
Recording and Replaying
System Specific, Source Code Transformations

Gustavo Santos, Anne Etien, Nicolas Anquetil, and Stéphane Ducasse
RMoD Team, INRIA Lille Nord Europe

University of Lille, CRIStAL, UMR 9189, France
{firstname.lastname}@inria.fr

Marco Tulio Valente
Department of Computer Science

Federal University of Minas Gerais, Brazil
mtov@dcc.ufmg.br

Abstract—During its lifetime, a software system is under
continuous maintenance to remain useful. Maintenance can be
achieved in activities such as adding new features, fixing bugs,
improving the system’s structure, or adapting to new APIs. In
such cases, developers sometimes perform sequences of code
changes in a systematic way. These sequences consist of small
code changes (e.g., create a class, then extract a method to
this class), which are applied to groups of related code entities
(e.g., some of the methods of a class). This paper presents
the design and proof-of-concept implementation of a tool called
MACRORECORDER. This tool records a sequence of code changes,
then it allows the developer to generalize this sequence in
order to apply it in other code locations. In this paper, we
discuss MACRORECORDER’s approach that is independent of
both development and transformation tools. The evaluation is
based on previous work on repetitive code changes related to
rearchitecting. MACRORECORDER was able to replay 92% of the
examples, which consisted in up to seven code entities modified
up to 66 times. The generation of a customizable, large-scale
transformation operator has the potential to efficiently assist code
maintenance.

Index Terms—Software Maintenance; Software Evolution;
Refactoring; Programming By Demonstration; Automated Code
Transformation.

I. INTRODUCTION

Software systems must constantly evolve to remain use-
ful in their context. Automation of code transformations is
currently provided by refactoring tools, such as the Eclipse
IDE. However, recent work provided discussion about the lack
of trust in refactoring tools [10, 11, 16]. Developers do not
understand what most of the operators actually do. Even when
the refactoring tool provides an automatic operator, developers
sometimes prefer to perform the same code changes manually.

On the other hand, previous work showed that developers
sometimes perform sequences of code changes in a systematic
way [8, 12, 14, 15]. These sequences are composed of small
code transformations (e.g., create a class, implement a given
interface, then override a method) which are applied to diverse
but similar code entities (e.g., some classes in the same
hierarchy). Such systematic behavior have been studied in the
literature in the context of fixing bugs [12], and adapting a
system to accomodate API updates [14].

Similarly, our recent work studied repetitive code trans-
formations when developers improve the structure of the
system [15]. When applied manually, the sequences of code

changes were complex, due to the repetition of similar but
not identical transformations. Developers sometimes missed
opportunities to apply transformations, or did not perform all
the transformations defined in the sequence.

Therefore, there is a need to specify customizable sequences
of source code transformations. Such support differs from
refactorings because: (i) refactorings are behavior-preserving;
(ii) they are limited to a predefined set of code transformations;
and (iii) refactorings are generic because they can be applied
to systems from different domains. In our previous case
study [15], we assumed that the behavior of the system can
change. Moreover, the sequences of transformations we found
are specific to the systems in which they were applied.

In this paper, we discuss the proof-of-concept implemen-
tation of MACRORECORDER. This prototype tool allows the
developer to: (i) record a sequence of source code changes;
(ii) store and generalize this sequence of changes, in order
to afterwards (iii) apply it automatically to different code
locations.

This tool presents two main contributions:

• our approach is independent of both development and
transformation tools. MACRORECORDER records code edi-
tion events from the development tool that can be repro-
duced automatically;

• the tool allows the developer to generalize transforma-
tions in order to easily instantiate them in other code
locations. This generalization is currently manual.

We evaluated the approach using real examples of code
repetition in software systems. These examples (i) consist in
up to nine transformations, (ii) impact up to seven code entities
of different levels of abstraction (e.g., packages, classes,
and methods), and (iii) they were repeated up to 66 times.
MACRORECORDER applies 92% of the examples with 76%
accuracy. This paper also provides discussion on the effort
to generalize and automate these examples.

The paper is organized as follows: Section II provides a
motivating example and the considered problem. Sections III
and IV present our solution and Section V presents the
study results. Section VI presents threats to validity. Finally,
Section VII presents related work on automating code trans-
formation and Section VIII concludes.

978-1-4673-7529-0/15 c© 2015 IEEE SCAM 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

221

II. MOTIVATING EXAMPLE

In recent work, we found evidences that some sequences of
code changes are performed in a systematic way [15]. These
sequences are composed of small code transformations which
are repeatedly applied to groups of related entities. In this
section, we present a motivating example of systematic code
transformations.

This example is extracted from PETITSQL, a small parser
in Smalltalk for static analysis of SQL commands [15].
Consider two classes, ASTGrammar and ASTNodesParser, the
second inheriting from the first. Listings 1 and 2 present
examples of source code modification in this system. For
comprehension purposes, we illustrate the example in a
Java-inspired syntax.

Listing 1: Modified code in ASTGrammar

p u b l i c f u n c t i o n C a l l () {
re turn { i d e n t i f i e r ,

new C h a r a c t e r (' (') ,
− argument . s e p a r a t e d B y (' , ') ,
+ a rgumen t s () ,

new C h a r a c t e r (') ') } ;
}

+ p u b l i c a rgumen t s () {
+ re turn argument . s e p a r a t e d B y (' , ') ;
+ }

Listing 2: Modified code in ASTNodesParser

p u b l i c f u n c t i o n C a l l () {
f i l t e r e d = new C o l l e c t i o n () ;

f o r e l e m e n t in super . f u n c t i o n C a l l () {
f i l t e r e d . add (new SQLFunct ionCal lNode ()

. setName (e l e m e n t . f i r s t ())

. s e t A r g u m e n t s (e l e m e n t . t h i r d ()
− . f i l t e r (' , '))) ;
+)) ;

}
re turn f i l t e r e d ;

}

+ p u b l i c a rgumen t s () {
+ re turn super . a rgumen t s ()
+ . w i t h o u t S e p a r a t o r s () ;
+ }

The methods in ASTGrammar represent different elements
in the SQL syntax. These methods define the correspond-
ing grammar rule as a collection of elements. For exam-
ple, a functionCall returns the identifier of the function
and its arguments surrounded by parentheses. The subclass
ASTNodesParser is responsible for creating an object repre-
senting the grammar node. For this purpose, the subclass
filters particular nodes that the superclass returns, using the
Collections API (e.g., a call to filter).

Now consider that the developer can use an already existing
method to filter this collection, called withoutSeparators. The
resulting code is easier to understand, and it calls a method
that was created for this intent. The resulting change in both
classes is described in Listings 1 and 2, in terms of added (+)
and removed (-) lines.

This change impacts two classes and creates two methods,
one in each class. However, in this small maintenance, the
same sequence of code changes have to be repeated in similar
but not identical methods. In PETITSQL case, this sequence
of changes repeated in five other methods, and results in a
tedious and error-prone task.

In order to automate similar sequences of changes, we in-
tend to be able to express each change in terms of transforma-
tions. For example in ASTNodesParser, one can describe: create
a method named “arguments” in ASTNodesParser, then add a
return statement in this method (which calls the superclass and
withoutSeparators), then remove the method call to filter.
Accordingly, the transformations must be abstract in the case
that the names of methods and classes might be interchanged.

Our approach proposes a mechanism to build composite,
trustworthy transformations that can be performed automat-
ically. The developer is aware of what each transformation
does, because he/she performs the changes manually the
first time. The resulting automation reduces the chance of
error in performing manual code changes, and improves the
productivity in performing such repetitive task.

III. MACRORECORDER IN ACTION

In this section, we introduce MACRORECORDER as the tool
to specify and automate composite transformations. Using our
approach in practice, the developer manually performs the
changes once. The tool will collect and store these changes
(see Section III-A).

The developer then specifies a different code location in
which MACRORECORDER must replay the recorded changes.
Ideally, the tool would generalize the recorded changes into
a customized transformation that would be instantiated in
the specified location. However, the current prototype of
MACRORECORDER does not support this feature. In this paper,
our goal consisted in checking whether we were able to record
and replay code transformations. Therefore, the generalization
stage is currently manual, i.e., the developer must specify the
properties of the code entities to which the transformations
must be applied (Section III-B).

Finally, the tool searches for code entities that match the
properties specified in the previous stage. If successful, the
tool instantiates the transformation into these code entities
and perform the transformation automatically (Section III-C).
We use the PETITSQL example above to illustrate how
MACRORECORDER works.

A. Recording Code Changes

Before performing the changes, the developer must activate
MACRORECORDER to start to collect code changes. Concretely,
a code change can be (i) atomic, captured by manual code
edition in the development tool (e.g., Add Method, Add
Association Statement) or (ii) aggregated, captured from a
refactoring tool (e.g., Extract Method, Pull Up Method).
The recording process is transparent to the developer. When
recording, the developer can resume editing code until the
developer disables the recording explicitly.

222

Figure 1 (left panel) depicts the sequence of code changes
that were recorded in our example. As discussed in Sec-
tion II, MACRORECORDER records three code changes in
ASTNodesParser1: Add Method, Add Return Statement (which
calls the superclass and two methods in cascade), and Re-
move Call. In ASTGrammar there is only one code change:
Extract Method. After saving this sequence of changes,
MACRORECORDER adds it to the development tool as a com-
posite transformation.

Fig. 1. Sequence of code changes recorded by MACRORECORDER in the
PETITSQL example (left panel). The first code change indicates that an
Extract Method refactoring was performed automatically.

Additionally, MACRORECORDER also stores the code entities
that were changed by each code change (Figure 1, right panel).
For example, when performing the Extract Method refactoring,
the developer changed: the excerpt of code that was extracted,
the new method arguments, the original method functionCall,
and its containing class ASTGrammar.2 We call these entities, the
parameters of the change. They are important to generalize the
sequence of changes for other examples.

B. Generalizing Transformations

In this stage, the sequence of recorded code changes
needs to be generalized in order to be applied in other
code locations. Each code location defines a new context,
i.e., code entities that are (i) different from the ones that
were changed in the recording stage, but they also (ii) share
similar properties with the recorded entities. For example,
another application of these changes modifies a method named
alterTableConstraint in ASTGrammar, which creates a new
method called columnReferences. The challenge consists in
expressing the context that MACRORECORDER will instantiate
in each new application.

The first generalization process is automatic and dedicated
to make recorded code changes reproducible. For each event,
MACRORECORDER generates a transformation operator. An

1Shortened from PetitSQLIslandASTNodesParser.
2Shortened from PetitSQLIslandGrammar.

operator is responsible for producing the code change auto-
matically, given a list of parameters. Therefore, a code change
can be the result of manual code edition, or the automated
execution of a parameterized transformation operator.

Consequently, MACRORECORDER generates a transformation
pattern, which basically consists in an ordered collection of
transformation operators. Transformation patterns are system
specific and they also consider aggregated operators. There-
fore, transformation patterns differ from other definitions of
composite transformations in the literature [4, 15]. Concretely
in MACRORECORDER, a transformation pattern is responsible
for instantiating a new context and executing its containing
transformation operators in sequence.

The second generalization process consists in adapting
the parameters to new contexts. For this prototype of
MACRORECORDER, our goal is to check whether transforma-
tions can be customized and automated. Therefore, in this
paper, the generalization of parameters is currently manual.
However, we intend to analyze and infer the dependencies
between parameters in order to automatize their instantiation
(see Future Work in Section VIII).

MACRORECORDER stores the parameters for each recorded
code change with unique identifiers (as introduced in Sec-
tion III-A). The tool allows the developer to modify the
parameter values as expressions. An expression is a fragment
of code that will be evaluated in each application of the pattern.
Figure 2 shows an example of expression in our PETITSQL
pattern. The goal of this expression is to retrieve the node
in ASTNodesParser which calls the method named filter.
From the example in Listing 2, the retrieved node would be
element.third().

Fig. 2. Configuring parameters in MACRORECORDER (right click on a
parameter, see Figure 1, right panel). Existing parameters (e.g., @class1 and
@method1) are referenced with their identifiers.

With this information, one can further retrieve the code in
ASTGrammar to extract a new method from it. Therefore, given
a new method (e.g., alterTableConstraint), the expression
will be evaluated again and might return a different result.
At the end of this stage, the expected result is an abstract
transformation that can be instantiated to different contexts.

223

C. Replaying Transformations

Ultimately, after generalizing all the necessary parameters,
MACRORECORDER can perform the transformation pattern in
other contexts. The replaying stage is semi-automatic, and it
is separated in three steps.

First, currently in MACRORECORDER, the developer must
indicate explicitly the class (or method, statement, ...) where
the recorded sequence of changes must be replayed. Obviously,
the new code location shares properties with entities that
changed in the initial recording. Otherwise, the execution
of the sequence of changes would lead to no result. In
PETITSQL example, the root parameter is the method which
invokes filter. This fact means that the other parameters
have common properties with this method. These properties
are expressed in the generalization stage.

From the manual selection, the tool (i) infers which pa-
rameter may receive this code entity as a value (e.g., the
first parameter defined as a method), and (ii) opens the
panel depicted in Figure 1. In this example, the value of the
parameter named @method1 will change to the method which
the developer selected. We discuss future work on automating
this process in Section VIII.

Second, from this new context, the tool automatically com-
putes the value for all the parameters. The parameters are
necessary for the execution of the transformation operators.
If the developer described an expression for any parameter,
the tool will execute the expression and collect its result.

And third, MACRORECORDER performs the transformation
operators and their parameters. If no parameter was general-
ized, MACRORECORDER will try to replicate the same operators
as they were initially recorded. Figure 3 shows the result
of the replication of the pattern in another method, called
alterTableConstraintFK.

Fig. 3. Result of application of a transformation pattern in
MACRORECORDER. Specially in this case, the method columnReferences
was already extracted in ASTGrammar, therefore no changes were performed
in this class.

In this method, the filtered element is the fifth of the
collection, and it was called columnReferences, which was
already extracted in the ASTGrammar class. Therefore, the
resulting transformations as shown in the figure consist in: (i)
creating the method in the parser, (ii) referencing the method

in superclass and adding call to withoutSeparators and finally,
(iii) removing the call to filter in the selected method.

At this point, the tool shows to the developer the resulting
changes in the new context. The developer can check whether
the changes are correct and accept them. During this process,
if there is an execution error when performing at least one
transformation operator, the whole transformation pattern is
discarded. This fact means that MACRORECORDER rolls back
changes done before the failing operator.

IV. MACRORECORDER’S APPROACH

In this section, we present MACRORECORDER’s approach
to record, generalize, and replay transformation patterns. The
current implementation of the tool is developed in Smalltalk.
However, the approach itself can be applied to other languages,
such as Java. For each stage discussed in Section III, the
approach has specific requirements, listed as follows:

• a code change recorder. The recorder is an extension of
an IDE (e.g., ECLIPSE, PHARO) which is responsible to
monitor editing activity and store code changes as events;

• an IDE that provides support to inspect source code en-
tities and manipulate their underlying code automatically
(for parameter generalization); and

• a code transformation tool (e.g., ECLIPSE’s refactoring
tools, REFACTORING in Pharo). The transformation tool
will be extended to provide replication of each recorded
code change event.

The approach is highlighted in grey in Figure 4. Specifically
in Record and Replay stages, the existing tools have been
extended to fit our approach requirements.

A. Recording Code Changes

MACRORECORDER relies on EPICEA [2], a tool that records
developer events in the Pharo IDE, including code changes.
Specifically, EPICEA listens to events concerning code changes
occurring in the Pharo IDE and represents them as added,
modified, and deleted nodes of the language’s AST. EPICEA

also records automated refactorings from the Pharo’s refac-
toring tool. Similarly in Java environment, REPLAY is a tool
that records activities from the developer, including code
changes [3]. The events recorded by EPICEA are partially
shown in Figure 5.

Our approach extends EPICEA’s change model to record
more detailed code changes. Specifically, we extended class
change events to consider attributes and inheritance. And
similarly, we extended method modifications to also con-
sider arguments, temporary variables, and statements (i.e.,
assignments, return statements, for example). As discussed in
Section III-A, the recording stage operates in the background,
while the developer is editing the code manually.

B. Generalizing Transformation Operators

For each code change event extracted in EPICEA,
MACRORECORDER creates a transformation operator. A trans-
formation operator defines: (i) the type of the change; and (ii)
the list of parameters that characterize the change.

224

Fig. 4. Overview of MacroRecorder’s approach (highlighted in grey). The
transformation operator establishes the connection between recorded code
change events in EPICEA and code edition algorithms in the transformation
tool. A transformation pattern is a special type of operator that contains (and
eventually executes) a collection of transformation operators.

Fig. 5. Events recorded by EPICEA and MACRORECORDER from Pharo IDE.
Events highlighted in grey were extended from the EPICEA’s original change
model. Each “Change” event defines addition, modification, and removal
events. “Statement” events summarize Assignment, Expression, Method Call,
and Return statements, for example.

First, MACRORECORDER generalizes the code change events.
Therefore, the change type references an algorithm that per-
forms the code change automatically. MACRORECORDER estab-
lishes the link between (i) a code change recorded in EPICEA

and (ii) the algorithm that automatically performs the same
code change in the transformation tool.

Second, MACRORECORDER generalizes the parameters. The
list of parameters is stored in a parameter resolver. A pa-
rameter resolver basically describes the parameters that are
necessary to replay the transformation operator. As shown
in Section III-A, each parameter has a unique name and an
associated code entity. The default value for this entity is
extracted from the recorded events, but it can be redefined
as expressions by the developer (see Section III-B).

Finally, MACRORECORDER generates a transformation pat-
tern that represents the sequence of recorded changes. Specifi-
cally, the transformation pattern has a reference to the resolvers
of its containing operators. We address the resolver in the next
section to describe the instantiation of a transformation pattern
in a different context.

C. Replaying Transformation Patterns
Ultimately, a transformation pattern is executed with assis-

tance of a transformation tool. MACRORECORDER relies on the
REFACTORING tool in Pharo. As discussed in Section III-C,
MACRORECORDER executes the transformation operators in
sequence. Each transformation operator (i) references the algo-
rithm in the transformation tool that performs transformation
automatically; and (ii) it has a parameter resolver which con-
tains the parameters necessary to perform the transformation.

In order to obtain the new context, i.e., the entities to change
in the new code location, the resolver calculates the value of all
the parameters. Algorithm 1 presents the parameter resolving
stage. Specifically, a parameter can be an expression described
by the developer. This expression may eventually reference
other parameters.3 In the case of expression referencing pa-
rameters (lines 4 to 9), the resolver asks the transformation
pattern to calculate the values of these parameters (line 7).
This way, a parameter can reference parameters from other
operators. At the end of this step, the resolver returns, for a
given parameter name, its code entity in the current context.

Data: collection of parameters P
Result: the collection of code entities in this new context

1 values = Collection.new();
2 for p ∈ P do
3 value = p.value();
4 if value.isExpression() then
5 declarations = value.asExpression().getParameters();
6 tempParameters = pattern.valueFor(declarations);
7 value = expression.calculate(tempParameters);
8 end
9 values.add(value);

10 end
11 return values

Algorithm 1: Evaluating parameter values in the resolver

After instantiating the new context, the operator uses the
transformation tool to perform the code change automatically,
given the list of parameters values returned by its resolver.
The result of this process is discussed in Section III-C.

V. EVALUATION

In this section, we evaluate MACRORECORDER with real
cases of sequences of code changes in software systems. Our
evaluation follows the methodology used in related work [7].
We evaluate MACRORECORDER’s complexity when one must
generalize transformations manually (see Section V-C). We
also evaluate the tool’s accuracy to check whether the tool is
able to record and replay the transformations, in comparison
to systematic manual edition (Section V-D).

3In Figure 2, the expression references two parameters, named @class1
and method1.

225

A. Dataset

Our dataset is based on previous work on the existence
of repetitive sequences of code changes related to rearchi-
tecting [15]. It consists of six examples in three Smalltalk
systems. Specially for one system (e.g., PACKAGEMANAGER),
there are four examples of repetitive changes. These examples
were described by the authors of this paper, with the assistance
of the experts of each system. Table I summarizes descriptive
data about the systems.

TABLE I
SIZE METRICS OF OUR DATASET. EACH LINE DESCRIBES A

REARCHITECTING BETWEEN TWO VERSIONS. METRICS ARE SHOWN IN
PAIRS (BEFORE AND AFTER THE REARCHITECTING).

Packages Classes KLOC

PetitDelphi 0.210 / 0.214 7/7 313/296 8/9
PetitSQL 0.34 / 0.35 1/2 2/2 0.3/0.4
PackageManager 0.58 / 0.59 2/2 117/120 2.5/2.3

Each system represents a rearchitecting between two ver-
sions. We use the source code before the rearchitecting effort to
record one sequence of code changes using MACRORECORDER.
This recording will produce a transformation pattern for each
of the six examples. In order to check the accuracy of
the tool, we use the source code after the rearchitecting as
our gold standard. Therefore, we calculate for each pattern
occurrence4, the similarity between (i) the actual source code
after rearchitecting, and (ii) the result of automatic application
of a transformation pattern by MACRORECORDER.

Table II presents descriptive data about our dataset. It
describes, for each example: the number of occurrences of
the pattern as originally calculated in previous work [15],
the number of operators obtained after the recording stage,
and the number of parameters as calculated automatically by
MACRORECORDER. We reference the number of occurrences
as a metric (occurrences(P)) in Section V-B. We discuss the
number of parameters we actually configured in Section V-C.

TABLE II
DESCRIPTIVE METRICS OF TRANSFORMATION PATTERNS IN OUR DATASET.

IT IS WORTH NOTING THAT NOT ALL OF THE PARAMETERS NEED TO BE
CONFIGURED. WE PRESENT COMPLEXITY RESULTS IN SECTION V-C.

Transformation Pattern Number of Number of
patterns occurrences operators parameters

PetitDelphi 21 2 3
PetitSQL 6 3 6
PackageManager I 66 2 7
PackageManager II 19 3 5
PackageManager III 64 2 4
PackageManager IV 7 3 5
Average 30 3 5

4In this evaluation, we define transformation pattern occurrence as one
instance of automatic transformation by MACRORECORDER.

B. Evaluation Metrics

In this section, we present the metrics we use in the evalu-
ation of our approach. Before executing MACRORECORDER for
each example in our dataset, we first need to generalize the
transformation pattern. As discussed in Section IV-B, we con-
figure the parameters in a transformation pattern with expres-
sions. Therefore, we iteratively configure as many parameters
as needed until MACRORECORDER automatically performs the
transformation pattern with success.

• Number of configured parameters is the number of
parameters the developer needs to generalize in order for
MACRORECORDER to perform changes in a new context.
This metric relates to the complexity of the approach.

After applying the transformation patterns automatically,
each pattern occurrence can change the source code in dif-
ferent locations. In order to evaluate each pattern occurrence,
we first categorize them according to their resulting code. The
classification is non-exclusive and it is described as follows:

• Matched is an occurrence in which all the transformation
operators were performed. This category relates to the
ability of the approach to instantiate a new context;

• Compilable is an occurrence in which the resulting
source code is syntactically correct. This category relates
to the ability of the approach to not break the code;

• Correct is an occurrence in which the resulting code is
behavior-equivalent to the gold standard. We make this
classification by manual code inspection. This category
relates to the ability of the approach to transform code
that is accurate to the developer’s manual edition.

Consequently, consider a transformation pattern P with
occurrences(P) occurrences. Therefore, matched(P) is the
number of occurrences in a pattern P that matched in a
context. Similarly, compilable(P) and correct(P) calculate
the number of occurrences that are compilable and correct,
respectively. The following metrics are proposed in related
work on automated code transformation [7].

coverage(P) =
matched(P)

occurrences(P)
(1)

accuracy(P) =
correct(P)

occurrences(P)
(2)

Therefore, coverage measures the percentage of the occur-
rences from which MACRORECORDER was able to instantiate
a new context and perform the transformations. Moreover,
accuracy measures the percentage of occurrences in which the
modified code is equivalent to the result of manual edition.

Since a correct pattern occurrence is also compilable (but
not always the opposite), we calculate for compilable oc-
currences, the similarity between the result of manual and
automatic transformations. For each changed code entity, we
calculate its AST tree c. Therefore, given the results of
both manual (cmanual) and automatic (cauto) transformations,
similarity is defined as:

226

similarity(cmanual, cauto) =
|(cmanual ∩ cauto)|
|(cmanual ∪ cauto)|

(3)

Thus, similarity is also a percentage metric. Similarly to
coverage and accuracy, the similarity in a transformation
pattern P calculates the average similarity to all the code
entities modified in all the occurrences of this pattern.

C. Complexity Evaluation

In this evaluation, we investigate the complexity to general-
ize a transformation pattern with MACRORECORDER. We per-
form this generalization by manual definition of expressions
for the parameters in each pattern. In this case, Table III de-
scribes the number of parameters we had to modify explicitly
to make the pattern applicable for all of its occurrences.

TABLE III
NUMBER OF CONFIGURED PARAMETERS FOR EACH TRANSF. PATTERN

Transformation Configured Total Number of
patterns parameters parameters

PetitDelphi 1 3
PetitSQL 1 6
PackageManager I 2 7
PackageManager II 2 5
PackageManager III 1 4
PackageManager IV 2 5

In general, we had to configure up to two parameters per
pattern, even for the first pattern in PACKAGEMANAGER which
has seven parameters (see Table II). Although a few parameters
must be configured, some of them might be more complex to
express. We discuss an example of expression we wrote for
PETITSQL in Section III-B. In order to retrieve the right entity
to change, the expression had to iterate over all of the AST
nodes in a method.

We found one case in which MACRORECORDER is limited
in the creation of more complex patterns. This limitation is
also found in related work [7], and we found this case in
the first pattern in PACKAGEMANAGER. Listing 3 present the
modified code in one occurrence of this pattern.

Listing 3: Modified code in PACKAGEMANAGER

p u b l i c d e p e n d e n c i e s () {
− package . addDependency (' S e a s i d e−Core ')
− . a d d V e r s i o n (package . g e t V e r s i o n ()) ;
+ d e p e n d e n c i e s = new C o l l e c t i o n () ;
+ d e p e n d e n c i e s . add (new P a i r (' S e a s i d e−Core ' ,

' = 3 . 1 . 0 ')) ;
+ re turn d e p e n d e n c i e s ;
}

In this example, packages are represented as data objects.
The method dependencies() defines the packages on which
a package depends. The developers decided that packages
should not be modified with setter methods. Therefore, in-
stead of creating instances for each depending package (using
addDependency and addVersion), the developer must define a

simple pair of strings. One pair defines the name of the pack-
age and the version on which the modified package depends.
After generalizing the pattern with MACRORECORDER, we
applied it automatically to all the data objects that implements
a method called dependencies().

However, some methods instantiate more than one depen-
dency. In MACRORECORDER, the number of operators in pattern
is limited to the ones the developer records. In this example,
when replaying the changes with MACRORECORDER, the tool
only changed the first occurrence of the pattern. Therefore,
the resulting transformation is incorrect (see Section V-D). In
practice, we could apply the pattern repetitively in the same
method until all instantiations of dependencies are removed.
However, we come back to the same problem of performing
tedious, repetitive tasks. MACRORECORDER must also support
the repetition of a subset of the pattern.
Summary: Up to two parameters were necessary to generalize
the patterns. However, their corresponding expressions might
be complex to define. The results show that, with few limita-
tions, MACRORECORDER successfully creates parameterizable
transformation patterns.

D. Accuracy Evaluation

We now investigate whether MACRORECORDER’s automated
code transformation is close to repetitive manual transforma-
tions performed by the developer. Table IV summarizes the
results, using the metrics we defined in Section V-B.

TABLE IV
ACCURACY RESULTS. WE DESCRIBED THE METRICS IN SECTION V-B
oc

cu
rr

en
ce

s

m
at

ch
ed

co
m

pi
la

bl
e

co
rr

ec
t

co
ve

ra
ge

(%
)

ac
cu

ra
cy

(%
)

si
m

ila
rit

y
(%

)

PetitDelphi 21 21 21 21 100 100 100
PetitSQL 6 6 6 4 100 66 85
PackageManager I 66 50 50 11 76 17 20
PackageManager II 19 14 14 14 74 74 100
PackageManager III 64 64 64 64 100 100 100
PackageManager IV 7 7 7 7 100 100 68
Average 92 76 79

In general, 92% of the pattern occurrences matched. We
discussed in Section V-C one of the examples in which part
of the pattern is not executed. We observed the same outcome
in the second pattern in PACKAGEMANAGER. For such cases,
we might increase the coverage of the results by (i) adding an
additional condition or (ii) repeating a subset of operators in
the same code location.

For accuracy, 76% of the automatic transformations are
behaviour-equivalent to developer’s manual edition. Similar to
coverage results, the accuracy is lower in PACKAGEMANAGER

and PETITSQL patterns because of their small variations.
Consequently, in these cases the similarity is also low.

227

Finally, the result of automatic transformation is 79% simi-
lar to developer’s manual edition. The patterns in PETITDELPHI

and PACKAGEMANAGER (the second and third ones) had the
best similarity in the study. In PETITDELPHI, the pattern
consists in removing methods and classes from the system.
Our tool covered all of these occurrences. In PACKAGEMAN-
AGER, the pattern creates methods with only one statement.
Therefore, from the occurrences that matched the context,
MACRORECORDER replays them exactly like the developer.

Specially in the fourth pattern in PACKAGEMANAGER, even
though MACRORECORDER produced correct transformations,
the output is not completely similar to the version which
was manually edited by the developer. Specifically in this
case, the similarity is lower because of an Add Statement
transformation. This operator needs to calculate the position
in the method’s AST where the statement will be added. This
calculation is necessary because the operator assumes that
other methods can be very different from the recorded change.

Currently, the operator uses data analysis to collect all
the variables that the statement uses. This operator puts the
statement after the declarations of its dependent variables. If no
variable declarations are found, the operator puts the statement
as the first one of the method. Listings 4 and 5 present an
example of modified code in this case.

The first modification was performed by the developer,
retrieved from source code history; the second one is result of
automatic transformation using MACRORECORDER. In this ex-
ample, the correct statement was automatically removed from
code. However, to add the new statement, the transformation
operator calculated a different location. In the transformation
tool, the transformation operators are independent, i.e., they do
not store information about the operators that were performed
before. However, we consider that the code is still correct
although it is slightly different from the developer’s code.

Summary: Most of the automated transformation patterns are
correct, they cover most of the pattern occurrences, and the
result of automatic transformation is often similar to manual
edition. With the assistance of MACRORECORDER, it is possible
to replicate transformation patterns in different code locations.

E. Discussion
In comparison to MACRORECORDER, SYDIT [7] is the most

similar tool in related work. Both tools rely on one example
of change to describe a transformation pattern, and the desti-
nation of automatic transformations must be defined manually
by the user. We discuss more about SYDIT in Section VII.
SYDIT performs transformations automatically with 82% cov-
erage and 70% accuracy. In our evaluation, we showed that
MACRORECORDER has 92% coverage and 76% accuracy.

However, we cannot directly compare these tools for two
reasons. First, SYDIT’s examples were applied to bug fixes. In
fact, the tool is limited to in-method editions. Although we
support in-method transformation operators (e.g., Add State-
ment), our transformations have a higher level of abstraction,
i.e., we can modify methods, classes, and the dependencies
between them in a single pattern.

Listing 4: Result of manual edition

p u b l i c t e s t R e s o l v e d D e p e n d e n c y () {
/ / . . .
s o l v e r = new S o l v e r () . add (r e p o s i t o r y) ;
dependency = new Dependency ()

. s e t P a c k a g e (package)
− ;
+ . s e t V e r s i o n (new V e r s i o n C o n s t r a i n t (' 3 . 1 ') ;

/ / . . . }

Listing 5: Result of automatic transformation

p u b l i c t e s t R e s o l v e d D e p e n d e n c y () {
/ / . . .

+ dependency = new Dependency ()
+ . s e t P a c k a g e (package)
+ . s e t V e r s i o n (new V e r s i o n C o n s t r a i n t (' 3 . 1 ') ;

s o l v e r = new S o l v e r () . add (r e p o s i t o r y) ;
− dependency = new Dependency ()
− . s e t P a c k a g e (package) ;

/ / . . . }

VI. THREATS TO VALIDITY

Construct Validity: The construct validity is related to how
well the evaluation measures up to its claims. Specifically in
the complexity evaluation, we do not rely on real developers
using the tool. The conclusions in this evaluation are based on
our use of the prototype. However, we previously discussed
that the implementation of the tool is a proof-of-concept
one. The evaluation concerns the limitations of an automated
support when applying abstract code transformations. We
intend to evaluate the usability of the tool in future work.

Internal Validity: The internal validity is related to uncon-
trolled factors that might impact the experimental results. In
our study, we discussed examples in which the code generated
by automatic transformation is not similar to manual edition,
but it is considered correct (see Listings 4 and 5). In the case
of method transformations, we do not consider side effects
caused by replacing code in different locations compared to
the developer’s edition. For example, the added assignment
statement in Listing 5 might execute code that will impact the
instantiation of a Solver. Therefore, the code resulting from
the automated transformation might also be incorrect.

Three factors alleviate this threat. First, this case only hap-
pened in this PACKAGEMANAGER’s example. Other examples
are more straightforward, e.g., the transformation creates a
method and adds some statements in it. The resulting code in
these cases are very similar to the gold standard. Second, the
statement is an assignment, followed by the instantiation of an
object and a couple of calls to setter methods. Therefore we
assume that, at best, the behavior was not affected. And third,
in a practical setting, MACRORECORDER shows the result of the
automated transformations before actually changing the code
(see Section III-C). The developer can discard the changes if
they are not correct, and the code is not compromised.

However, we have two suggestions to avoid this threat.
First, we can use tests to check whether the behavior changed,
if available in the target system. And second, we might also

228

analyze dependencies between transformation operators in
order to perform them in cascade. For example in Listing 5,
the Add Statement operator could consider the position in
which the previous Remove Statement operator was applied.

External Validity: The external validity is related to the
possibility to generalize our results. In our study, the main
threat consists in whether repetitive sequences of code changes
exist in real software systems. In previous work [15], we
found eleven sequences in small and large systems. Due to
language constraints, we study six of these sequences in this
paper. Moreover, most of the systems under analysis, as well
as most of their sequences of code changes were very small.
We acknowledge this issue.

First, we do not claim that these were the only repetitive
sequences of changes in these systems. In fact, to identify se-
quences of similar code changes and to express their properties
is a very challenging task. However, even in a small system
such as PACKAGEMANAGER there were sequences with up to 60
occurrences. Despite the limitations of our tool, we obtained
interesting results in these systems. We intend to develop a
MACRORECORDER version for Java, to which we can replicate
our study with more transformations.

Second, the sequences of code changes are small. However,
in order to generalize their corresponding transformations in
MACRORECORDER, some parameters were very complex to
define in a programatic way. In most of the examples, we
needed to iterate over a method’s AST to retrieve a specific
code entity and change its code. In general, our results show
that the size of the system is not an issue in terms of
complexity. We could identify and replay both repetitive and
complex sequences of code changes with success.

VII. RELATED WORK

Demonstrational Programming is a term mostly used in
robotics to comprise approaches that identify and automate
repetitive sequences of operations in a given context. These
approaches do not depend on a formal definition to describe
and/or automate these sequences of operations.

According to this paradigm, the user provides concrete
examples of how to perform the operations; then the computer
must repeat the operations afterwards, in different contexts. As
concrete examples, the feature Search and Replace in most
text editors, the multiple selections feature in SUBLIMETEXT,
and the macro feature in MICROSOFT OFFICE programs are
examples of programming by demonstration approaches.

In order to compare Demonstrational Programming ap-
proaches with MACRORECORDER’s, we separated them in two
categories: approaches that identify transformation patterns
from source code, and approaches that automate transforma-
tion patterns in different code locations.

A. Transformation Pattern Identification

In this section, we introduce approaches that mine source
code repositories to identify patterns of code changes. There-
fore, these approaches rely on the fact that repetitive changes

were already applied in the past. Most of these approaches do
not provide automations for the patterns they identify. Some
examples are related to bug fixes [13], API evolution [1], and
well-known refactorings applied to methods [9].

Jiang et al. [5] identify similar code changes that may
involve different releases in the code repository. They identify
the operators involved but they do not generalize them. On
the other hand, Kim et al. [6] generalize repetitive changes in
change rules, which are composed of an application condition,
a set of exceptions, and the sequence of change operators
in terms of added and removed lines. Their approach has
a limited set of operators. Moreover, their condition is only
based on structural dependencies (e.g., all classes in a given
package). However, we intend to extend the generalization in
MACRORECORDER to provide the automatic application of a
pattern into an entire system, given an application condition.

B. Transformation Pattern Application

In this section, we selected tools that generalize and auto-
mate the application of transformation patterns. Therefore, the
approaches we present rely on the fact that the developer is
aware of a repetitive code transformation task. Consequently,
a transformation pattern must be applied, either automatically
or with some assistance from the developer.

The first tool that applies programming by demonstration in
the context of code transformation is SYDIT [7]. SYDIT relies on
one example (e.g., one method before and after a code change).
The tool generates an edit script in terms of added, removed,
and modified AST nodes. Moreover, the tool uses control
and data dependence analysis to calculate the context of the
change. The context extracts the properties of the changed
entities to assist the application of the script in new locations.
Finally, the tool depends on the developer to explicitly indicate
where the script will be applied.

The LASE tool is an extension of SYDIT [8]. As opposed
to SYDIT, LASE relies on two or more code change examples
from the developer. The tool generalizes or specifies the edit
script depending on the differences between these examples.
For example, if the same transformation is applied to two
different AST nodes, the approach generalizes the node as
a parameter. However, the accuracy of the resulting edit script
depends on the quality of the dependence analysis (for SYDIT)
or the given examples (in LASE). The script will not be able
to find small variations of candidate cases (over specification),
or the script will be too general and it might be applied to un-
desired candidates (over generalization). MACRORECORDER’s
contribution consists on the parameterization of code entities,
which is customizable by the developer.

CRITICS is a tool which relies on one change example [17].
Similarly to MACRORECORDER, CRITICS is based on general-
ization of the example by the developer. In practice, the devel-
oper incrementally generalizes the example by parameterizing
types, variables, and method names. This parameterization is
similar to our approach, but it is restricted in the set of entities
that can be generalized.

229

The three approaches differ from MACRORECORDER in two
more aspects. First, their evaluations relied on changes related
to bug patches, which generally comprise very localized
operators. Our case study included operators with higher
level of granularity, which included from update statements to
change the hierarchy of classes [15]. And second, LASE and
CRITICS use the context of the change to find new change
opportunities. In previous work, we concluded that infer-
ring an application condition from changes is very complex.
MACRORECORDER allows the developer to indicate where the
changes will be applied, either directly (similar to SYDIT) or
in the future by using a condition which will select the code
entities automatically.

VIII. CONCLUSIONS

During a large maintenance effort, developers sometimes
perform repetitive sequences of changes on similar code
entities. Due to this repetition, these sequences are tedious
to perform. Moreover, these sequences are error-prone due to
their manual application.

In this paper, we presented MACRORECORDER, a proof-of-
concept tool to record and replay sequences of source code
changes. In MACRORECORDER, one can record the sequence
of changes once, generalize the transformations, and then
perform the sequences automatically in other code locations.
We discussed our approach which extends development and
transformation tools, in order to record code change events
that are parametrizable and replicable.

Our case study consisted in real cases of repetitive code
changes. The sequences of changes in our study have five
parameters in average. To generalize the transformations,
we had to generalize up to two parameters. However, the
generalization was complex. However, MACRORECORDER was
able to perform 92% of the examples with 76% accuracy.
The source code resulting from automatic transformation is
79% similar to manual code edition. We discussed specific
features in our case study that MACRORECORDER can overcome
in order to improve its accuracy. The evaluation leads to the
conclusion that customizable, system specific, source code
transformations can be automated.

For future work, we propose the automation of the
definition of transformation patterns. First, we propose to
automate the generalization of the parameters. Currently,
MACRORECORDER relies on the manual definition of expres-
sions by the developer. In this context, we propose to analyze
the dependencies between parameters in order to infer abstract
expressions automatically (e.g., extract the AST of a method
and filter some of its nodes).

Second, we propose to automate the application of the
transformations. Such support would be provided by an
application condition. This condition will check, out of
all the code entities in the system, which entities are
candidate to be changed. This application condition would
assist the application of transformations in all of the
opportunities at once.

REFERENCES

[1] J. Andersen and J. L. Lawall. Generic patch inference. In 23rd
International Conference on Automated Software Engineering,
pages 337–346, 2008.

[2] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien
Cassou, and Stephane Ducasse. Untangling fine-grained code
changes. In 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering, pages 341–350, 2015.

[3] Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea
Lungu. Software evolution comprehension: Replay to the
rescue. In 19th International Conference on Program Com-
prehension, pages 161–170, 2011.

[4] Muhammad Javed, Yalemisew Abgaz, and Claus Pahl. Compos-
ite ontology change operators and their customizable evolution
strategies. In Workshop on Knowledge Evolution and Ontol-
ogy Dynamics, collocated at 11th International Semantic Web
Conference, pages 1–12, 2012.

[5] Qingtao Jiang, Xin Peng, Hai Wang, Zhenchang Xing, and
Wenyun Zhao. Summarizing evolutionary trajectory by group-
ing and aggregating relevant code changes. In 22nd In-
ternational Conference on Software Analysis, Evolution, and
Reengineering, pages 1–10, 2015.

[6] Miryung Kim, David Notkin, Dan Grossman, and Gary Wil-
son Jr. Identifying and summarizing systematic code changes
via rule inference. IEEE Transactions on Software Engineering,
39(1):45–62, 2013.

[7] Na Meng, Miryung Kim, and Kathryn S. McKinley. Systematic
editing: Generating program transformations from an example.
In 32nd Conference on Programming Language Design and
Implementation, pages 329–342, 2011.

[8] Na Meng, Miryung Kim, and Kathryn S. McKinley. LASE:
Locating and applying systematic edits by learning from exam-
ples. In 35th International Conference on Software Engineering,
pages 502–511, 2013.

[9] Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo.
Vector abstraction and concretization for scalable detection of
refactorings. In 22nd International Symposium on Foundations
of Software Engineering, pages 86–97, 2014.

[10] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black.
How we refactor, and how we know it. In 31st International
Conference on Software Engineering, pages 287–297, 2009.

[11] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. John-
son, and Danny Dig. A comparative study of manual and
automated refactorings. In 27th European Conference on
Object-Oriented Programming, pages 552–576, 2013.

[12] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar
Al-Kofahi, and Tien N. Nguyen. Recurring bug fixes in
object-oriented programs. In 32nd International Conference on
Software Engineering, pages 315–324, 2010.

[13] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. Toward
an understanding of bug fix patterns. Empirical Software
Engineering, 14(3):286–315, 2009.

[14] Baishakhi Ray and Miryung Kim. A case study of cross-system
porting in forked projects. In 20th International Symposium on
the Foundations of Software Engineering, pages 1–11, 2012.

[15] Gustavo Santos, Nicolas Anquetil, Anne Etien, Stephane
Ducasse, and Marco Tulio Valente. System specific, source code
transformations. In 31st International Conference on Software
Maintenance and Evolution, pages 1–10, 2015.

[16] Mohsen Vakilian, Nicholas Chen, Roshanak Zilouch-
ian Moghaddam, Stas Negara, and Ralph E. Johnson. A
compositional paradigm of automating refactorings. In 27th
European Conference on Object-Oriented Programming, pages
527–551, 2013.

[17] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung
Kim. Interactive code review for systematic changes. In 37th
Intl. Conference on Software Engineering, pages 1–12, 2015.

230

