, but these facilities are by no means
complete.

Browsing facilities in integrated development
environments: Many compilers now come with
limited tools for browsing, but as with editors these
do not normally allow browsing of the full spectrum
of semantic items. Smalltalk browsers have for years
been an exception to this, however such browsers
typically do no not meet requirements such as speed
(NF2), interoperability (NF4), and multiple languages
(NF3). IBM’s VisualAge tools are to some extent
dealing with the latter problem.

Special-purpose static analysis tools: We observed
SEs using a variety of tools that allow them to extract
such information as definitions of variables and the
routine call hierarchy. The biggest problems with
these tools were that they were not integrated
(requirement NF6) and were slow (NF2)

Commercial browsing tools: There are several
commercial tools whose specific purpose is to meet
requirements similar to ours. A particularly good
example is Sniff+ from Take5 Corporation [17].
Sniff+ fulfills the functional requirements, and key
non-functional requirements such as size [NF1],
speed [NF2], multiple languages [NF3], its
commercial nature means that it is hard to extend and
integrate with other tools.

Program understanding tools: University
researchers have produced several tools specially
designed for program understanding. Examples are
Rigi [11] and the Software Bookshelf [5]. Rigi meets
many of the requirements, but is not as fast [NF2] nor
as easy to integrate other tools [NF6] as we would
like. As we will see later it differs from what we
would like in some of the details of items and
relationships. The Software Bookshelf differs from
our requirements in a key way: Before somebody can
use a ‘bookshelf’ that describes a body of code, some
SE must organize it in advance. It thus does conform
fully with the ‘automatically’ aspect of requirement
NF1.

4.4 The Tools We are Developing
As a consequence of our work practices studies, and
thus the requirements described in the last section, we
have developed an improved software exploration
tool which we call tksee. A view of this tool is shown
in figure 6.

The main features that fulfill F1 and F2 (search
capabilities) are in the bottom two panes. The bottom
left pane shows a hierarchy that the user
incrementally expands by asking to show attributes of
items, or to search for information (relations or Grep
results) about a given item. The currently selected
item is shown in the bottom-right pane, from which
the user can hyper-jump by selecting any item of text.

The main feature that fulfills F3 is the top pane.
Each element in this pane is a complete state of the
bottom two panes. A hierarchy of these states is saved
persistently, so each time the user starts the tool, his
or her work is in the same state as at the end of the
previous session.

The non-functional requirements are met by the
tksee architecture shown in figure 7. This architecture
includes a very fast database, an interchange language
for language-independent information about
software, and a client-server mechanism that allows
incorporation of existing tools (e.g. Grep) so that
software engineers can continue to use tools they
already find useful.

Further details about this tool are in [6, 15].
We are continuing our involvement with users:

we are studying how their work practices evolve
when they choose to adopt this tool.

5. Conclusions
In conclusion, the study of work practices provides a
path to tool design that is an alternative to the tradi-
tional paths taken in human-computer interaction,
namely those issuing from the study of the users’
cognitive processes and mental models, and the
emphasis on usability. The problem of disuse has
plagued software tools designed with these traditional
human computer interaction approaches. By focusing
on workplace activities, the study of work practices
increases the likelihood that tools can be smoothly in-
tegrated into the users’ daily activities. This, in turn,
should increase the acceptance and use of software
tools designed on the basis of work practices.
Whether one wishes to examine user cognitions or
not, it is necessary that tools be consistent with work
practices for them to be used. Once this consistency is
established, the usability approach can be taken to

ensure that the SEs can effectively use these tools to
accomplish their work.

It is possible that the study of work practices can
reduce, or perhaps even eliminate, the need to study
cognitive processes and mental models. This will
depend on the accuracy and detail with which work
practices can be described. If they can be described in
detail, in terms of every system state explicitly and
intentionally accessed by the user, it may not be
necessary at all to fathom the users’ cognitions. We
may only need to abide by general principles of
usability and usability testing in addition to the work
practice specifications in order to design useful, and
used tools. Moreover, it may be more efficient, in
terms of time, to take the work practice approach to
tool design than the cognitive approach. However,
further empirical work is required in order to
strengthen out confidence in these statements. Further
details about our research can be found in [15].

Acknowledgments

We would like to thank the software engineers who
have participated in our studies, in particular those
with whom we have worked for many months. We
would also like to thank the tools group at the
company for providing us with the tool usage
statistics. Finally, we would like to thank the KBRE
group for many helpful suggestions in conducting this
research.

About the Authors

Janice Singer is a cognitive psychologist who is now
researching software engineering work practices with
the Software Engineering Laboratory at the National
Research Council of Canada. Prior to her Ph.D.
studies, she conducted research in human-computer
interaction and worked as a software engineer.

Timothy C. Lethbridge is an Assistant Professor
in the newly-formed School of Information
Technology and Engineering (SITE) at the University
of Ottawa. He teaches software engineering, object
oriented analysis and design, and human-computer

Figure 6: The main window of the tksee tool.

TA++
Files

Parsers

Database

Source Code
File

DBMS

Clients
(User Interfaces

and other
analysis tools)

3rd party tools
that read
TA++

3rd party tools
that produce

TA++

Auxilliary
Analysis Tools

Query
Engine

Interchange
format (TA++)

Query
response

Interchange
format

 (TA++)

Interchange
format (TA++)

Write-API
data

TA++
Parser Read-API

data

Read-API
data

TA++
Generator

Figure 7: Data flow diagram showing
archtecture of the tksee software

interaction. He heads the Knowledge-Based Reverse
Engineering group, which is one of the projects
sponsored by the Consortium for Software
Engineering Research. Prior to becoming university
researcher, Dr. Lethbridge worked as an industrial
software developer in both the public and private
sectors.

Norman Vinson is a cognitive psychologist
working in the Interactions with Modeled
Environments group, at the Institute for Information
Technology, National Research Council of Canada.
Prior to joining the NRC, Dr. Vinson was a user-
interface designer at Northern Telecom.

Nicolas Anquetil recently completed his Ph.D. at
the l’Université de Montréal and is now working as a
research associate and part time professor in SITE at
the University of Ottawa.

The URL for the KBRE project is
http://www.csi.uottawa.ca/~tcl/kbre. The URL for the
Institute for Information Technology is
http://www.iit.nrc.ca. The authors can be reached at
{singer, vinson}@iit.nrc.ca and {tcl, anquetil}
@site.uottawa.ca

References

[1] Anderson, J., Cognitive Psychology and Its
Implications, WH Freeman, 1995..

[2] Blomberg, J., Suchman, L., & Trigg, R.,
Reflections on a Work-oriented Design Project.
Human Computer Interaction (11), pp. 237-265,
1996.

[3] Beyer, H., & Holtzblatt, K., Apprenticing with
the customer. Communications of the ACM (38),
pp. 45-52, 1995.

[4] Brooks, R., Towards a Theory of the
Comprehension of Computer Programs,
International Journal of Man-Machine Studies
(18), pp. 543-554, 1983.

[5] Holt, R., Software Bookshelf: Overview And
Construction, www.turing.toronto.edu/
~holt/papers/bsbuild.html

[6] Lethbridge, T., & Anquetil, N., Architecture of
a source code exploration tool: A software
engineering case study. School of Information
Technology and Engineering, Technical Report.

[7] Lethbridge, T. and Singer J., Understanding
Software Maintenance Tools: Some Empirical
Research, Workshop on Empirical Studies of
Software Maintenance (WESS 97), Bari Italy,
October, 1997.

[8] Lethbridge, T. and Singer, J, Strategies for
Studying Maintenance", Workshop on Empirical
Studies of Software Maintenance, Monterey,
November 1996.

[9] Littman, D., Pinto, J., Letovsky, S., & Soloway,
E., Mental Models and Software Maintenance,
Empirical Studies of Programmers, pp. 80-98,
1986.

[10] Mayhew, D., Principles and Guidelines in
Software User Interface Design, Prentice Hall,
1991.

[11] Müller, H., Mehmet, O., Tilley, S., and Uhl, J.,
A Reverse Engineering Approach to Subsystem
Identification, Software Maintenance and
Practice, Vol 5, 181-204, 1993.

[12] Pennington, N., Stimulus Structures and Mental
Representations in expert comprehension of
computer programs. Cognitive Psychology (19),
pp. 295-341, 1987.

[13] Singer, J. and Lethbridge, T, Methods for
Studying Maintenance Activities, Workshop on
Empirical Studies of Software Maintenance,
Monterey, November 1996.

[14] Singer, J., and Lethbridge, T. (in preparation).
Just-in-Time Comprehension: A New Model of
Program Understanding.

[15] Singer, J, Lethbridge, T., and Vinson, N. Work
Practices as an Alternative Method for Tool
Design in Software Engineering, submitted to
CHI ‘98.

[16] Storey, M., Fracchia, F., & Müller, H.,
Cognitive Elements to support the construction
of a mental model during software visualization.
In Proceedings of the 5th Workshop on
Program Comprehension, Dearborn, MI, pp.
17-28, May, 1997.

[17] Take5 Corporation home page,
http://www.takefive.com/index.htm

[18] Vicente, K and Pejtersen, A. Cognitive Work
Analysis, in press

[19] von Mayrhauser, A., & Vans, A., From
Program Comprehension to Tool Requirements
for an Industrial Environment, In: Proceedings
of the 2nd Workshop on Program
Comprehension, Capri, Italy, pp. 78-86, July
1993.

[20] von Mayrhauser, A., & Vans, A., From Code
Understanding Needs to Reverse Engineering
Tool Capabilities, In: Proceedings of the 6th
International Workshop on Computer-Aided
Software Engineering (CASE93), Singapore, pp.
230-239, July 1993.

[21] von Mayrhauser, A and & Vans, A., Program
Comprehension During Software Maintenance
and Evolution, Computer, pp. 44-55, Aug. 1995.

	aWqaSPyuS2yPY5007698971634745906.bin
	a9SZL0brM8tE32924795053369807147.bin

