

Classes = Traits + States + Glue

Beyond mixins and multiple inheritance

1

Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz

Software Composition Group, University of Berne

2

1. Submission to the The Inheritance Workshop at ECOOP 2002.
2.

Author’s address:

 Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012 Berne, Switzerland.

Tel:

 +41 (31)
631.4618.

Fax:

 +41 (31) 631.3965.

E-mail:

schaerli@iam.unibe.ch

.

WWW:

www.iam.unibe.ch/~scg

ABSTRACT

We present a simple, component-based
model of mixins, called

traits

, and argue that this simple
model sidesteps many of the practical problems with other
approaches to mixins and multiple inheritance. With our
model, classes are built from a set of

traits by

specifying

glue
code

 that connects them together and accesses the necessary

state

. We briefly discuss practical experience with an imple-
mentation of traits for Squeak, and we list a number of open
questions for discussion.

1. INTRODUCTION

Over the years, many programmers have lamented the fact
that single inheritance is not expressive enough to factor out
common features (i.e., instance variables or methods) shared
by classes in a complex hierarchy. This fact has led many lan-
guage designers to propose various forms of multiple inherit-
ance [11][12][16] for programming languages, as well as
other mechanisms, such as mixins [13], that allow classes to
be incrementally composed from sets of features.

Despite countless proposals having been implemented,
both multiple inheritance and mixins continue to be consid-
ered controversial features that only find limited application
in practice [18]. We believe the main reasons for this state of
affairs are as follows:

•

Complicated solutions to conflict resolution:

 any ap-
proach to multiple inheritance or mixins must provide
some way to resolve conflict that arise when conflict-
ing features are inherited along different paths. The
most insidious case is when conflicting

state

 is multi-
ply inherited [10]. Even if the declarations are consist-
ent, it is not clear whether the same state should be in-
herited just once or multiply [12]. Standard solutions
are to provide either some built-in linearization algo-
rithm in the language [11] or to provide the program-
mer with renaming mechanisms to resolve the conflicts
[12]. In either case, programmers have a tough time
getting the behaviour they want.

•

Hard to design reusable artifacts:

whatever scheme is
chosen, it is hard to design reusable mixins or classes
that can be composed flexibly without leading to con-
flicts.

•

Fragile hierarchies:

 class hierarchies that are built us-
ing either multiple inheritance or mixins tend to be

very fragile with respect to changes in the base classes
or mixins. Changes tend to break the complicated con-
flict resolution algorithms or code, and lead to hard to
debug anomalies [8].

The solution adopted by the designers of Java was to aban-
don multiple inheritance of implementation, and only support
multiple inheritance of interfaces. (A class may

inherit

 from
at most one superclass, but may

implement

 many interfaces.)
The same interface inherited along multiple paths does not
pose a problem, whereas conflicting interfaces are clearly an
error in any case.

We propose a simple component-based approach that side-
steps most of the problems we have identified, yet offers more
than Java’s solution:

• We distinguish classes and

traits

. (See also traits in
Mesa [7] and SELF [20])

• Traits

provide

 a set of

services

, i.e., features that imple-
ment behaviour (methods), but not state (no instance
variables).

• Traits also

require

 a set of services, i.e., those used by
the services provided.

• Traits never directly access state, but only indirectly,
through required accessor services.

• A class can be constructed from a set of traits by pro-
viding the necessary state and the missing services.
These services represent the

glue code

 because they
specify how the traits are connected together and how
possible conflicts are resolved.

• Simple tools are provided to keep track of the depend-
encies between traits and classes.

We will illustrate the model by means of an example in sec-
tion 2. We compare our traits model to other approaches in
section 3. We briefly illustrate how traits are implemented in
Squeak and how they benefit from tools support in section 4.
We conclude with a list of open questions in section 5.

2. THE TRAITS MODEL

In the following, we present our model of traits. Although the
model can be applied to different types of programming lan-
guages, this paper focuses on object-oriented languages with
single inheritance. Whereas many other inheritance models
focus on providing features such as method renaming or so-

mailto:schaerli@iam.unibe.ch
http://www.iam.unibe.ch/~scg
http://www.iam.unibe.ch/~scg

Classes = Traits + States + Glue, Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz 2

phisticated rules for conflict resolution, we try to go into the
other direction and focus on simplicity. The main goal is to
support the programmer in writing code that is easy to under-
stand and does not show unexpected or surprising behaviour.

2.1 Classes and traits

In our model, a trait is the most primitive unit of code reuse. A
trait is a component that

provides

 a set of services, and may
also

require

 some services. The required services are the

plugs

 that must be connected before the trait can function, and
the provided services are the

sockets

 that can be plugged into
other traits.

Traits differ from classes in that they do not contain any
kind of state and they do not support inheritance. Figure 1
shows (in a kind of pseudo-UML) a trait

TCircle

 encapsulat-
ing services that might be of use to various kinds of

Circle

classes. The left column represents the provided behaviour
(the

sockets

). For conciseness, it only consists of the services

area

,

bounds

 and

scaledBy:

. In the right column, there are
the required services

center

,

center:

,

radius

, and

radius

.
They represent the

plugs

 that must be connected when the trait
is used.

Whereas traits are used to implement a parameterized and
reusable behaviour, classes can typically be instantiated and
specify some state together with a relatively concrete func-
tionality that may consist of multiple different aspects. In or-
der to specify classes in a more high-level way, they can be
built as the composition of zero or more traits. When a class
uses a trait, the behaviour provided by the trait gets incorpo-
rated into the class. This means that the semantics is basically
the same as if the services (methods) provided by the trait
were implemented in the class itself. However, there are two
exceptions:

•

Overriding.

 Methods implemented directly in the class
have higher precedence than equally named services
provided by the incorporated traits. This means that
methods defined in the class override equally labelled
services that are provided by the used traits.

•

Conflict resolution.

 All the traits that are used by a
class have the same precedence. Therefore, conflicting
services (services with names that are provided by
more than one trait) have to be explicitly resolved. In
our model, this can be done in two different ways:
First, the class can implement its own variant of the
conflicting service, which then overrides all the imple-
mentations provided by the traits and therefore re-

solves the conflict. Alternatively, a class can specify a
set of conflict resolutions, which associate a service
name to a certain mixin. This explicitly defines that the
service defined by this mixin takes precedence.

In order to be

complete

, a class has to provide an imple-
mentation for every service required by any of the used traits.
That is,

every plug must be connected to some socket

. These
services define how the traits are glued into the class, and
therefore, they represent the

glue code.

 The glue code can be
implemented in the class itself, in a direct or indirect super-
class, or in another trait that is used by the class. It is important
to note that our model allows traits to be composed from other
traits in the same way that classes are. But unlike classes,
traits do not have to be complete, which means that they do not
have to define all the services that are required by the incorpo-
rated traits. Unconnected plugs of the constituent traits sim-
ply become plugs of the composite trait.

Also note that trait composition does not subsume single
inheritance. Inheritance is still needed for a class to reuse the
features provided by another class. In particular, representa-
tion can only be shared by inheritance, and

super

 only makes
sense in the context of single inheritance.

Figure 2 shows how a class

ColoredVisualCircle

 is built
as the composition of the traits

TCircle

,

TColor

, and

TVisu-
al

. In order to properly use these traits, the class has to ensure
that there is a glue method for all the required services and that
there is no unresolved method conflict. For the trait

TCircle

,
the requirements are resolved by implementing accessors that
associate

center

 and

radius

 to instance variables. Alterna-
tively, we could create a more specialized

Circle

 class that
only uses one instance variable for

center

 and automatically
adjusts the

radius

 so that the circle always goes through the
origin of the coordinate system. In a similar way, the require-
ments

rgb

 and

rgb:

 of the

TColor

 trait are associated to an
instance variable

rgb

.

The requirements of the trait

TVisual

 are a bit more inter-
esting. Since

TCircle

 already provides a service

bounds

 re-
turning the bounding box of the circle, one of the
requirements is already fulfilled and we do not have to explic-
itly specify a method in the class. (However, we would be able
to override it if necessary). For the second requirement

drawOn:

 we implement a method that draws the circle on the
canvas that is provided as the argument form. We thereby use
the colour specified by the

rgb

 method of the

TColor

 trait.
We also have one method conflict because both

TCircle

 and

TVisual

 provide a method

scaledBy:

. We resolve this con-
flict by implementing a method that scales the circle and then
updates the visual representation.

This example illustrates how the usage of traits supports
very flexible code reuse. In addition, it provides the class with
a structure that makes it much easier to understand, because
we only have to understand the glue methods and do not have
to bother about all the other methods that are provided by the
traits. (The provided methods only depend on the require-

TCircle
area
bounds
scaledBy:

center
center:
radius
radius:

Figure 1 A Trait with provided and required services

Classes = Traits + States + Glue, Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz 3

ments, and therefore, we can be sure that they are working
correctly once we have provided the necessary glue).

This structure is especially helpful if we have appropriate
programming tools (cf. section 4). Using those, we see that
the class is implemented as the composition of three different
traits, and there are views that immediately show the imple-
mentations of the glue code that is specified for each of these
traits. As an example, there would be a view that shows the
glue methods for the trait

TCircle

, which are

center

,

cent-
er:

,

radius

,

radius:

 and

scaledBy:

. This allows us to imme-
diately understand how this trait is glued into the class.
Similarly, there would be a view that shows the glue code for
the trait

TVisual

, which consists of the methods

bounds

,

drawOn:

 and

scaledBy:

. This view shows us that the meth-
od

drawOn:

 is provided by the class itself, whereas the glue
method

bounds

 is provided by another trait, namely

TCir-
cle

. Furthermore, it shows that the glue method

scaledBy:

implemented in the class resolves the conflict that arises be-
cause the traits

TVisual

 and

TCircle

 provide services with
identical names.

2.2 Trait composition vs. inheritance

We have pointed out that trait composition is not intended to
subsume inheritance. The following example shows how the
two may be fruitfully combined to build powerful abstrac-
tions. Let’s assume that there is a framework providing sever-
al classes that use the methods

read

 and

write

 to access
some data in an unsynchronized way. Using both inheritance

and traits, we can synchronize these data accesses in a reusa-
ble way as follows:

First, we write a trait

TSyncReadWrite

 that provides
two methods

read

 and

write

, which ensure synchronization
before they call the original implementation of

read

 respec-
tively

write

. In Smalltalk, the implementation of the method

read

 could look as follows:

TSyncReadWrite>>read
self waitForSemaphore.
 ̂super read.

Then, we create a subclass of all the classes that should use
this synchronized data access. In each of these subclasses, we
incorporate the trait

TSyncReadWrite

, which results in
classes that provide the synchronized data access behaviour.
It is important to understand that the keyword

super

 specified
in the method

read

 of the trait

TSyncReadWrite

is not
bound in the trait, because traits do not support inheritance.
Instead,

super

 refers to the superclass of the class that incor-
porates the trait, and thus, the expression “

super read

” calls
the unsynchronized read method.

3. COMPARISON TO MIXINS AND OTHER
INHERITANCE MODELS

In the introduction, we have pointed out that there are various
other strategies and models that have been used in object-ori-
ented languages to achieve better code reuse and more flexi-
bility. In particular, there is another model that uses entities
called traits as an approach to multiple inheritance [7]. The
main difference to our model is that those traits still carry
state, that they do not support explicitly required services and
that they allow multiple implementations for a single service.
Also in SELF [20], there is a notion called traits that is used to
share behavior amongst prototypes.

In the following, we compare the other popular reuse strat-
egies to our approach and justify our design decisions. Please
note that for all of these strategies, there are several different
variants, and we focus on the most common ones. Thus, it
maybe the case that some of our statements do not apply to
more exotic variants.

3.1 Multiple inheritance

Multiple inheritance allows a class to inherit from more than
one parent class. Many object-oriented programming lan-
guages such as C++ [16], Eiffel [12], CLOS [11], and Python
[21] support this concept, and although the basic model is eve-
rywhere the same, the implementations differ when it comes
to more advanced issues such as conflict resolution.

At a first glance, trait composition is very similar to multi-
ple inheritance. Both approaches allow one to reuse function-
ality from more than one source at the same time, which has
the benefit of better code reuse and allows more flexible class
hierarchies. Nevertheless, there are essential differences:

Reuse of traits vs. reuse of classes. Multiple inheritance al-
lows functionality to be reused from multiple classes which

TCircle
area
bounds
scaledBy:

center
center:
radius
radius:

TVisual
draw
refresh
scaledBy:

bounds
drawOn:

TColor
red
hue
saturation

rgb
rgb:

ColoredVisualCircle
center
radius
rgb

center

center:

radius

radius:

rgb:

rgb

drawOn:

Figure 2 Composing Traits to create a Class

scaledBy:

initialize

Classes = Traits + States + Glue, Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz 4

generally implement an already specialized version of a cer-
tain behaviour and also include state. This means that the no-
tion of a class is used in two very different ways: On one hand,
classes are used to represent already specialized entities that
can be instantiated, and at the same time, they represent the
most primitive entities of code reuse. With trait composition,
these two roles are completely separated and are provided by
two different entities. Traits are the primitive entities of code
reuse and the majority of the code is implemented in such
traits. Their structure is simpler than the one of classes (e.g. no
state), which enforces the programmer to write the behaviour
in a very general and reusable way. In contrast to traits, classes
represent more concrete and specialized functionalities,
which typically consist of different aspects that are realized
by using appropriate traits and specifying the necessary glue
code.

Diamond problem. One of the most troublesome aspects of
multiple inheritance is the “diamond problem”, which occurs
when a class inherits state from the same base class via multi-
ple paths. With traits, we sidestep this problem because traits
do not define any state.

Traits do not replace single inheritance. Both traits and
multiple inheritance are an extension of traditional single in-
heritance. However, whereas multiple inheritance replaces
single inheritance, traits are an orthogonal concept that coex-
ists with single inheritance. This means that a language with
traits still provides all the well-accepted features and benefits
of single inheritance: A class can be derived from (at most)
one parent class, it can inherit state from (at most) one parent
class, and it can explicitly call inherited services in an unam-
biguous manner.

Simplicity. Many multiple inheritance implementations pro-
vide powerful and sophisticated features to resolve and avoid
method conflicts. CLOS, for example, allows a programmer
to freely define how the inheritance graph is linearized. Eiffel
allows explicitly renaming or deleting of inherited methods in
order avoid method conflicts, and C++ supports explicit call-
ing of an arbitrary inherited method from within the code of
another method. In contrast to that, our trait model has been
developed with the main goal of simplicity and clarity. This
makes our approach less flexible, but it also enforces cleaner
designs and ensures that the resulting code is better under-
standable.

3.2 Mixins
The notion of parametric heir classes or mixins avoids many
of the complications caused by multiple inheritance, but it
still allows more flexible class hierarchies and better code re-
use than traditional single inheritance. As the first name sug-
gests, a mixin is an abstract subclass; i.e., a subclass definition
that maybe applied to different parent classes to create a relat-
ed family of modified classes [5]. As the first name suggests,
a mixin is a uniform extension of many different parent class-

es with the same set of fields and methods. As such, the con-
cept of mixins allows the programmer to achieve better code
reuse without sacrificing the simplicity of linear inheritance
chains. Mixins are used in languages such as Ruby [19] and
Smallscript [15] and there exist several extensions of Java [3]
or Smalltalk with mixins.

The main differences between mixins and traits are two-
fold. First, mixins are just a more general form of classes,
which means that they usually include state in the same way
classes do and that there is often no explicit notion of required
and provided services (Jam is an exception [3]). Second, the
extension of a class with a mixin always results in a new class,
and in the same way, composition of two mixins yields anoth-
er one. This avoids the problems caused by multiple inherit-
ance paths, but it also leads to the following problems:

• The programmer has to specify a well-defined order in
which different mixins are applied. This gets rather un-
natural when a class is built from many different mix-
ins that are mostly orthogonal, because there may not
be a natural order in which to compose them.

• Multiple mixins cannot be glued together in a single
entity, because multiple mixins can only be applied
one after the other. Certain work on module mixins
[6][22] proposes some operation to manipulate the vis-
ibility but does not allow the definition of glue.

• There can be an explosion of classes or mixins. In most
object-oriented languages, there are no anonymous
classes. Thus, extending a class with a mixin results in
a new class with an explicit name.

As an example, assume that we would like to use a tradi-
tional mixin implementation (such as Jam [3]) to write a class
that provides the behaviour corresponding to the mixins Cir-
cle, Color, Visual, and Serializable. In order to do that, we
have to define a particular order such as Circle → Color →
Visual → Serializable, create explicit entities ColoredCir-
cle, VisualColoredCircle, SerializableVisualColored-
Circle, and spread the necessary glue code among all of them.

3.3 Interfaces
Since the appearance of Java, interfaces have become a popu-
lar and well-accepted concept. Whereas a class can only in-
herit from a single parent class, it can be made a subtype of
several interfaces by implementing the specified methods.
This concept has some similarities to traits, because it also in-
troduces the notion of a more primitive composition that co-
exists with single inheritance. However, the major difference
is that traits are designed to specify reusable behavior whereas
interfaces do not support any form of behavior reuse. Indeed,
traits define behavior that can be reused by a set of classes not
related by inheritance. Interfaces only specify a set of method
signatures that classes implementing the interface must im-
plement. As such, the benefit of interfaces is limited to the
type system and documentation purposes.

Classes = Traits + States + Glue, Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz 5

4. THE SQUEAK IMPLEMENTATION AND
ITS TOOL SUPPORT

The traits model described in this paper has been developed
and implemented in the Squeak programming language,
which is a popular open source implementation of Smalltalk-
80 [17]. On the level of the language kernel, we have imple-
mented a new first class entity for representing traits and have
extended the definition of Class and Metaclass so that they
can incorporate traits. All these entities support reflection in
the sense that they can be queried about required services,
provided services, overridden services, and so on.

In addition to extending the language kernel, we have
worked on tools that support programmers in specifying
classes as the composition of traits. Although the traits model
has been designed to support a more structured and high-level
mode of programming, we have found that suitable tools can
make it much easier to manage traits and their composition.
The main features of the implemented tools are:

• Extended browser: We have extended the classical
Smalltalk browser to expose the relationship between
classes and traits. A programmer can select a number
of different views of a class. The flattened view dis-
plays the composed class as if it had been programmed
without traits. The glue view shows the methods that
the class adds to glue in the traits. The traits view
shows individual traits, and exposes how they are
glued in. In particular, for a given trait, one can request
to see the provided services (i.e., methods provided by
the trait), the required services (i.e., methods imple-
mented by other traits, by a superclass, or by glue
methods), the overridden services (i.e., methods over-
ridden by glue methods of the class). The browser pro-
vides visual feedback indicating whether a class is
complete or not (i.e., whether or not all required serv-
ices are implemented, and all conflicting services are
resolved).

• Type inferencer: We use a simple type inferencer that
is smoothly integrated with the incremental compila-
tion concept of Smalltalk. Whenever a method is add-
ed, changed or removed, it gets analysed by the type
inferencer. Changes may incur both local and global
consequences. Locally, changes may affect either the
list of provided or required services of a trait. Both are
automatically updated. These local changes may in
turn have global consequences, introducing new con-
flicts or causing complete classes to become incom-
plete. The type inferencer automatically detects the
impact and generates a “to do” list of broken classes to
be fixed.

• Automation: There are several automation tools that
support the programmer in composing traits and gen-
erating the necessary glue code. Required accessors,
for example, can automatically be generated when in-
stance variables are introduced in a composed class.

Conflict resolution is also be semi-automated by pre-
senting the programmer with a list of alternative im-
plementations to choose from. The necessary glue
code is then automatically generated.

5. FUTURE WORK AND OPEN
QUESTIONS

This work was initiated out of frustration with the need to re-
implement and duplicate boilerplate code throughout the
Squeak class hierarchy. Since we were aware of the difficul-
ties with overly ambitious solutions to multiple inheritance,
we sought for a simple, minimal solution that would eliminate
the need to duplicate code to be shared across multiple class-
es.

Initial experience with our prototype implementation is
very promising. We now intend to carry out various experi-
ments, and attempt to answer some more fundamental ques-
tions:

• What real impact do traits have on the class hierar-
chy? We have started to refactor the Squeak imple-
mentation hierarchy to evaluate how useful traits can
be in practice.

• What synergy do traits have with refactoring? We
would like to adapt the refactoring browser [14] so that
shared code can be semi-automatically factored out as
traits.

• What design guidelines should drive the development
of traits? To what extent can potential traits be detect-
ed automatically by analysis of duplicated code [9] or
by means of concept analysis [4].

• How easily can our model of traits be adapted to other
languages? In which languages can traits be trivial im-
plemented? For example, in C++, traits can likely be
implemented as template mixins.

• What is a suitable operational semantics for traits?
Trait composition is very similar to form composition
in the Piccola composition language [1]. We expect
that we can use a subset of the semantic foundation
used to explain Piccola to formalize our model of traits
[2].

• What kind of type system is needed to reason about
traits? We need a type system that explicitly distin-
guishes between required and provided services.

• Will programmers accept working with traits? Will
there be a clear division between programmers who
develop reusable traits and those who reuse them, or
can we achieve “traits for the common programmer”?

Acknowledgements

We would like to thank all the people involved in this work. In
particular, we would like to thank Andrew P. Black for his val-
uable ideas and suggestions that helped us developing this
model.

Classes = Traits + States + Glue, Nathanael Schaerli, Stéphane Ducasse, Oscar Nierstrasz 6

REFERENCES
[1] Franz Achermann and Oscar Nierstrasz, “Applications

= Components + Scripts — A Tour of Piccola,” Soft-
ware Architectures and Component Technology, Meh-
met Aksit (Ed.), pp. 261-292, Kluwer, 2001.

[2] Franz Achermann, “Forms, Agents and Channels - De-
fining Composition Abstraction with Style,” Ph.D. the-
sis, University of Berne, January 2002.

[3] Davide Ancona, Giovanni Lagorio and Elena Zucca,
“Jam - A Smooth Extension of Java with Mixins,”
ECOOP 2000, Lecture Notes in Computer Science
1850, pp. 145-178, 2000.

[4] Gabriela Arévalo and Tom Mens, “Analysing Object
Oriented Framework Reuse using Concept Analysis,”
Technical Report, 2002, Draft, submitted paper.

[5] Gilad Bracha and William Cook, “Mixin-based Inherit-
ance,” Proceedings OOPSLA/ECOOP’90, ACM SIGP-
LAN Notices, October 1990, pp. 303-311.

[6] Gilad Bracha and Gary Lindstrom, “Modularity Meets
Inheritance,” Proceedings of the IEEE International
Conference on Computer Languages, pages = 282-290,
April 1992.

[7] Gael Curry, Larry Baer, Daniel Lipkie and Bruce Lee,
“TRAITS: an Approach to Multiple Inheritance Sub-
classing,” Proceedings ACM SIGOA, SIGOA Newslet-
ter, Philadelphia, June 1982, Published as Proceedings
ACM SIGOA, SIGOA Newsletter, volume 3, number
12.

[8] R. Ducournau, M. Habib, M. Huchard and M.L. Mug-
nier, “Monotonic Conflict Resolution Mechanisms for
Inheritance,” Proceedings OOPSLA ’92, ACM SIGP-
LAN Notices, October 1992, pp. 16-24.

[9] Stéphane Ducasse, Matthias Rieger and Georges Golo-
mingi, “Tool Support for Refactoring Duplicated OO
Code,” Proceedings of the ECOOP’99 Workshop on
Experiences in Object-Oriented Re-Engineering,
Stéphane Ducasse and Oliver Ciupke (Eds.), Forsc-
hungszentrum Informatik, Karlsruhe, June 1999, FZI-
Report 2-6-6/99.

[10] Dominic Duggan and Ching-Ching Techaubol, “Modu-
lar Mixin-Based Inheritance for Application Frame-
works,” Proceedings OOPSLA 2001, ACM SIGPLAN
Notices, October 2001, pp. 223-240.

[11] Sonia E. Keene, Object-Oriented Programming in
Common-Lisp, Addison Wesley, 1989.

[12] Bertrand Meyer, Object-oriented Software Construc-
tion, Prentice-Hall, 1988.

[13] David A. Moon, “Object-Oriented Programming with
Flavors,” Proceedings OOPSLA ’86, ACM SIGPLAN
Notices, November 1986, pp. 1-8, Published as Pro-
ceedings OOPSLA ’86, ACM SIGPLAN Notices, vol-
ume 21, number 11.

[14] Don Roberts, John Brant and Ralph E. Johnson, “A Re-
factoring Tool for Smalltalk,” Theory and Practice of
Object Systems (TAPOS), vol. 3, no. 4, 1997, pp. 253-
263.

[15] Dave Simmons, “SmallScript Language System”,
www.smallscript.com.

[16] Bjarne Stroustrup, The C++ Programming Language,
Addison Wesley, Reading, Mass., 1986.

[17] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace
and Alan Kay, “Back to the Future: The Story of
Squeak, A Practical Smalltalk Written in Itself,” Pro-
ceedings OOPSLA ’97, ACM SIGPLAN Notices, vol.
21, no. 11, November 1997.

[18] Antero Taivalsaari, “On the Notion of Inheritance,”
ACM Computing Surveys, vol. 28, no.3, pp. 438-479,
Sept., 1996.

[19] David Thomas and Andrew Hunt, Programming Ruby,
Addison Wesley, 2001.

[20] David Ungar and Randall B. Smith, “Self: The Power of
Simplicity,” Proceedings OOPSLA '87, ACM SIGP-
LAN Notices, vol. 22, no. 12, pp. 227-242, Dec., 1987.

[21] Guido van Rossum, “Python Reference Manual,” Stich-
ting Mathematisch Centrum, Amsterdam, 1996.

[22] Marc van Limberghen and Tom Mens, “Encapsulation
and Composition as Orthogonal Operators on Mixins:
A Solution to Multiple Inheritance Problems,” Object
Oriented Systems, vol. 3, no. 1, 1996, pp. 1—30.

http://www.smallscript.com

	Classes = Traits + States + Glue
	1. Introduction
	2. The traits model
	2.1 Classes and traits
	2.2 Trait composition vs. inheritance

	3. Comparison to mixins and other inheritance models
	3.1 Multiple inheritance
	3.2 Mixins
	3.3 Interfaces

	4. The Squeak implementation and its tool support
	5. Future work and open questions

