
Recommending Source Code Locations for

System Specific Transformations

Gustavo Santos∗, Klérisson V. R. Paixão†, Nicolas Anquetil∗,

Anne Etien∗, Marcelo de Almeida Maia†, Stéphane Ducasse∗

∗Université de Lille, CNRS

Centrale Lille, INRIA, UMR 9189 – CRIStAL, France

Email: gugajansen@gmail.com, {nicolas.anquetil, anne.etien, stephane.ducasse}@inria.fr
†Federal University of Uberlândia, Brazil

Email: {klerisson, marcelo.maia}@ufu.br

Abstract—From time to time, developers perform sequences
of code transformations in a systematic and repetitive way. This
may happen, for example, when introducing a design pattern in a
legacy system: similar classes have to be introduced, containing
similar methods that are called in a similar way. Automation
of these sequences of transformations has been proposed in the
literature to avoid errors due to their repetitive nature. However,
developers still need support to identify all the relevant code
locations that are candidate for transformation. Past research
showed that these kinds of transformation can lag for years
with forgotten instances popping out from time to time as other
evolutions bring them into light. In this paper, we evaluate
three distinct code search approaches (“structural”, based on
Information Retrieval, and AST based algorithm) to find code
locations that would require similar transformations. We validate
the resulting candidate locations from these approaches on real
cases identified previously in literature. The results show that
looking for code with similar roles, e.g., classes in the same
hierarchy, provides interesting results with an average recall of
87% and in some cases the precision up to 70%.

I. INTRODUCTION

Developers sometimes perform sequences of source code

transformations in a systematic way [1], [2]. These sequences

are composed of small code transformations (e.g., create a class,

then extract a method to this class), which are applied to groups

of somehow related code entities (e.g., methods in sibling

classes). Due to the repetitive nature of these transformations,

manually applying them is a tedious and error-prone task [3].

Existing tools automate the application of repetitive trans-

formations [4]–[9]. However, once the developers know the

sequence of transformations to perform, finding all the code

entities that are candidates for these transformations involves

inspecting the entire source code of the system. In fact, past

research showed that developers forget code locations that are

candidate for transformation, some of these locations popping

out from time to time as other evolutions bring them to

light [10].

To find candidates for a given transformation, we start from

the assumption that similar code entities might be transformed

in a similar way. Thus, clone detection and code search tools

can be used to identify these candidates [11]–[15]. In general,

these tools use as input the source code of the system and one

source code example. Figure 1 (upper part) depicts the expected

behavior of these tools. As a result, code search tools generate a

list of code locations that are similar to the given example. But,

they still require that, for each candidate, developers manually:

(i) check whether the candidate is a correct recommendation

and, if so, (ii) effectively transform the code.

Fig. 1. Searching code with code. Our approach retrieves code entities from
an example and refine the results based on a given recorded sequence of
transformations.

In this paper, we evaluate three different code search

approaches, using basic concepts from related work:

Structural searches for code placed in similar locations,

e.g., same package, superclass, etc.;

AST-based searches for code entities with similar Abstract

Syntax Trees (AST); and

IR-based searches for code entities with similar vocabulary,

extracted from identifiers and comments.

Prior work shows that false positives results, i.e., incorrectly

reported candidates, are bad for both usability and adoption

of such approaches [16]–[18]. We further propose to improve

precision on the code search results by trying to apply the

sequences of transformations in each candidate, see Figure 1

(lower part).



The main contributions of this paper are: (i) we present three

methods to automatically compute a list of candidates locations

for application of a given sequence of code transformations;

(ii) we check the correctness of the recommendations proposed

by these approaches; and (iii) we evaluate and compare all

three methods.

This paper is organized as follows: Section II provides a

motivating example of the sequence of transformations we are

working with. Section III provides a background of code search

approaches in the literature. Section IV presents our approach

to find and validate candidates for transformation. Section V

presents our case study with real-world systems. Section VI

presents threats to validity of our study and Section VII

concludes.

II. MOTIVATING EXAMPLE

In this section, we present an illustrative example of repetitive

source code transformations.

We extracted this example from JHOTDRAW
1, a framework

for technical graphics in Java. Specifically in version 7.4.1,

developers replaced the color system hierarchy to inherit the

Java’s AWT API.

Several modifications were done to implement this replace-

ment, and a total of eight classes were systematically modified.

Figure 2a shows the partial diff between source code of the

class HSLRGBColorSystem and the new class HSLColorSpace,

in terms of added (+) and removed (-) lines. Figure 2b shows

the same sequence of transformations, now applied to the class

CMYKNominalColorSystem.

Considering both examples in Figure 2, we observe the same

sequence of transformations:

• Import class ColorSpace from Java AWT (line 3 in

Figure 2a);

• Rename the class to “*ColorSpace” (line 5);

• Extend ColorSpace (line 5);

• Implement new interface NamedColorSpace (line 5);

• Implement the Singleton design pattern (lines 7–18).

We introduce the definitions and terminology that we use

in the rest of this article. Not all of them are well-known or

standard terminology in the context of code search and change

recommendation, therefore we define them explicitly:

Definition 1 A macro (also known as: transformation

pattern [8], systematic edit [9], or edit script [6]) is a sequence

of code transformations originally composed by the developer

which can be automatically performed in several code locations.

In the beginning of this section, we described the transforma-

tions that were systematically performed in JHOTDRAW. This

description would be a starting point to create a macro for this

system.

The general goal is to have tools to apply automatically

macros in all the code locations where they need to be. This goal

supposes that the macro can actually be replayed in different

locations (not treated in this paper, see [8], [19]), then we can

1http://www.jhotdraw.org/

(a) Partial diff between class HSLRGBColorSystem in version 7.4.1, and
HSLColorSpace in version 7.5.1.

(b) Partial diff between CMYKNominalColorSystem in version 7.4.1, and
CMYKNominalColorSpace in version 7.5.1.

Fig. 2. Code transformations performed in JHOTDRAW to improve the color
system hierarchy.

find all the locations that are candidate for such a replay. For

example, from both cases in Figure 2, one could notice that both

modified classes inherited from AbstractColorSystem before

the transformations took place. One could use this information

as a hint to identify other classes that need to be modified.

Definition 2 An application condition for a macro, selects

from all entities in a system (classes or methods in this paper),

the ones that must be transformed by the macro.

In the concrete example, the application condition would

be: all the subclasses of AbstractColorSystem in JHOTDRAW.

However, it might not be clear for the developer whether this

simple condition is correct, necessary, and/or sufficient to find

all the correct locations in the system. In other systems, the

condition might be more complex than just considering the

hierarchy of a specific class.

Figure 2 shows that, when applying the Singleton design

pattern, developers did not set the constructor accessibility to

private (line 16). Also, two other classes (not shown here) did



not implement the Singleton pattern at all. Such errors and

omissions could lead to inconsistent code. When it comes to

bigger systems, this situation could be even worse. Santos et

al. [2] also showed cases in the ECLIPSE IDE in which the

transformations were not applied to all the opportunities that

should have been transformed.

To automatically recommend source code locations that are

likely candidates to apply a macro, one needs examples of such

locations, given by the developers, from which the application

condition can be abstracted.

Definition 3 A code example is a location in the source code

where the macro was successfully applied. In practice this

example consists in a single source code entity (a class or a

method) where to start replaying the macro.

As an example, the macro on JHOTDRAW starts by adding

an import declaration to the class HSLRGBColorSystem. The

first location example is the one where the macro is created.2

This first example gives initial data on the entities modified

and their properties.

Definition 4 A candidate location is an entity in the source

code that is candidate to be a code example. Candidate

location can be wrong in two senses: (i) the macro cannot be

replayed on it; or (ii) the macro could be replayed, but the

developer does not wish to do so because it does not meet

the, possibly informal, application conditions.

III. RELATED WORK

In this section, we discuss related work on recommending

candidates for source code transformations. We do not include

change impact analysis approaches in this paper; these ap-

proaches suggest which code entities should change, but they

do not recommend which transformations should be performed.

In this section, we classify code search approaches according

to the goal of the recommendations.

Querying Similar Code Entities: Code search tools propose

to locate source code based on a given query [20]–[24]. Some

tools retrieve code samples from vast repositories of source code

[25]–[27]. Some approaches rely on the declaration of queries

using Domain Specific Languages (DSL) [13], [28]. Other

approaches look for similarities between Abstract Syntax Trees

(AST) [29]. Opposed to the existing code search approaches, we

do not intend to provide code samples from other repositories

of source code. Our goal is to find samples that require similar

transformations within a specific software system. McIntyre and

Walker [30] proposed REVERB, a tool that observes code edits

from the developer in the ECLIPSE IDE. Then, it searches for

code with dependencies in common, such as the methods being

called, to find where small-scale changes should be applied.

Another tool that leverages the dependency relations among

various program elements is AUTOQUERY [31]. It relies on

conversion of code snippets into program dependence graphs

2Recording the macro supposes that the developer executes the transforma-
tions at least once on the source code.

and searches using dependence-based code search technique.

However, for most of the approaches in this category, the

tool only provides the list of code entities that should be

transformed next. The transformation effort is still required

from the developer.

Recommending Refactoring Opportunities: Several ap-

proaches propose to identify code in which a refactoring

must be applied. For example, Khomh et al. propose the

detection of God classes to recommend the application of

Extract Class refactoring [32]. Bavota et al. [33] discuss state

of the art approaches that recommends the application of other

refactorings described in Fowler’s catalog [34]. Refactorings

such as Extract Class have well defined purposes, therefore

these approaches search for very specific properties in source

code for recommendation. Most of the approaches rely on

syntactic dependencies, such as method calls and shared vari-

ables [35]–[38]. Some other approaches rely on code metrics,

e.g., too many methods in a class [39]–[42]; and conceptual

information retrieved from the source code vocabulary [43],

[44]. In different way, Schuster et al. proposed refactoring at

compilation time [45]. Their idea is to match a pattern-template

macro with code fragments and replaces them with equivalent

but simpler pattern. In our work, the transformations we found

are specific to the system on which the developer is working.

The rationale behind the transformations, i.e., the application

condition, is different for each system.

Recommending Other Recurring Transformations: LIB-

SYNC [46] and APIEVOLUTIONMINER [47] focused on updating

the API on which a system depends. The tools extract code

transformation rules from other systems that updated to the

same API usages in the past, then they recommend locations in

source code and transformations to replace old API calls to new

ones. FIXWIZARD [48] focused on recurring bug fixes. In the

code history of five real open-source projects, up to 45% of bug

fixing transformations were repetitive. Based on the recurring

examples the authors found, the tool also recommends both

code locations and required transformations to fix the bug. PR-

MINER [49] focused on programming rules, e.g., function b()

must be called after function a(). The rules are also extracted

from the code history of real software systems, in which

inconsistencies in these rules led to bugs. The tool also locates

code that violates these rules and recommends transformations

to fix them. Similar to refactoring approaches, both API usage

and bug fix approaches search for very specific properties in

code, e.g., API calls and known patterns that would introduce

bugs. Moreover, the recommended transformations are mostly

extracted from the code history of the system under analysis.

In our work, the transformations are considered as occasional

but repetitive. Therefore, we require support for the application

of these transformations in situ.

Using Transformations to Find Recommendations: Auto-

mated code transformation has been proposed in the literature

to provide support for developers to compose their own

transformations. More recently, some tools proposed to analyze

the code under transformation to find other locations in which

they could be performed. Andersen et al. proposed patch



inference techniques to derive a term-replacement from diff

output [50], [51]. Thung et al. proposed a recommender system

to offer code change candidates that enable backporting of

Linux drivers code [52]. LASE [6] and CRITICS [9] rely on

code examples from the developer, e.g., the source code before

and after the developer fixed a bug in a method. The tools

calculate unmodified statements in the modified methods, to

further search for methods containing similar statements by

matching nodes in the AST. Both tools rely on transformations

related to bug patches, which generally comprise few and

very localized transformations (e.g., inside a method). The

transformations we study in this paper have a higher level

of granularity, including from the addition of statements in a

method to modifying the hierarchy of classes (e.g., the example

in Section II). Therefore, our validation approach, i.e., trying

to apply transformations to candidates, require an approach

that automates more complex transformations.

IV. RECOMMENDING CODE LOCATIONS

In this section, we present our approaches to find code

locations that are candidates for systematic transformation. Our

approach has specific requirements:

• the source code of the entire system must be available.

As a starting point, all entities in the entire source code

are candidate locations;

• a macro (see Section II) has been created (optional);

• one or more code examples have been specified. The code

entity on which the macro was recorded already counts

as one example.

The goal of our approach is to find other locations in the

source code that are similar to the code examples and, therefore,

seem to require similar transformations. We tested code search

approaches to recommend a list of candidate locations where

to re-apply the transformations.

The code search approaches we use are inspired by ap-

proaches in the literature. First, we search for code in

similar locations, e.g., same package, same superclass, etc.

(Section IV-A). Second, we search for code with similar

structure, as represented by their ASTs (Section IV-B). Third,

we search for code with similar identifiers and comments

(Section IV-C). And fourth, we use the macro (when available)

to refine the list of candidate locations by checking whether

the transformations can be performed on them (Section IV-D).

A. Structural approach

Nguyen et al. [48] identified recurring bug fixes in the

code history of five real open-source systems. The recurring

fixes often occurred in code locations with similar properties,

such as methods containing code clones, classes extending the

same superclass or implementing the same interface, methods

overriding the same parent method, or classes implementing

the same design pattern.

Based on these findings, we implemented a location code

search approach which depends on two or more code examples.

We call this approach “Structural” because it considers basic

information of where the code is located. We use concrete

example from JHOTDRAW (presented in Section II) to show

how the approach works. In this case, developers modified two

classes with similar basic properties, as shown in Table I. Both

classes belong to the same package (“pckg”) and inherit from

the same superclass (“sup.”).

TABLE I
PROPERTIES FROM EXAMPLES IN JHOTDRAW. PROPERTIES ARE

EXTRACTED FROM THE NAME OF THE CLASS ITSELF, THE NAME OF THE

PACKAGE, AND THE NAME OF THE SUPERCLASS (SEE ALSO FIGURE 2).

class HSLRGB- CMYKNominal-

ColorSystem ColorSystem

pckg org.jhotdraw.color org.jhotdraw.color

sup. AbstractColorSystem AbstractColorSystem

For classes, the properties include their package, superclass

and class names. For methods, we would compute the properties

of their classes (i.e., package, superclass and class names), as

well as the signature of the method. The structural approach

then searches other entities in the system sharing the same

similar properties. In the example presented in Table I, the

approach searches classes in package org.jhotdraw.color which

inherit from AbstractColorSystem. The name of the class is

only considered when one searches for similar methods.

The search is an all-inclusive one, i.e., it assumes that all

classes (or methods) in the same location, whether physical

(e.g., package) or logical (e.g., superclass), require similar

transformations. This means that in the worst case, i.e., no

similar properties are found, the result will be all the classes

in the system.

B. AST-based approach

In Section III, we mentioned tools that analyze code

examples to find candidates for transformations. These tools,

namely LASE [6] and CRITICS [9], look for methods that

have similar statements in comparison with two or more code

examples. In some sense, both tools look for instances of

clones, relying on the AST of methods under analysis. Based

on this idea, we implemented a code search approach which

depends on a single code example (as opposed to the prior

work that required two).3

In the concrete example with JHOTDRAW, we focus on

comparing the constructor of the class HSLColorSpace for

illustrating example. In a practical setting, the entire class will

be analyzed because it was the first entity affected by the

transformations in our example (see Section II). Assuming we

want to know whether CMYKNominalColorSpace is a good

candidate to replay the macro, we would try to match the

source code between the constructors. Figure 3 presents a diff

between these two constructors.

First, we use a greedy text-based algorithm to compute the

longest common subsequence (LCS) [53] of code. When two

methods have different source code, the LCS algorithm aligns

what is the most common code between them. In this case,

both constructors have the same call to super and the same

3This algorithm was inspired by a similar one in LASE.



Fig. 3. Diff between constructors of classes HSLColorSpace and
CMYKNominalColorSpace in JHOTDRAW.

reference to class ColorSpace. Therefore, the longest common

subsequence in this case is “super(ColorSpace.”.

The approach then retrieves the sequence of nodes, in the

AST of both methods, that contains this subsequence. It is

worth noting that the LCS algorithm is used only to retrieve

the most similar code and, consequently the sequence of nodes

that contains this code. From there on, we compare each node

of the sequence separately. In this example, the computed

sequence of nodes comprises:

• the invocation of the constructor in the superclass

(super(ColorSpace, int)), which also contains

• the reference to the class ColorSpace,

• the access of an attribute in class ColorSpace (TYPE_HSV,

for class HSLColorSpace), and

• the declaration of an integer value (3).

The constructor in HSLColorSpace is then four nodes similar

to the one in CMYKNominalColorSpace. This result is used to

rank the candidate set, i.e., to determine which locations are

more similar to the example. The top ranking locations are

then considered candidate locations.

C. IR-based Approach

Information retrieval (IR) techniques use lexical analysis to

search documents relevant to a query (the best known example

would be the Google search engine). One of the most widely

used searching model is called bag-of-words. Under this model,

text (in our case, source code text) is represented as unordered

sets of terms. Then, given a query, which is also a set of terms,

the IR engine retrieves documents that contain similar terms. To

account for the relative importance of a term in all documents

of the corpus and in each individual document, a reasonable

similarity function is the cosine similarity of term frequency

and inverse document frequency, known as TF-IDF [54].

We implemented a search engine which indexes source

code. This approach views classes (or methods) as documents

and terms are retrieved from identifiers and comments. We

process each term to (i) split identifiers with the camel case

and underscore naming convention; (ii) remove affixes and

suffixes, (ii) discard common words that do no add meaning

(stop-words); and (iii) discard words that are keywords from

the programming language (additional stop-words). Table II

shows set of terms extracted from HSLRGBColorSystem, where

the term “satur” is the result of processing the original term

“saturation”.

This approach works with a single code example as the

previous one. This code example is processed and provided to

TABLE II
SET OF TERMS EXTRACTED FROM CLASS HSLRGBCOLORSYSTEM.

satur color count system compon green
light blue base primari hslrgb

the search engine as a query. Our IR-based approach computes

a numeric score on how much each source code entity is similar

to the query (the code example). Then, we rank the candidate

set, e.g., all the classes, according to their cosine similarity. The

top ranking entities are then considered as candidate locations.

Again, consider the case on Section II in which a developer

changes the class HSLRGBColorSystem. Table III shows the

top ranked entities for this “query”, according to the cosine

similarity with HSLRGBColorSystem.

TABLE III
MOST SIMILAR CLASSES TO HSLRGBCOLORSYSTEM.

Class name Similarity

RGBColorSystem 0.3551
HSLRYBColorSystem 0.1869
HSVRYBColorSystem 0.1399
HSVRGBColorSystem 0.0706
AbstractColorSystem 0.0417
CMYKICCColorSystem 0.0342
CMYKNominalColorSystem 0.0302
CompositeColor 0.0255
AbstractHarmonicRule 0.0228
DefaultHarmonicColorModel 0.0219

D. Replayable Approach

Given a list of candidates for transformation, it is not clear

for a code search approach whether the transformations can

be actually replayed in each candidate location. To validate

their recommendations, we propose to use the macro (when

it is available) and try to replay it. If the replaying operation

fails, we assume the candidate location is a wrong one and we

remove it from the list of recommendations.

Concretely, we extended MACRORECORDER [8], the tool

we use in this paper to record and replay macros. The

replaying operation will fail if: (i) an exception is thrown

during the transformation, i.e., the code entity to be transformed

could not be retrieved in the candidate location; or (ii) the

transformations in the macro produced code that was not

compilable, consequently the tool rolls back the all the changes

done by the macro.

It is worth noting that MACRORECORDER does not perform the

transformations immediately on code. The tool first performs

them on a model to check preconditions and display the

modified code to the developer, who will ultimately accept

or reject the modifications. Moreover, it is expected that the

macro will not fail replaying the macro in a correct candidate.

V. EVALUATION

In this section, we evaluate the code search approaches

proposed in this paper. Section V-A presents the real-world



systems under analysis and the macros that were recorded for

them. We describe the metrics we used in this evaluation in

Section V-B. Then, Section V-C presents how we compute

candidate locations for the transformations. We evaluate

structural, AST-based, and IR-based approaches in Section V-D.

We evaluate our fourth approach, i.e., using the macro to

validate the recommendations, in Section V-E. We discuss two

approaches that compute ranked recommendations, namely

AST-based and IR-based approaches, in Section V-F.

A. Target Systems

Our dataset is based on sequences of transformations found

in previous work [2], [8]. In total, we selected two Java systems

and five Pharo4 systems, described as follows.

Eclipse went through a considerable restructuring to inte-

grate the OSGi technology. We focused in the user

interface plugin, which was separated into five new

plugins in the version 3.0.

JHotDraw is a framework for technical graphics. Its

restructuring aimed at specializing the interface of

color spaces (as discussed in Section II).

PetitDelphi is a parser for Delphi that has been enhanced

to generate an AST from a tokenized tree. The

restructuring aimed at pruning the generated AST

nodes.

PetitSQL is another parser, for SQL. Its rearchitecting

focused on correcting API usage of the grammar.

PackageManager is a package management system, similar

to Maven, for Pharo. Its rearchitecting focused on

changing the interface to access package metadata.

MooseQuery is a framework to query dependencies between

entities in the FAMIX model [55]. It was restructured

to be language independent (the original implementa-

tion focused on object-oriented languages).

Pillar is a language and family of tools to write and generate

documentation in text, PDF, HTML pages, etc. The

tests were restructured in order to provide a simpler

and reusable interface.

Table IV summarizes descriptive data about the systems.

Several of these systems are small, however they are written in

Pharo which is a concise language. For an automation tool, the

repetitiveness of the transformations is more important than

the size of the system (see Threats to Validity in Section VI).

In total, we select 13 real sequences of transformations

that were found in the history of their respective systems.

For some systems (ECLIPSE, PETITSQL, PACKAGEMANAGER,

and MOOSEQUERY) we selected more than one sequence of

transformations. Table V presents descriptive data about our

dataset. It describes, for each case: the number of occurrences

of the repetitive task, and the number of transformations

involved for each task, i.e., the number of transformations

in the sequence. We use this set of occurrences as our oracle.

4http://www.pharo.org/

TABLE IV
DESCRIPTIVE METRICS OF OUR TARGET SYSTEMS. THE FIRST TWO

SYSTEMS ARE IN JAVA, THE OTHER FIVE ARE WRITTEN IN PHARO.

System (version) Packages Classes KLOC

Eclipse-UI (2.1) 68 2253 185
JHotDraw (7.4.1) 39 614 59

PetitDelphi (0.210) 7 313 8
PetitSQL (0.34) 1 2 0.3
PackageManager (0.58) 2 117 2.5
MooseQuery (0.245) 2 3 0.2
Pillar (0.178) 24 278 14

TABLE V
DESCRIPTIVE METRICS OF OUR DATASET.

Sequences of Number of
Transformations Occurrences Transformations

Eclipse I 26 4
Eclipse II 72 1
JHotDraw 9 5

PetitDelphi 21 2
PetitSQL I 6 3
PetitSQL II 98 3
PackageManager I 66 5
PackageManager II 19 3
PackageManager III 64 2
PackageManager IV 7 4
MooseQuery I 16 1
MooseQuery II 8 4
Pillar 99 4

Average 37 3

B. Evaluation Metrics

In this section, we present the metrics we use in the

evaluation. Our approaches return a list of candidate locations

as a result (the Candidates set). For each instance of macro,

the oracle set represents the code locations that were in fact

modified by the developers (the Correct set).

Precision is the percentage of identified candidates that are

correct. Recall measures the percentage of correct locations

identified by a given approach. F-measure (F1) is the harmonic

mean of precision and recall. These metrics are also described

more formally as follows:

precision =
|Correct ∩ Candidates|

|Candidates|
(1)

recall =
|Correct ∩ Candidates|

|Correct|
(2)

F1 = 2 ∗
precision ∗ recall

precision+ recall
(3)

Typically, a better recall comes with lower precision, and

vice-versa. On one hand, recall is important because we want

to avoid omissions, i.e., the approach should be able to find all

the correct transformation opportunities. On the other hand, as

a recommendation tool for the developer, it is also important



that the approach returns as little incorrect candidates as

possible (i.e., a high precision). Prior work shows that incorrect

candidates (false positives), are bad for both usability and

adoption of such approaches [16]–[18]. Therefore, we hope

for higher precision rather than higher recall.

On top of these three metrics, we added two more for

AST-based and IR-based approaches. Both rank their list of

candidates in decreasing order of similarity. In this case, special

ranking metrics, such as the Discounted Cumulative Gain

(DCG) [56] and the Precision at n (P@n) [57], were proposed

by practitioners to weight correct recommendations based on

their ranking position. Concretely, those metrics weight correct

results near the top of the ranking higher than in lower positions.

The assumption is that a developer is less likely to consider

elements near the end of the list.

With DCG, see Equation 4, reli indicates the relevance of

an entity at rank i and decreases as i augments. In Equation 5,

r stands for relevant candidates retrieved at rank size of n.

DCGp =

p∑

i=1

2reli − 1

log
2
(i+ 1)

(4)

P@n =
r

n
(5)

We compare the AST-based and IR-based approaches using

these metrics. It is worth noting that DCG is not normalized.

Therefore, we only compare both approaches under the same

setting, i.e., for the same system under analysis. Moreover, DCG

is cumulative; it increases as more candidates are provided.

Therefore, we can only compare both approaches under the

same candidate list as well.

C. Finding Candidates for Transformation

We compute candidates locations for transformation using

the approaches described in Section IV. Our approaches require

some input which is retrieved from target systems as follows.

• The versions of the source code for each system are

indicated in Table IV. All classes and methods of the

system are used as input as specified in Section IV.

• For Pharo systems, we used the macros as recorded

by MACRORECORDER tool [8]. This tool is also used to

experiment with our “fourth” approach that proposes to

filter the candidate list by dropping those candidates where

the macro cannot be replayed (Section IV-D).

For systems written in Java, we have no macro replaying

tool for now and we could not test this combined approach.

• Our approaches require one (for AST-based and IR-

based) or more (for structural) code examples. These

code examples are selected randomly from all the actual

occurrences of the macro (see again Table V).

Each approach will generate a list of candidates for trans-

formation from which we can compute precision and recall or

DCG metric according to our oracle.

D. Overall Results

Table VI presents precision and recall values for structural,

AST-based and IR-based approaches. We observe that the

Structural approach is performing reasonably well (especially

considering its simplicity) with an average precision of 60%.

Although this approach only considers package, class, and

method names, all recommendations are correct (100% preci-

sion) in five (out of 13) cases. Concerning recall, the structural

approach also gives good results on average (87%), and eight

out of 13 cases with perfect recall. The F-measure results

confirm better results for Structural approach.

Given the simplicity of the Structural filter, one could suspect

that good results might be linked to a lower number of classes

in the systems under analysis, however Spearman correlation

shows weak correlations (ρ = 0.36 for precision and ρ = −0.31
for recall). Therefore that does not seem to be the case.

We observed overestimation with Structural approach in

some cases as well. In four cases, less than 25% of candidates

are correct. For example, in PETITDELPHI, developers system-

atically removed methods of one class which represented a

specific grammar rule. The structural approach recommended

all the methods of this class as candidate locations, whether

they did represent this grammar rule or not. The result is due

to the Structural approach which does not look at the AST.

Similar situation occurred in PETITSQL II.

In ECLIPSE I and PACKAGEMANAGER IV, a few candidates

were not found because they were contained in other package

than the one from the examples. Similarly, ECLIPSE II and

JHOTDRAW, some few candidates inherited from a different

superclass than the one from the code examples. These cases

were considered exceptions, as can be seen by the very good

recall, i.e., these few cases did not represent the majority of

the gold standard.

The AST-based and IR-based approaches achieved an average

precision around 40%. Recall average values for these two

methods are 79% and 67% respectively. Regardless of the lower

precision and recall, these two approaches raised important

scalability issues. For example, performing code search around

one thousand methods in PETITDELPHI (a medium system in our

dataset), took more than 15 minutes. It turns out that comparing

source code ASTs or processing identifiers takes too long to

deploy such approaches into the development environment.

Summary: The Structural approach gives better results con-

cerning both precision and recall. These results indicate that

repetitive transformations usually affect similar code locations,

e.g., classes in the same package, with the same superclass, or

methods in the same class.

E. Replayable approach results

In this section, we add to the three approaches evaluated

above the idea of validating the candidate locations by trying

to replay the macro on them. We report here the results

for Pharo systems because this is the context in which we

have the MACRORECORDER tool to replay macros. We report

only precision results because it is expected that macros



TABLE VI
STRUCTURAL, AST-BASED, AND IR-BASED RESULTS. Occ.: NUMBER OF OCCURRENCES OF THE ORACLE (AS SHOWN IN TABLE V); Prec.: PRECISION; Rec.:

RECALL; F1 : HARMONIC MEAN OF PRECISION AND RECALL.

Occ. Structural AST-based IR-based
Macro Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Eclipse I 26 0.68 0.81 0.73 0.05 0.12 0.07 0.36 0.61 0.45
Eclipse II 72 1.00 0.92 0.95 0.21 0.42 0.28 0.08 0.16 0.10
JHotDraw 9 1.00 0.89 0.94 0.06 0.42 0.10 0.29 1.00 0.44

PetitDelphi 21 0.12 1.00 0.21 0.04 1.00 0.07 0.02 0.04 0.02
PetitSQL I 6 0.24 1.00 0.38 0.27 1.00 0.42 0.16 0.66 0.25
PetitSQL II 98 0.40 1.00 0.57 0.32 1.00 0.48 0.94 0.32 0.47
PackageManager I 66 1.00 1.00 1.00 0.74 1.00 0.85 0.92 0.89 0.90
PackageManager II 19 1.00 1.00 1.00 1.00 1.00 1.00 0.54 1.00 0.70
PackageManager III 64 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 0.93
PackageManager IV 7 0.66 0.57 0.61 0.66 0.57 0.61 0.05 1.00 0.09
MooseQuery I 16 0.41 1.00 0.58 0.34 1.00 0.50 0.19 1.00 0.31
MooseQuery II 8 0.12 0.20 0.15 0.02 0.80 0.03 0.16 0.10 0.12
Pillar 99 0.19 1.00 0.31 0.77 1.00 0.87 0.75 1.00 0.85

Average 0.60 0.87 0.64 0.42 0.79 0.48 0.41 0.67 0.43

are configured to be replayed on correct candidate locations.

Therefore, the replayable approach does not affect recall.

TABLE VII
REPLAYABLE APPROACH RESULTS. PRECISION RESULTS WITHOUT

REPLAYABLE APPROACH WERE PRESENTED IN TABLE VI.

Structural AST-based IR-based
+Replayable +Replayable +Replayable

Macro Prec. Prec. Prec.

PetitDelphi 0.12 0.04 0.02
PetitSQL I 0.85 0.85 0.57
PetitSQL II 0.40 0.32 0.94
PackageManager I 1.00 0.74 0.92
PackageManager II 1.00 1.00 0.54
PackageManager III 1.00 1.00 0.87
PackageManager IV 0.66 0.66 0.05
MooseQuery I 0.66 0.48 0.31
MooseQuery II 0.40 0.10 0.33
Pillar 0.93 0.93 0.93

Average 0.70 0.61 0.54

Table VII shows that the precision increased in four out

of ten cases, with two very significant increases observed in

PETITSQL I (from 24% to 85%), and PILLAR (from 19% to

93%). Similarly to PETITDELPHI and PETITSQL, the structural

approach recommended all the methods in the hierarchy of

document classes in PILLAR. We manually inspected each

case and, although MACRORECORDER could replay the macro,

the resulting code would have been incorrect. However,

such behavior does not present a serious threat because the

transformations are effectively performed by MACRORECORDER

after inspection from the developer. Moreover, with the high

precision (93%) we conclude that these cases were exceptions.

Summary: Although simple, the Structural-Replayable approach

gives very good results with an average precision of 70%. The

replayable filter is also easy to implement (when there is a

record-and-replay tool available) and it improves precision for

all the other approaches.

F. Combining Structural with AST-based and IR-based ap-

proaches

In particular cases, e.g., PILLAR, we observed that AST-based

and IR-based approaches performed better than the structural

one, despite some performance issues. However, the structural

approach performed better and required less resources in most

of the systems. In this section, we use the list of candidates

generated by the structural approach as the candidate set for

AST-based and IR-based approaches (instead of the entire

system). For this analysis, we focus on the results of structural

approach before validation with the macro. Thus, we include

the Java systems in the evaluation.

Table VIII presents DCG results. This metric measures the

entire ranking. The AST-based approach performed better than

the IR-based one in all but one case, e.g., ECLIPSE I. Since

DCG is a cumulative metric, the results in Table VIII indicate

that the AST-based approach places correct recommendations

in a higher position in comparison with the IR-based approach.

TABLE VIII
DCG RESULTS FOR AST-BASED AND IR-BASED APPROACHES.

Macro AST-based IR-based

Eclipse I 4.25 9.36
Eclipse II 7.03 2.27
JHotDraw 3.64 3.59

PetitDelphi 4.12 1.76
PetitSQL I 3.31 1.52
PetitSQL II 20.40 19.46
PackageManager I 15.61 14.78
PackageManager II 6.81 6.34
PackageManager III 15.28 13.59
PackageManager IV 2.74 1.89
MooseQuery I 5.61 0.33
MooseQuery II 2.16 0.50
Pillar 20.28 19.99

Average 11.12 9.54

Table IX presents P@n results. In most of the systems, a

higher precision at early positions at the ranking also implied

a higher DCG. In ECLIPSE I, precision results are the same



for both approaches, however the AST-based one have lower

DCG. This result is also caused by DCG’s cumulative property,

i.e., the IR-based approach places correct recommendations

(after the 20th position) in a higher position in comparison

with the AST-based one.

TABLE IX
AST-BASED AND IR-BASED RESULTS. P@n: PRECISION OF THE

CANDIDATES AT THE TOP-5, 10, AND 20 POSITION IN THE RANKING.

P@5 P@10 P@20
Macro AST IR AST IR AST IR

Eclipse I 1.00 1.00 1.00 1.00 1.00 1.00
Eclipse II 1.00 0.20 0.80 0.10 0.85 0.05
JHotDraw 1.00 1.00 1.00 1.00 1.00 1.00

PetitDelphi 0.20 0.20 0.10 0.20 0.10 0.25
PetitSQL I 1.00 0.00 0.60 0.40 0.30 0.40
PetitSQL II 1.00 0.60 1.00 0.80 0.95 0.90
PackageManager I 1.00 1.00 1.00 1.00 1.00 1.00
PackageManager II 1.00 1.00 1.00 1.00 1.00 1.00
PackageManager III 1.00 1.00 1.00 1.00 1.00 1.00
PackageManager IV 0.60 0.40 0.40 0.20 0.30 0.33
MooseQuery I 0.80 0.00 0.80 0.08 0.70 0.08
MooseQuery II 0.20 0.00 0.10 0.00 0.15 0.10
Pillar 1.00 1.00 1.00 0.90 0.85 0.90

Average 0.83 0.56 0.75 0.59 0.70 0.61

However, both approaches did not improve PETITDELPHI’s

precision. In Section V-D, we discussed that developers

removed all the methods representing a particular grammar

rule. This particularity is represented by using the operator

“,” (a comma)5. The IR-based approach does not consider this

operator as a term; instead, the similarity considered only the

name of the method. Moreover, the AST-based approach only

produce high similarity for methods with the same number of

comma operators.

Other limitations appeared when the candidates have few

properties in common. For example, in MOOSEQUERY II, the

methods transformed by the macro have short names (e.g., from

and to), and they only share one return statement in common.

Thus, both AST and IR similarities will be low even between

correct candidates; the recommendations will then be sorted

with incorrect ones. Similar cases occurred in PETITSQL I and

PACKAGEMANAGER IV.

Summary: The AST-based approach produced more correct

ranking in comparison with the IR-based approach. All but

one of the 13 cases were better ranked by AST similarity for

top-20 recommendations.

VI. THREATS TO VALIDITY

We now discuss threats to the validity of our study:

Internal Validity: The authors were among the developers in

four of the systems under analysis. This could mean that there

is a bias toward the expected searching results. Thus, one could

assume that results are less significant, because we designed a

searching process looking at our own source code. While the

identification bias is relevant, it does not affect the essence of

5Pharo allows one to override operators such as “,” or “=”.

the study. The repetitive transformations we found occurred

before our study, and therefore they were not influenced by our

approach. Our participation in the development only helped us

to re-discover them.

External Validity: In this study we considered 13 cases where

we found repetitive transformations. It is not clear whether

conclusions generalize beyond this setting. Most of the systems

under analysis are small. One may argue that it is easier to find

candidate locations in a smaller system. However, Santos et al.

[2] showed that developers missed some (out of 21) candidate

locations for a small system such as PETITDELPHI. In this paper,

we also studied a more complex system, ECLIPSE, in which

systematic transformations occurred in the past. However, the

cases in PETITSQL and PACKAGEMANAGER, considered as small,

seem to indicate that the size is not an issue. The macros we

found in these systems repeated 98 and 66 times, respectively.

Construct Validity: In our study, we select at random code

examples based on the occurrence of repetitive transformations

in the past. One might argue that the code search results

are highly dependent on the selection of these examples. To

alleviate this threat, we executed the structural approach several

times. This approach is the one that produces the preliminary

candidates for the remaining approaches. We report in this

paper the results in which the selection of code examples

produced most candidate locations.

In our study, we use the occurrences of the macro as our

oracle. However, previous work on this dataset suggested that

developers might have missed some transformation opportuni-

ties. We also acknowledge this threat. In a practical setting, the

list of candidates that our approach produces, either selected by

the macro or ranked by AST or lexical similarity, is shown to

the developer as a recommendation. Our approach still requires

the developer to accept (or reject) the recommendation, either

it will be a surprising recommendation or not, because some of

the code locations may be found easily by manual inspection,

and others may not.

VII. CONCLUSION

From time to time developers need to systematically apply

sequences of source code transformations in a software. Due to

the repetitive nature of this task, solutions where proposed to

help create the repetitive sequence and reproduce it on different

locations in a system.

In this paper, we present different solutions to identify

automatically all the locations where such a repetitive sequence

of transformations should be applied. We evaluated these three

solutions on real cases of sequences that had been identified

in existing publications [2], [8]. These examples cover seven

different systems (small to large) in two OO languages (Java

and Pharo), and a total of 13 examples of sequences specific

to the systems where they were found.

Our approaches receive as input one or two code examples

and try to generalize these examples to all possible locations on

which the sequence should be applied. The results showed that

a simple filtering based on “structural analysis” (e.g., classes

in the same package, or methods in the same class hierarchy)



already produce good results in terms of recall (87% in average)

and precision (70% in average). These good results can be

further improved by adding an analysis on the AST.
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