
System Specific, Source Code Transformations
Gustavo Santos, Nicolas Anquetil, Anne Etien, and Stéphane Ducasse

RMoD Team, INRIA Lille Nord Europe
University of Lille, CRIStAL, UMR 9189

Villeneuve d’Ascq, France
{firstname.lastname}@inria.fr

Marco Tulio Valente
Department of Computer Science

Federal University of Minas Gerais
Belo Horizonte, Brazil

mtov@dcc.ufmg.br

Abstract—During its lifetime, a software system might undergo
a major transformation effort in its structure, for example to mi-
grate to a new architecture or bring some drastic improvements
to the system. Particularly in this context, we found evidences
that some sequences of code changes are made in a systematic
way. These sequences are composed of small code transformations
(e.g., create a class, move a method) which are repeatedly applied
to groups of related entities (e.g., a class and some of its methods).
A typical example consists in the systematic introduction of
a Factory design pattern on the classes of a package. We
define these sequences as transformation patterns. In this paper,
we identify examples of transformation patterns in real world
software systems and study their properties: (i) they are specific
to a system; (ii) they were applied manually; (iii) they were not
always applied to all the software entities which could have been
transformed; (iv) they were sometimes complex; and (v) they
were not always applied in one shot but over several releases.
These results suggest that transformation patterns could benefit
from automated support in their application. From this study, we
propose as future work to develop a macro recorder, a tool with
which a developer records a sequence of code transformations
and then automatically applies them in other parts of the system
as a customizable, large-scale transformation operator.

Index Terms—Software Maintenance; Restructuring; Refac-
toring Tools; Code Transformation; Rearchitecting.

I. INTRODUCTION

Software systems must evolve to remain pertinent in their
context and continue to be used. Evolution can be achieved
by activities such as adding new functionalities, to correct
bugs or to react to changes in the system’s environment. It
also sometimes happens that a larger transformation effort
is undertaken, for example to migrate the system to a new
architecture, to update APIs on which the system depends,
or to improve the organization of the system. This large
transformation is referred in literature as rearchitecting [3].

In this paper, we studied examples of rearchitecting in real
world systems. We found evidences of systematic application
of sequences of small code transformations (e.g., create a class,
extract a method, remove an attribute). We purposely avoid to
use the term “refactoring” because rearchitecting consists in
a substantial effort that (i) can profoundly modify the whole
system and (ii) often have to break consistency and change
behavior in the middle of the process. Moreover, as oppose
to previous work on identifying patterns of change [12, 13,
26, 32], transformations have a higher level of granularity and
they are specific to the system in which we found them. We
present an illustration example of a real pattern in Section III.

The sequences of transformations we found are (i) system
specific; (ii) to the best of our knowledge, applied manually;
(iii) sometimes not applied to all software entities that should
be transformed; (iv) sometimes complex, i.e., including dif-
ferent small transformations in sequence; and (v) applied over
several revisions of the system under analysis. We call these
sequences of transformations, transformation patterns.

From these findings and from evidences in the literature,
we claim that transformation patterns might be found in many
systems beyond the ones discussed in this paper. Moreover,
the manual application of such patterns can be error prone
due to the repetition of the changes involved. In our study, we
found examples in which developers missed opportunities to
apply a pattern, or did not apply all the changes described in
the pattern. As a consequence, one would benefit from some
automated support in their application. The ways this support
could take have been discussed in literature and we provide
discussion on a tool to support building custom and reusable
transformation patterns at the end of the paper.

The contributions of this paper are: (i) we demonstrate the
existence of transformation patterns in real software systems;
(ii) we validate these patterns manually; and (iii) we validate
the properties that make transformation patterns challenging
to apply manually, in order to discuss the importance of their
automated support.

This paper is organized as follows: Section II provides
an overview of the context of our research and the problem
considered. We define transformation patterns in Section III.
Section IV presents the investigative study on real-world trans-
formation patterns, which we describe in Section V. Section VI
presents the study results. Finally, Section VII presents future
work and Section VIII concludes.

II. RELATED WORK

Developers and researchers alike have long perceived the
existence of systematic source code transformation operators.
This existence led them to propose some automation to reduce
the possibility of mistakes and ease the work of developers. As
a consequence, Integrated Development Environments (such as
ECLIPSE and VISUALWORKS) include refactoring operators as
an alternative of composite transformations that define very
specific, behavior-preserving tasks.1 Some of these refactor-

1Therefore, we use the term refactoring in this section, since it is the term
authors use in the referenced papers.

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

221



ings include renaming an entity (and all its occurrences in the
source code) and assisting the creation of methods or variables.
They are inspired by the refactoring catalog proposed by
Fowler et. al [7].

However, recent work proved that refactoring tools are
underused. Murphy-Hill et al. [22] and Negara et al. [23]
conducted different studies based on the refactoring tools
proposed by ECLIPSE platform. Both studies lead to the
conclusion that, when a refactoring operator is available for
automated application in ECLIPSE, the developers prefer to
perform this operator manually. Vakilian et al. [29] found
similar findings based on both a survey and a controlled study
with professional developers.

Developers do not understand what most of operators pro-
posed by refactoring tools do, or they do not perceive how
the source code will actually change after their application.
Therefore, developers prefer to perform a composition of small
well-known refactoring operators that will produce the same
outcome as a complex built-in refactoring operator. These
results emphasize the importance of letting the developer
having control of the maintenance process.

This lack of trust in automated refactorings points toward
a need for the definition of a custom automated refactoring
by the developer, which we will discuss in Section II-A. This
custom refactoring is defined as an aggregation of small code
change operators, which are discussed in Section II-B.

A. Definition of Composite Transformations

The definition of composite program transformations has
been proposed in the literature for at least three decades
[2, 24]. France et al. [8] propose to transform models by
applying design patterns [9]. For this purpose, they specify (i)
the problem corresponding to the design pattern application
condition, (ii) the solution corresponding to the result of the
pattern application and (iii) the transformation corresponding
to the sequence of “operator templates” that must be followed
in order for the source model to become the target model. Sim-
ilar definition approaches based on condition and operators are
also proposed in [16, 19]. Defining composite transformations
for the application of design patterns is very generic compared
to ours that aims to also solve system specific issues.

Other approaches work with existing source code. Similar to
most model approaches, Kozaczynski et al. [15] also proposes
composite transformations using application conditions and
operators. There are also approaches which are based on
code examples [4, 5]. The transformation is defined from an
example of the source code before and after the transformation.
In such cases, the example is a type of explicit condition.
However, in these approaches, the operators are simple and
consist in code insertion, replacement, and deletion only.

COCCINELLE relies on text matching to define bug
patches [17]. A composite transformation is defined as a set
of variable declarations, followed by a list of code dele-
tions and insertions. Variables represent code entities such
as expressions and statements. However, the matching and

transformation process is restricted to in-file operators. Con-
cerning the complexity of the operators involved, most code
transformation approaches are localized and modify only one
entity at each time (e.g., the code inside a method or a file).

This state of the art shows that: (i) personalizing and having
control of the code changes is important for the developer;
and (ii) existing approaches enable either to define simple,
localized, and eventually specific changes; or more complex
but generic transformations. There is a lack of approaches to
provide specific, eventually complex, and not localized source
code transformations.

B. Change Operators

Javed et al. [11] categorize change operators on source code
in three levels, described as follows.

Level one operators are atomic and describe generic el-
ementary tasks. For example, these operators are routinely
proposed in ECLIPSE as refactorings (e.g., Rename Variable),
development helpers (e.g., Create a Method), and calculated
from source code in the CHANGEDISTILLER tool [6]. These
operators are generic in the sense that they are independent
of the system, the application domain, and sometimes even of
the programming language.

Level two operators are aggregations of level one operators
and describe more abstract composite tasks. For example, the
Extract Method is a composition of several atomic changes
(e.g., Create Method, Add Statement, etc.). These operators
depend on the programming language they are based on.
However, they are still generic because they can be applied
to systems from different domains.

Finally, level three operators are aggregations of level one
or level two operators, and they are domain specific. This
classification relies on two major characteristics, the size of the
change operators (atomic versus complex) and the application
domain (generic versus domain specific).

III. TRANSFORMATION PATTERN DEFINITION

In this section, we describe more precisely the definition
of a transformation pattern. It is worth noting that the term
“pattern” comes from repetition of code transformations.2

Therefore, to better illustrate what kind of pattern we are
considering, and not to mistake with design patterns, we
present an example of real transformations found on a toy
e-commerce system, called MYWEBMARKET [28].

A. Illustrating Example

MYWEBMARKET went to several transformations to improve
its structure. In one of these transformations, dependencies
to the Hibernate framework were isolated in a new package
with the help of a Factory design pattern.3 The transformations
were applied only to the classes which methods depend on
HIBERNATE, and they are described as follows.

2From Merriam-Webster dictionary, “the regular and repeated way in which
something happens or is done” [1].

3Therefore, the Factory design pattern is a subset of the transformations
done in this example.

222



PATTERN I
MYWEBMARKET’S TRANSFORMATION PATTERN

Context: Isolating framework dependencies using Factory pattern
Applied to: 7 classes.
Condition: ∃ class C /∈ package PHib that depends on Hibernate

1. create an interface IC’ in PHib
2. create a class C’ in PHib implementing IC’
3. Create a method “public C’ getC’()” in the factory FHib
4. ∃ method M in C
5. and ∃ S statements ∈ M creating the dependence on Hibernate
6. extract statements S to a new method M’ in C’
7. replace statements S by a call FHib.getC’().M’()

For each of the selected classes, the pattern does the
following: it creates a corresponding Java interface (line 1) and
a special class C’ implementing it (line 2). Both interface and
implementing class are created in a new package PHib. The
new class is instantiated by a method (line 3) in the Factory
class FHib created to this effect. Then, for a set of statements
in methods in C that depends on Hibernate (lines 4–5), this set
is moved to another method in the special class C’ (line 6).The
statements are then replaced by a call to the factory to create an
instance of the special class and call the method with Hibernate
dependency (line 7).

Concretely, each step we previously defined consists in a
transformation operator. Following the definition of Javed
et al. [11], we define a transformation operator as an operator
that can be atomic or aggregated (levels one or two). More-
over, a transformation pattern is composed of an application
condition and a sequence of transformation operators.

The application condition selects, from all of the code
entities in a system, which ones are candidate to change. In
MYWEBMARKET example, the condition selects all the classes
that depend on Hibernate. On the other hand, the sequence
of operators is ordered because transformation operators are
dependent from each other [21].

Additionally, each application condition describes one or
more bound variables. These variables are not directly defined
in the pattern, but they are necessary to the application of the
transformation operators. In this example, the transformation
pattern has three bound variables: (i) the class C in the
application condition, and (ii) the method M and (iii) the set
of statements S, both defined in the internal condition.

Transformation pattern is very similar to the definition of
level three operators of Javed et al. [11]. It differs from their
definition because we also consider an application condition,
and a transformation pattern impacts several interconnected
entities, in contrast with a transformation operator that con-
cerns one or few entities. The condition was inspired from
most pattern definition approaches (see Section II). Transfor-
mation pattern also differs from the mentioned approaches
in the sense that transformation patterns also consider level
two operators. Finally, in this paper we do not propose
another language to define transformation patterns. We used
the notation of Pattern I to better understand the pattern.

B. Properties of Transformation Patterns

We define three important properties of a transformation
pattern. These properties highlight the need of study, docu-
mentation and automation of the patterns. The properties are
described as follows and they are evaluated on real patterns
in Section IV.
Frequency denotes the number of occurrences of the pattern.

Naturally, following the definition of “pattern”, this prop-
erty is the most evident.

Complexity relies on two attributes. The number of operators
concerns how many transformation operators have to be
repetitively applied. Moreover, the number of bound vari-
ables concerns how many entities have to be considered
in each repetition of the pattern. In our study, we found
patterns that are not very frequent, however they are
rather complex.

Recurrence relates to the occurrence of a pattern on several
revisions of the system. This indicates that manually
applying the pattern is rather complex, either because
of the identification bound variables or because of the
number of operators.

Finally, it must be reinforced that, contrary to refactorings,
we do not impose the behavior preservation of the source
code. We observed that such repetitive transformation usually
makes sense in the context of punctual effort to improve
the organization of a system, e.g., a rearchitecting. It seems
less likely that patterns can be found in normal, day-to-
day, maintenance activity. Therefore, one must expect and
accept that the code will pass through an unstable state.
Moreover, we do not worry at this point with the automation
of these patterns. Up to now we use the definition illustrated in
Section III-A to describe the patterns we found in Section V.

IV. EVALUATION

In this section we specify some research questions that need
answering to show the interest of working with transformation
patterns. We also present the real world systems which are
subjects of our study.

A. Research Questions

To assert the interest in studying what we call transforma-
tion patterns, we need to consider some questions that will
be listed here. The next sections will be devoted to answering
them on a set of real world systems.
RQ1 Can we identify instances of transformation patterns in

other systems? This is an obvious question, as the concept
should have some generality to be of any interest.

RQ2 Are transformation pattern applied to all the transfor-
mation opportunities? We intend to investigate whether
the patterns are applied to all the entities they are sup-
posed to. This question relates to the frequency property.

RQ3 Are transformation patterns applied accurately? We aim
to analyze whether all the transformation operators that
we identified as part of the transformation patterns were
performed in each instantiation we found. This question
relates to the complexity property.

223



RQ4 Are transformation patterns applied over several revi-
sions of the system? This question relates to the recur-
rence property.

We describe our case study as follows. We now present our
dataset. Section V answers RQ1 by presenting the patterns we
found. Then Section VI deals with research questions RQ2
to RQ4. Note that we will not formalize further our research
questions (formal hypothesis) or formally test them. All is
required at this stage of the research is proof of existence.

B. Target Systems

The dataset is based on previous work with large
restructurings of real software systems [27]. We added to this
list systems that have undergone a restructuring effort in our
research group. In total, we have four Java systems and five
Smalltalk systems, and we list them as follows:
ECLIPSE went through a considerable modularization to inte-

grate the OSGi technology. We studied the user interface
plugin, which was separated into five new plugins in the
version 3.0 and the followings.

JHOTDRAW is a framework for technical graphics. Its rearchi-
tecting dedicated in specializing the interface of color
spaces.

MYWEBMARKET is a toy e-commerce system. Its rearchitect-
ing concerns the application of Factory pattern and it is
presented in Section III.

VERVEINEJ is a small parser for static analysis of Java pro-
grams based on JDT (ECLIPSE plugin for Java). It went
through a small rearchitecting of the AST visitors in the
early phase of its development.

PETITSQL is another parser, for SQL. Its rearchitecting fo-
cused on correcting API usage of the grammar.

PETITDELPHI is a parser for Delphi that has been enhanced
to generate an AST from a tokenized tree. The developers
restructured it in order to prune the generated AST nodes.

PACKAGEMANAGER is a package management system for
Pharo.4 Its rearchitecting focused on changing the
interface to access package metadata.

VERVEINEJ, PETITSQL, and PETITDELPHI are systems in
which one of the authors of this paper participated in the
past (we come back on this point in the Threats to Validity
in Section V-F). It must be noted that this pattern occurred
before our study and it was not in influenced by the current
analysis. For all of the aforementioned systems, we found
examples of transformation patterns. We must report that we
studied two other systems for which we could not identify
any patterns matching our definition:
GENETICALGORITHMS is a small project that applied a spe-

cific type of genetic algorithm (e.g., NSGA-II). It was
refactored to allow different implementations of selection,
crossover, and mutation algorithms.

TELESCOPE is a visualization framework for Smalltalk. It
went through series of refactorings to specialize visual-
ization builders.

4http://pharo.org/

Table I summarizes descriptive data about our dataset.

TABLE I
SIZE METRICS OF OUR DATASET. EACH LINE DESCRIBES A

REARCHITECTING BETWEEN TWO VERSIONS. METRICS ARE SHOWN IN
PAIRS (BEFORE AND AFTER THE REARCHITECTING). THE FIRST FOUR

SYSTEMS ARE IN JAVA, THE LAST FIVE ARE IN SMALLTALK. SYSTEM IN
ITALICS ARE THOSE FOR WHICH WE DID NOT IDENTIFY TRANSFORMATION

PATTERNS MATCHING OUR DEFINITION.

Packages Classes KLOC

Eclipse-UI 2.1 / 3.0 68/118 2253/3329 185/277
JHotDraw 7.4.1 / 7.5.1 39/41 614/665 59/66
MyWebMarket 0.1 / 1.0 1/3 19/25 1/1
VerveineJ 0.77 / 0.87 2/2 8/7 4/5

PetitDelphi 0.210 / 0.214 7/7 313/296 8/9
PetitSQL 0.34 / 0.35 1/1 2/2 0.3/0.4
PackageManager 0.58 / 0.59 2/2 117/120 2.5/2.3
GeneticAlgorithms 0.1 / 0.6 1/3 15/20 0.5/0.6
Telescope 0.219 / 0.272 7/10 43/49 1.5/1.4

Because our method for identifying transformation patterns
is purely manual, we do not claim that there are no patterns in
GENETICALGORITHMS and TELESCOPE. Extracting transforma-
tion patterns from code change history is not an easy task. We
do not see this fact as a serious threat. We did not claim that the
use of transformation patterns is inherent to the rearchitecting
process, but only that it can happen. In fact, the existence of
patterns in most of the systems in our analysis is not a rare
condition. In our study, so far we showed that seven out of
the nine systems we studied presented some patterns.

V. THE PATTERNS (RQ1)

This section describes the patterns we identified for the
systems under analysis, answering the research question RQ1.
We describe them using the format we proposed in Section III,
i.e., a condition followed by a list of transformation operators.
Due to space constraints, we decided to describe the patterns
with the highest complexity (i.e., number of transformation op-
erators) or the highest frequency (i.e., number of occurrences).
At the end of the section, we discuss some possible threats to
the validity of this study.

A. Eclipse

In ECLIPSE, we identified a pattern related to modularizing
the Action hierarchy. In order to conform to OSGi architec-
ture, ECLIPSE components are separated as plugins. Most sub-
classes of Action were moved from the workbench plugin to
the ide one. Because of that, the class WorkbenchMessages
is not accessible in the new plugin. All of the invocations to
methods of this class are therefore replaced by invocations to
methods of a new class, called IDEWorkbenchMessages.

We see in this example a complex transformation pattern.
It consists of four operators that impact two classes in each
sequence of operators (e.g., C and IDEWorkbenchMessages).
All the more, this pattern was applied to 26 classes which

224



PATTERN II
ECLIPSE’S (FIRST) TRANSFORMATION PATTERN

Context: Action reorganization and registration
Applied to: 26 classes.
Condition: ∃ class C ∈ ui.workbench

that extends jface.Action

1. move class C to plugin ui.ide
2. ∃ methods M ∈ C, MW ∈ WorkbenchMessages

and M invokes MW

3. add a static method M ′
W to IDEWorkbenchMessages

4. copy the statements of MW () to M ′
W ()

5. replace the invocation to M ′
W in method M

by an invocation of IDEWorkbenchMessages.M ′
W ()

seems a high number enough to justify some effort in au-
tomating it. This pattern illustrates a situation that we found
often: some transformation patterns have internal conditions.
We will come back to this point in Section VII.

In ECLIPSE, we found another transformation pattern related
to the use of the SafeRunnable abstract class. The pattern
consisted in discovering all classes that extend SafeRunnable
and override the method handleException(), and remove
these overriding methods. The pattern is not listed here be-
cause it is very short (only one operator). However, it was
applied to 72 classes in different versions, most of them
anonymous classes which are hard to manually inspect. We
come back to this discussion in Section VI-C.

B. JHotDraw

The rearchitecting in JHOTDRAW was applied to color spaces
hierarchy, which extends AWT. All ColorSpace classes must
implement a new interface called NamedColorSpace, which
has only one method, called getName. The transformation also
includes the use of a Singleton design pattern (lines 3–6). It
is worth noting that this pattern impacts not only the class
extending ColorSpace but also all the classes that instantiate
this class (because of the application of the design pattern in
lines 5–6). We come back to this pattern in Section VI-B.

PATTERN III
JHOTDRAW’S TRANSFORMATION PATTERN

Context: Defining new interface for color spaces
Applied to: 9 classes.
Condition: ∃ class C that extends ColorSpace

1. add interface NamedColorSpace to C
2. add a method getName() in C
3. add a private attribute instance in C
4. add a static method getInstance() in C
5. ∃ method M that invokes new C()
6. replace new C() by call to C.getInstance()

C. PetitSQL

PETITSQL features two classes (ASTGrammar and
ASTNodesParser) the second inheriting from the first.
A treatment is done by calling methods of the subclass
which could return collections of elements. Some of these

elements have to be filtered out in the treatment. Before the
transformation, this treatment was done by calls to a filtering
method on the collection in ASTNodesParser.5

It was estimated that this implementation made the code
hard to understand and it was best to do the filtering in-
dividually in each rule of the subclass with an already
existing withoutSeparators() method. Thus, calls to
withoutSeparators() are added in the subclass methods,
and the use of the filtering methods on collection is removed.

PATTERN IV
PETITSQL’S TRANSFORMATION PATTERN

Context: Fixing Parser API usage
Applied to: 6 methods.
Condition: ∃ method MP ∈ ASTNodesParser

and ∃ method MG ∈ ASTGrammar
and MP invokes MG

and MP then invokes Collection.filter()

1. override MG in ASTNodesParser (called M ′
G here)

2. put a call to super in M ′
G

3. add a call to withoutSeparators() in M ′
G

4. remove call to filter() in method MP

This pattern is applied only six times and impacts only one
class (e.g., ASTNodesParser). However, the pattern has a
complex application condition, with two bound variables that
depend on each other. Some automation would significantly
avoid errors from the developer due to checking the condition
manually.

D. PetitDelphi

For each grammar rule defined in PDDelphiSyntax, PE-
TITDELPHI systematically creates a node in the resulting AST
in subclass PDDelphiParser. When a rule is a disjunction of
other rules (e.g., a Type is either a Class or an Interface), the
rule causes the creation of two nodes in the AST: (i) one for the
choice (TypeDeclaration) and (ii) a unique child for the actual
node (which is either a Class- or an InterfaceDeclaration).

This AST generation was considered undesirable and the
whole infrastructure was modified to suppress the creation
of the intermediary node (TypeDeclaration). The pattern then
removes the method which creates this node in the subclass
and the class representing the node (line 1).

PATTERN V
PETITDELPHI’S TRANSFORMATION PATTERN

Context: Prune AST node hierarchy
Applied to: 15 methods.
Condition: ∃ method M ∈ PDDelphiSyntax

and M is a disjunction of other rules

1. remove the method M in PDDelphiParser
2. ∃ class C that M instantiates (new C())
3. remove the class C

5Similar to Collection2.filter() of the Google guava library: http://docs.
guava-libraries.googlecode.com/git-history/release/javadoc/index.html

225



This pattern is not complex in itself. It removes the method
and the class that represents the intermediary node. In spite
of that, the pattern is difficult to apply entirely due to the
difficulty of finding all the instances of disjunction rules.

E. PackageManager

In PACKAGEMANAGER, packages are represented as data
objects extending PackageSpec. The developers decided that
packages should not be modified with setter methods. Other
classes are also affected, such as PackageVersion and
Dependency. In this system, we found four transformation
patterns, all of them are related to the same modification. We
describe the most frequent pattern in this section.

In this pattern, all subclasses of PackageSpec have a
method (e.g., dependencies) which calls setter methods that
were removed. This method should now create an array and
represent the dependencies as associations between the name
of the package and its corresponding version.

PATTERN VI
PACKAGEMANAGER’S TRANSFORMATION PATTERN

Context: Correcting package usage
Applied to: 66 classes.
Condition: ∃ class C that extends PackageSpec

and ∃ method M in C named ’dependencies’

1. add statement creating an instance A of Array
2. ∃ statement S in M and M:

calls PackageVersion»addDependency: with param. P
and calls Dependency»addConstraint: in cascade

3. remove S
4. create association E with parameters P and self»version
5. create statement adding E to A
6. add statement returning A

The remaining patterns follow the same idea. The second
pattern decomposes the method platform in PackageSpec

in two methods, changing calls to setter methods to an array
with a string (with 19 occurrences). The third make similar
changes to methods repositories of the same hierarchy
(64 occurrences). And finally, the fourth pattern update calls
to setters to class Dependency in classes that do not extend
PackageSpec (7 occurrences).

Summary: We identified instances of transformation patterns
in seven out of nine systems. These systems use two different
programming languages, and our study analyzed only one
specific version of each system. We identified more than one
pattern in two of these systems.

F. Threats to Validity

Some additional points need to be made to clarify the
validity of this first investigative study. Considering that we
analyzed only one instant of each system’s change history
(referent to their rearchitecting), identifying transformation
patterns in these systems is a very positive result. Moreover,
these systems use different programming languages which
ensures a wider applicability of our results. On the other hand,
four points need to be discussed further.

First, the authors were among the developers in three of
the systems under analysis. We selected these systems because
discovering transformation patterns in unknown system is very
difficult. Similar code change mining approaches have the
same challenge [31, 32]. The fact that some of us knew three
rearchitecting cases was indeed a big help. But this fact does
not alter the validity of the results because the analysis of
rearchitecting cases was post-mortem. The patterns occurred
before this study and our participation in the development only
helped us to re-discover them.

Second, the dataset is over-represented by parsing tools.
This point is related to the previous one because both concern
the same three systems. Although three out of nine systems
under analysis belongs to parsing domain, not all of the
transformation patterns we found are specific to such domain.
For example, in VERVEINEJ, the pattern is related to the use
of a Visitor design pattern, which can apply to domains other
than parsing. In PETITSQL, the pattern is related to better use
the API to filter a collection which again is independent of
the parsing domain. It does not seem that this point should be
a threat to validity. However, it is important to have a more
replicable approach to identify transformation patterns in other
domains (see also Section VII).

Third, most of our systems are small. We acknowledge this
is the biggest threat in this study. This point may bias both
for and against our general claim that transformation patterns
happen and their automation is needed. It biases against our
claim because, as exemplified with VERVEINEJ, the less entities
a system has, the less occurrences a pattern will present. The
pattern in VERVEINEJ showed only three occurrences in two
(out of eight) classes of the system. The much larger ECLIPSE

has patterns with 26 and 70 occurrences. On the other hand, the
point biases in favor to our claim because one might suppose
it is easier to systematically apply some transformations in a
system when this system is small and well-known (see also
Section VI-A). As a first result, the patterns in ECLIPSE and
PACKAGEMANAGER seem to indicate that the size of the system
is not an issue.

Fourth, there seems to be a correlation with presence or in-
troduction of known design pattern in our transformation pat-
terns. This point is exemplified in the very first transformation
pattern we presented (MYWEBMARKET, Section III), which
introduces the Factory design pattern. Other examples occur
in VERVEINEJ (Visitor) and JHOTDRAW (Singleton). Indeed,
repeated code modification can be based on the introduction
of a design pattern. In these systems, this introduction helped
us to identify and describe their transformation patterns. How-
ever, we observed that the patterns are not limited to the design
pattern definition. For example, only three out of five operators
of JHOTDRAW’s transformation pattern are concerned with the
Singleton design pattern. There are additional modifications
which make the transformation pattern more system specific
than the design pattern.

226



VI. RELEVANCE OF THE TRANSFORMATION PATTERNS

Research questions RQ2 to RQ4 are intended to evaluate
whether the transformation patterns we identified would have
enough relevance to justify extra effort to automate them
in some way. We discuss these questions according to the
properties we defined in Section III. After that, we discuss
some threats to the validity of this evaluation in Section VI-D.

A. Are Transformation Patterns Applied to all the Transfor-
mation Opportunities? (RQ2)

The analysis consisted in applying the condition we set for
the transformation pattern to the entire system, and count how
many entities the condition matched. Then, we count the num-
ber of occurrences of the pattern and compare to the preceding
value. The expectation is that developers, in lack of special tool
to help them, might have forgotten some possible application
opportunity. For consistency reasons, more specifically with
RQ3, we counted as occurrences cases where the patterns were
not accurately applied. Because this condition is defined by
ourselves, we will come back to this evaluation in the threats
to validity. The results are summarized in Table II.

TABLE II
NUMBER OF POSSIBLE OCCURRENCES OF THE TRANSFORMATION

PATTERNS AND NUMBER OF ACTUAL OCCURRENCES. THE NUMBER OF
OCCURRENCES IN PARENTHESIS IS THE NUMBER AFTER THE FIRST

REVISION (SEE ALSO RQ4)

Transformation Entities matching Pattern
patterns condition occurrences

Eclipse (first) 34 26
Eclipse (second) 86 (70)72
JHotDraw 9 9
MyWebMarket 7 7
PackageManager (first) 66 66
PackageManager (second) 19 19
PackageManager (third) 64 64
PackageManager (fourth) 7 7
PetitDelphi 19 (15)19
PetitSQL 6 6
VerveineJ 3 3
Average 29 27

The patterns in JHOTDRAW, MYWEBMARKET, PETITSQL,
and VERVEINEJ were applied in all the opportunities. These
are also the patterns with the least frequency. It seems natural
that with so little potential occurrences, the developers had less
difficulties in identifying them all. However in PACKAGEMAN-
AGER, all the patterns were totally applied and most of them
are very frequent. This fact is due to the modification that
motivated the pattern. The deletion of setter methods broke
the code, therefore the developers had to systematically correct
the system to make it run again.

For ECLIPSE and PETITDELPHI, we found some possible
occurrences that were not applied initially in the first revision,
even for the small PETITDELPHI. In this later case, the devel-
oper confirmed that the condition for the pattern is correct
and that they were aware of the missing occurrences at the
time of the transformation. However, it was not part of the

restructuring effort they were conducting and therefore they
chose to leave it for some latter work. They actually ended up
applying all the possible occurrences of the pattern. This case
relates to RQ4 and we come back on it in Section VI-C.

Summary: The transformation patterns were not always ap-
plied to all the opportunities in which the condition matched.
When the patterns covered all the opportunities, this fact was
due to their low frequency, or because the pattern consisted
of a systematic and corrective task.

B. Are Transformation Patterns Applied Accurately? (RQ3)

In this section we investigate whether the patterns, when
applied, included all the transformation operators. We expect
that a pattern may not be accurately applied because it is
complex (as defined in Section III). For this matter, Table III
summarizes the number of operators and bound variables in
the transformation patterns we identified in this study.

TABLE III
NUMBER OF TRANSFORMATION OPERATORS (AS DESCRIBED IN

SECTION V) AND NUMBER OF BOUND VARIABLES

Transformation Number of Number of
patterns operators bound variables

Eclipse (first) 4 3
Eclipse (second) 1 1
JHotDraw 5 2
MyWebMarket 5 3
PackageManager (first) 5 4
PackageManager (second) 9 6
PackageManager (third) 4 4
PackageManager (fourth) 2 2
PetitDelphi 2 2
PetitSQL 4 2
VerveineJ 2 2

Most of the patterns have relatively few bound variables. For
example in PACKAGEMANAGER, the variables are very related
to each other (e.g., a statement S that calls a method M with
a parameter P). This pattern has five operators.6 Overall, we
found that most of the patterns were accurately applied. This
was obvious for patterns such as the second of ECLIPSE.

However, the patterns were not consistently applied in
ECLIPSE (first) and JHOTDRAW. Based on Table III, these
patterns were not the most complex of the dataset. Therefore, it
does not seem to exist a relationship between their complexity
and the fact that some of their operators were not applied.
Specifically for the number of operators, we cannot draw the
same conclusion because operators can be level two operators.

The first pattern in Eclipse was applied to 26 classes in ver-
sion 3.0 (see Pattern II), so line 1 of the pattern was always ap-
plied. However, one class (SelectionListenerAction) did
not apply the lines 3 to 5. We checked the code and found that
this class did not have invocation to WorkbenchMessages in
the first place. Therefore, the internal condition of the pattern
(line 2) is not met and the rest of the pattern is ignored. For
this reason, we consider that this pattern was applied entirely.

6See Pattern VI, as defined in line 1 and lines 3 to 6.

227



For JHOTDRAW (see Pattern III), none of the changed classes
implement the Singleton design pattern accurately (lines 3 to
6). All of them missed changing the constructor accessibility
to private. Because of that, there are still direct instance
creations (new) to three of these classes. This fact means that
both the design pattern (Singleton) and the transformation
pattern were not applied accurately.

Still in JHOTDRAW, we also found that two classes do not
implement the Singleton pattern at all. These classes do not
have the unique instance of the class (Pattern III, line 3) and
the method that returns this instance (line 4). Moreover, one
more class does not extend NamedColorSpace (line 1). There
is no instantiation of these three classes in the project. It is
possible that these classes are not considered as “active” and
should be removed from the system in the future.

Summary: In some of the patterns, not all of their operators
were applied. It does not seem to exist a correlation between
this fact and the complexity metrics we proposed.

C. Are Transformation Patterns Applied over Several Revi-
sions? (RQ4)

Finally, we investigate whether the patterns were applied
over several releases. Except for ECLIPSE and PETITDELPHI,
all of the patterns were applied in one revision. As discussed
in Section VI-A, (i) the patterns with least frequency were
applied in one revision, which is expected; and (ii) the patterns
in PACKAGEMANAGER had to be performed at once because
previous modification introduced error in the code.

The first pattern in ECLIPSE was initially applied in 26
classes at the first revision. This pattern consisted in moving
Action classes to another component and replacing invoca-
tions to a new class of this component (see Pattern II). Between
versions 3.2 and 3.3, a total of 28 Action classes were added
in the ide component. Naturally, these classes did not have to
replace invocations to the class modified by the pattern (line 5)
because they invoke this class directly. We did not succeeded
in obtaining a condition for this continuous addition. This
addition shows that the result of this pattern continued to be
observed even when the pattern itself was not applied anymore.

Table IV describes the revisions under analysis in ECLIPSE

and PETITDELPHI. For each revision, we count the number of
entities that applied the pattern, accurately (see RQ3) or not.

TABLE IV
SELECTED REVISIONS OF TWO SYSTEMS WITH THE NUMBER OF

OCCURRENCES OF A TRANSFORMATION PATTERN FOR EACH

System #Rev. Date Occurrences
3.0 06/25/04, 12:08 70
3.1 06/27/05, 14:35 71

Eclipse 3.2 06/29/06, 19:05 72
(second) 3.3 06/25/07, 15:00 72

3.7 06/13/11, 17:36 72
210 11/19/14, 14:52 15
211 11/19/14, 18:56 17

PetitDelphi 212 11/26/14, 18:17 18
213 12/03/14, 18:23 18
214 12/22/14, 15:55 19

For both systems, the transformation patterns took around
five revisions to be applied. This fact in itself already confirms
our research question. The revisions in PETITDELPHI extended
over one month, in which its restructuring effort demanded
four hours per week. The second pattern in ECLIPSE consists
in a single operator (remove an overriding method). Although
modern IDE’s like ECLIPSE have facilities that would allow
one to discover all the possible candidates for applying the
transformation patterns (e.g., searching all references to the
SafeRunnable class), it took two years to go from 70 to 72
occurrences, and after seven years, there were still 14 (86−72,
see also RQ2) opportunities left.

Summary: Some transformation patterns were applied in not
one but several revisions.

D. Threats to Validity

Some points need to be discussed about the validity of
this study on transformation patterns. The evaluation of RQ2
depends on the condition attached to the patterns and whether
this condition covers entities that were not actually trans-
formed. Because in many cases, the condition was identified
by us, there is always a risk that we overlooked some detail
and that the condition we defined is too extensive.

In PETITDELPHI for example, the condition was not clear
until the author who participated in the development helped to
define it correctly. Even so, we have for this system, concrete
example of not applying immediately all the opportunities,
because the developers wanted to focus on a specific part of the
system at a given moment. For ECLIPSE (second pattern), there
are also cases in which the pattern was not applied initially,
and the developers came back to it later.

In RQ3, we found very little occurrences of a transformation
pattern not accurately applied. Similarly, in two out of three
cases in RQ4, the patterns were either slightly recurrent or not
recurrent at all. This result might be caused by characteristics
of these system specific patterns or a consequence of our iden-
tification methodology. Because we had to reverse engineer the
patterns from changes, our attention was obviously drawn to
the more regular patterns with more occurrences. Therefore,
because of this setting, it is possible that we just did not
identified actual patterns that were not accurately applied.

VII. FUTURE WORK

We showed that transformation patterns actually appear in
real world systems. They can be very simple or more complex,
with few or many occurrences. In this section, we consider
what could be done to help developers in using them.

A. Transformation Pattern Identification

In this study, the patterns were identified manually. This
process was done in three steps. First, we automatically
compute changes between two versions of a rearchitecting in
term of level one operators (e.g., added, deleted, or modified
lines). This process was done using the diff calculator provided
by ECLIPSE for Java systems and the TORCH tool [10] for
Smalltalk systems. Second, we manually analyze the set of

228



transformations to identify repeating groups that could be
the seed for candidate transformation pattern. For example
in ECLIPSE (second), we found that several methods with the
same name were removed. And third, we identify the condition
by inferring common properties in the entities we found in the
previous step. In the same example, we noticed that all the
changed methods belonged to classes in the same hierarchy.

This process is tedious due to the huge size of the list of
changes, and it is error prone because the condition might
relate to a wide range of properties of the changed entities.
There is existing work on mining similar code transformations
to discover patterns from these transformations [12, 14, 20, 25,
31, 32]. However, none of these approaches seems yet to be
able to discover patterns matching our definition. Specifically,
they lack identifying an application condition in order to check
other application opportunities. As discussed in Section V,
identifying the right condition is very complex. In some cases,
we had to ask the developers to understand and define the
right condition. Some automated support in this context is too
complex and it is therefore discarded for future work.

B. Transformation Pattern Definition

As identified in this paper, the developers already applied
the transformation patterns manually. Therefore, the definition
of these patterns might be useful to identify other possible
application opportunities. Moreover, one might envision a sce-
nario in which the developer perceives the repetitive sequences
of actions during the rearchitecting process. In both cases,
a clever tool would offer the developer support to define a
pattern and apply it total or semi automatically.

We discussed in Section II different approaches to define
and apply transformation patterns. First, approaches based on
code examples take one or few examples of code modification
and extract patterns from them. However, these approaches
rely on simple and localized operators. We identified patterns
which constituting operators are more general and involve
different code entities at once. Second, approaches based
on Domain Specific Language (DSL) rely on a language to
express both conditions and transformation operators [18, 30].
However, the language limits the set of transformation opera-
tors to compose. Moreover, the complexity for the developer
is increased (i.e., to learn another language), whereas rearchi-
tecting is an occasional and already time-consuming process.

We introduce the idea of a “macro recorder”, a tool which
would allow the developer to (i) record a sequence of trans-
formations while they are applied a first time, either manually
or with the assistance of refactoring tools; (ii) store and
parameterize the transformations to allow the generalization of
the pattern (see next section); and (iii) apply automatically the
sequence of transformations afterwards on different entities.
For the last step, the developer could explicitly point to the
entities to transform or specify an application condition.

Such a tool would have three main contributions. First,
a transformation pattern is build by gradual composition
of smaller transformations. The developer knows what each
recorded transformation is doing. This contribution addresses

the trust of such automated support. Second, the developer
configures the pattern upfront. As opposed to code example
approaches, the recorder knows the exact operators and in what
order they need to be applied. And third, the approach does
not force the developer to know a limited set of transformation
operators, as opposed to DSL approaches. Manual, level one
operators could also be supported.

C. Pattern Parameterization

In our study we observed that most patterns have few bound
variables. Moreover, most of these variables are related to each
other, i.e., a method which belongs to a class. This is a good
property as it would simplify the work of explaining to an
automated tool how to apply a pattern systematically.

On the other hand, we observed cases in which the sequence
of operators depend on properties that are not easy to express
in a condition. For example, in PACKAGEMANAGER one of the
operators depends on the result of a call to a given method (see
Pattern VI, line 4). In PETITDELPHI, the developers removed
one class (see Pattern V, line 3) based on part of the name
of method that was removed before (in line 1). We extracted
a different condition based on dependencies between these
entities, and this condition had the same outcome as the
previous one. In this context, we also propose to define
parameterizable patterns in order to allow variations in the
operators they include and the entities they modify.

VIII. CONCLUSION

Maintenance is an important activity in the software system
life cycle. It can take several forms such as bug correction,
adding new functionalities or more occasionally substantial
modification of the architecture. During a large maintenance
effort, developers can perform repetitive changes, sometimes
complex either by the number of operators involved or by the
condition to select the right entities to change.

In this paper, we defined transformation pattern as an
application condition and an ordered sequence of source code
transformation operators. We studied several cases of punctual
efforts to rearchitecture real world systems and we showed that
many of them contained some transformation patterns. The
evaluation leads to the conclusion that patterns are really used
in the rearchitecting process. They are language independent
(we studied Java and Smalltalk systems) but system specific.

We also showed that transformation patterns were not
always completely applied on all the entities that should
be transformed, their constituting operators were not always
entirely applied, and patterns were applied over an extended
period of time and several revisions. To identify these patterns
proved to be complex, either to identify the sequence of
operators or to define the correct application condition.

By providing automated support to apply the pattern, the
developers would avoid errors due to their repetitive applica-
tion and their complexity. We end this paper by discussing an
idea of a tool to define transformation patterns based on reuse
of manual transformations. We proposed some research paths
for future work on this issue.

229



REFERENCES

[1] Definition of Pattern by Merriam-Webster dictionary. http://
www.merriam-webster.com/dictionary/pattern. Accessed: 2015-
06-30.

[2] G. Arango, Ira Baxter, Peter Freeman, and Christopher Pid-
geon. TMM: Software maintenance by transformation. IEEE
Software, 3(3):27–39, 1986.

[3] Paris Avgeriou, Michael Stal, and Rich Hilliard. Architecture
sustainability. IEEE Software, 30(6):40–44, 2013.

[4] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich.
DMS: Program transformations for practical scalable software
evolution. 26th International Conference on Software Engineer-
ing, pages 625–634, 2004.

[5] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and
Kevin A. Schneider. Source transformation in software engi-
neering using the TXL transformation system. Information and
Software Technology, 44(13):827–837, 2002.

[6] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall.
Change distilling: Tree differencing for fine-grained source code
change extraction. IEEE Transactions on Software Engineering,
33(11):725–743, 2007.

[7] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] Robert France, Sudipto Ghosh, Eunjee Song, and Dae-Kyoo
Kim. A metamodeling approach to pattern-based model refac-
toring. IEEE Software, 20(5):52–58, 2003.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, 1995.

[10] Veronica Uquillas Gomez, Stephane Ducasse, and Theo
D’Hondt. Visually supporting source code changes integration:
The torch dashboard. In 17th Working Conference on Reverse
Engineering, pages 55–64, 2010.

[11] Muhammad Javed, Yalemisew Abgaz, and Claus Pahl. Compos-
ite ontology change operators and their customizable evolution
strategies. In Workshop on Knowledge Evolution and Ontol-
ogy Dynamics, collocated at 11th International Semantic Web
Conference, pages 1–12, 2012.

[12] Qingtao Jiang, Xin Peng, Hai Wang, Zhenchang Xing, and
Wenyun Zhao. Summarizing evolutionary trajectory by group-
ing and aggregating relevant code changes. In 22nd In-
ternational Conference on Software Analysis, Evolution, and
Reengineering, pages 1–10, 2015.

[13] Miryung Kim and David Notkin. Discovering and representing
systematic code changes. In 31st International Conference on
Software Engineering, pages 309–319, 2009.

[14] Miryung Kim, David Notkin, Dan Grossman, and Gary Wil-
son Jr. Identifying and summarizing systematic code changes
via rule inference. IEEE Transactions on Software Engineering,
39(1):45–62, 2013.

[15] Wojtek Kozaczynski, Jim Ning, and Andre Engberts. Program
concept recognition and transformation. IEEE Transactions on
Software Engineering, 18(12):1065–1075, 1992.

[16] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Optimising
model-transformations using design patterns. In 1st Interna-
tional Conference on Model-Driven Engineering and Software
Development, pages 77–82, 2013.

[17] J. Lawall, B. Laurie, R.R. Hansen, N. Palix, and G. Muller.
Finding error handling bugs in openssl using coccinelle. In 8th

European Dependable Computing Conference, pages 191–196,
2010.

[18] Huiqing Li and Simon Thompson. A domain-specific language
for scripting refactorings in erlang. In 15th International Con-
ference on Fundamental Approaches to Software Engineering,
pages 501–515, 2012.

[19] Slavisa Markovic and Thomas Baar. Refactoring OCL annotated
UML class diagrams. Software and System Modeling, 7(1):25–
47, 2008.

[20] Na Meng, Miryung Kim, and Kathryn S. McKinley. LASE:
Locating and applying systematic edits by learning from exam-
ples. In 35th International Conference on Software Engineering,
pages 502–511, 2013.

[21] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing
refactoring dependencies using graph transformation. Software
and Systems Modeling, 6(3):269–285, 2007.

[22] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black.
How we refactor, and how we know it. In 31st International
Conference on Software Engineering, pages 287–297, 2009.

[23] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. John-
son, and Danny Dig. A comparative study of manual and
automated refactorings. In 27th European Conference on
Object-Oriented Programming, pages 552–576, 2013.

[24] James M. Neighbors. The draco approach to constructing
software from reusable components. IEEE Transactions on
Software Engineering, 10(5):564–574, 1984.

[25] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. Toward
an understanding of bug fix patterns. Empirical Software
Engineering, 14(3):286–315, 2009.

[26] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung
Kim. Template-based reconstruction of complex refactorings. In
26th International Conference on Software Maintenance, pages
1–10, 2010.

[27] Gustavo Santos, Marco Tulio Valente, and Nicolas Anquetil.
Remodularization analysis using semantic clustering. In Con-
ference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pages 224–233, 2014.

[28] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and
Roberto S. Bigonha. Recommending refactorings to reverse
software architecture erosion. In 16th European Conference
on Software Maintenance and Reengineering, pages 335–340,
2012.

[29] Mohsen Vakilian, Nicholas Chen, Roshanak Zilouch-
ian Moghaddam, Stas Negara, and Ralph E. Johnson. A
compositional paradigm of automating refactorings. In 27th
European Conference on Object-Oriented Programming, pages
527–551, 2013.

[30] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL:
a scripting language for refactoring. In 28th International
Conference on Software Engineering, pages 172–181. ACM
Press, 2006.

[31] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C.
Chu-Carroll. Predicting source code changes by mining change
history. IEEE Transactions on Software Engineering, 30(9):
574–586, 2004.

[32] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung
Kim. Interactive code review for systematic changes. In 37th
International Conference on Software Engineering, pages 1–12,
2015.

230


