
Autumn Leaves: Curing the Window Plague in IDEs
Accepted at WCRE 2009

David Röthlisberger
Software Composition Group

University of Bern, Switzerland

Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland

Stéphane Ducasse
INRIA-Lille Nord Europe

France

Abstract—Navigating large software systems is difficult as
the various artifacts are distributed in a huge space, while the
relationships between different artifacts often remain hidden
and obscure. As a consequence, developers using a modern
interactive development environment (IDE) are forced to open
views on numerous source artifacts to reveal these hidden
relationships, leading to a crowded workspace with many
opened windows or tabs. Developers often lose the overview
in such a cluttered workspace as IDEs provide little support to
get rid of unused windows. AutumnLeaves automatically selects
windows unlikely for future use to be closed or grayed out while
important ones are displayed more prominently. This reduces
the number of windows opened at a time and adds structure
to the developer’s workspace. We validate AutumnLeaves with
a benchmark evaluation using recorded navigation data of
various developers to determine the prediction quality of the
employed algorithms.

Keywords: development environments, software navi-
gation, developer activity analysis, productivity, program
comprehension

I. INTRODUCTION

Object-oriented language characteristics such as inheri-
tance and polymorphism can lead to conceptually related
code being scattered over many different source artifacts [4],
[22]. This can lead to an unfocused, undirected navigation
of the source space. Empirical experiments have shown that
during a one day coding session, developers browsed 95%
of all visited methods more than once [16]. These navigation
difficulties become obvious in an IDE where developers are
forced to open many windows or tabs in order to locate
entities of interest. IDEs do not show how these windows are
related to each other, thus developers are often confronted
with an immense number of independent, allegedly unrelated
windows or tabs to reason about [3]. It is unclear which win-
dows are still important and which ones have been opened
to explore a branch of the navigation space not leading to
the final goal. Thus developers are usually uncertain when a
window will not be used anymore and are thus not willing to
take the risk of closing windows potentially needed in the
future [21]. As a result, the workspace becomes cluttered
with too many windows.

However, having many windows open at a given moment
negatively impacts navigation efficiency as developers have
to spend more time locating the window of interest and as
they need to keep a larger, more complex mental map of

the content and purpose of each open window. Thus it is
clearly desirable to have a minimal set of open windows
at any point in time, which is likely to reduce time to
navigate and maintain the working set of artifacts. However,
it is challenging to determine this minimal set, that is, the
windows containing relevant, important content useful for
the current problem to be solved by the developer.

As navigation is an important prerequisite to program
comprehension, improving source space navigation in the
IDE is an important step to better understand and reverse
engineer applications while they are being developed and
maintained [21], [3], [10]. Literature reports that developers
spend up to 35% of their time navigating software [11] and
up to 60% is spent with program comprehension activities
in general [1], [2].

In this paper we propose AutumnLeaves, an enhancement
for IDEs such as Eclipse or Smalltalk to automatically close
windows unlikely to be used in the future. To achieve this
goal AutumnLeaves determines the likelihood of a window’s
content to be of use to the developer by relating it to all other
opened artifacts. If for instance a window contains a class, a
window showing a related class (such as a super- or subclass)
or a method of this class is related to the first window.
AutumnLeaves assigns to every open window a weight that
will be increased upon every navigation action in the same
or any other window that is related to the content showed in
this window. This weight allows AutumnLeaves to identify
those windows that have no references or only weak ones
to the current development task performed by the developer.
Windows with relatively little weight are steadily grayed out
until AutumnLeaves closes them automatically (optionally
by asking the developer for confirmation beforehand). This
closing action occurs when the weight of a window com-
pared to all other weights drops below a certain threshold.
AutumnLeaves thus acts as a garbage collector for windows
to mitigate the window plague with which developers are
typically confronted in modern IDEs.

The research question addressed in this paper is how
to model hidden references between the various windows
opened in a development session to be able to generally
determine the importance of windows and in particular to
identify futile, unused windows, similar to the way a garbage
collector locates and terminates unreferenced objects. How
should we model references between very different windows



used in software development (code, debugger, inspector, or
references windows) and how to represent importance of
windows and changes in importance during a development
task?

This paper addresses these questions by first reporting on
the plague of too many opened windows in software devel-
opment in Section II. Second, we introduce AutumnLeaves,
our proposal to model window references and to detect
obsolete windows in Section III. We validate AutumnLeaves
in Section IV concerning correctness and practicability by
conducting a benchmark validation based on 25 recorded
development sessions. We analyze theses sessions to deter-
mine whether AutumnLeaves correctly closed a window or
whether the developer used this window after AutumnLeaves
would have closed it. Section V discusses differences be-
tween common window management techniques employed
in IDEs. Section VI reports on related work in the field
of easing navigation of the source space in IDEs. Finally,
Section VII concludes the paper and reports on future work.

II. WINDOW PLAGUE IN IDES

Most software systems spread their functionality over
multiple source artifacts. Even reasonably sized systems con-
tain several hundreds of these artifacts (classes, methods).
Depending on the programming language these artifacts are
contained in files (for instance in Java or C/C++) or are
directly accessible as objects in languages such as Smalltalk
[7]. In any case, developers navigating these artifacts in
modern IDEs such as Eclipse [5], a Smalltalk IDE [7] or
any other environment, usually view and navigate source
entities by opening windows or tabs. Normally one window
or tab only shows one single source entity at a time.

As soon as a window has been opened to view an artifact,
it is unclear whether and how long this view is required to
complete the development task. Thus developers are usually
reluctant to quickly close windows, instead they keep the
views on the artifacts open as they fear to not be able to
easily recover these views once closed. As a consequence,
they open more and more windows, in particular when
working on complex, object-oriented applications whose
code is scattered over many different artifacts in statically
distinct and disperse parts of the code base (for instance, in
multiple packages) [4], [22].

We conducted several small empirical surveys and studies
with developers either working with Java in Eclipse or
with Smalltalk in Squeak [9]. The fundamental difference
between these two IDEs is that Eclipse works on the basis
of files containing Java classes while Squeak contains classes
and methods as first-class entities not stored in files. Squeak
thus supports the direct navigation of methods without first
opening the declaring file and class therein. Eclipse also
employs the concept of tabs (see Figure 1) while in Squeak,
developers open full-fledged windows arranged on a desk-
top. These windows can be moved, resized and minimized

Metric Eclipse Squeak

Number of windows opened 35.84 25.74
Avg. number of open windows 16.68 14.29
Number of windows closed 10.35 12.96
Number of windows opened
and closed shortly thereafter 2.24 4.15
Number of window switches 58.90 38.85
Number of entities revisited 41.64 35.10

Table I
CHARACTERISTIC OF THE WINDOW PLAGUE IN THE ECLIPSE AND

SMALLTALK IDE

and often serve themselves as full-fledged browsers (that is,
they contain the entire package tree from packages down to
methods).

In our empirical studies we analyzed typical development
sessions of developers working on smaller projects (appli-
cations with up to 100 classes of either Java or Smalltalk
code). We recorded the number of opened windows in total,
the average number of open windows (measured in intervals
of five minutes), the number of windows closed, and the
number of windows opened, browsed and closed just after-
wards (without changing focus to another window or tab).
Additionally, we recorded the number of times developers
switched from one window to another and how often they
visited a previously browsed entity again without editing
this entity on re-visit, that is, to just read and understand
it again. The development sessions recorded lasted for half
an hour for each developer. In total we analyzed 22 such
development sessions. Table I reports on the findings of these
studies.

These numbers highlight the fact that developers usually
open many more windows than they close, thus the list of
opened windows steadily grows. This results in an average
number of open windows higher than human beings are
capable to cognitively handle. We can assume that due to
this high number of open windows, developers lose the
overview and their navigation efficiency is hampered. The
high number of window switches or number of entities
visited several times are indications for lost overview and
confusion resulting from being overloaded with plenty of
windows in the development workspace.

As Eclipse employs the concept of tabs and does not use
full-fledged browser windows as Squeak, it is in general
easier to re-find windows in Eclipse as they do not overlap.
However, even in Eclipse the developer usually only sees
between five to ten tabs in the tab bar on the screen. To
access remaining open windows it is necessary to use the
list next to the tab bar (see Figure 1). Developers reported
to us that locating a window of interest in this list is very
difficult and time-consuming. Usually they opt to not use this
window list, but to navigate to the appropriate source artifact
in the package tree and open again a view on it; Eclipse
then automatically opens the window already displaying this
artifact.



Figure 1. Eclipse supports tabbed browsing of the source space, but there is only space for a limited number of tabs; additional tabs are accessible in
scroll list on the right.

A common pattern of most interviewed developers to
deal with the window plague is to let the list of windows
grow until they are completely done with the current task.
Then developers take the time to manually close all or
most windows opened during the task solving process.
Very few developers close windows they consider as not
needed anymore regularly during a task. However, such a
procedure leads to a constantly growing list of windows
clearly hampering navigation efficiency. Developers reported
spending a considerable amount of time whenever they have
to re-locate an open window. Moreover, they are aware
that most windows they have opened become useless over
time, but they are not willing or able to manually close the
windows most likely not to be needed anymore.

III. AUTUMNLEAVES

AutumnLeaves is an approach to overcome the previously
discussed window plague. First we explain the basic princi-
ples behind AutumnLeaves and we report on several design
considerations and variation points. The ultimate goal of
AutumnLeaves is to identify unused windows, that is, autumn
leaves that can fall down from the tree as they are not useful
anymore and push away by the wind.

A. AutumnLeaves in a Nutshell

AutumnLeaves associates a weight to each open win-
dow to indirectly model references between windows. This
weight is increased upon certain user actions. Also the
entities displayed in any window have a weight. This is
necessary to relate entities with windows. If for instance one
window displays a class, another a method or a subclass of
this class, we add in our model an implicit reference between
these two windows based on the entities they show. We keep
the entity weight even if windows containing such entities
are closed. This enables us to re-establish references between
windows when the developer again opens a view on this
entity in a new window.

To identify obsolete, useless windows, the weight of each
window is compared to the average weight of all open
windows. If a window weight is below a certain threshold
of the average weight (defined as 30%), AutumnLeaves
suggests to close the window. This suggestion is visually
displayed by graying out the window or its title bar in case of
tabs. Developers can always decline the automatic closing of
a window, otherwise the window is closed five user actions
after falling below the threshold. Additionally, the current
window weight is steadily displayed in the right corner of

a window to make developers aware of candidate windows
for removal.

The weights (for a complete list see III) and the threshold
are determined by performing a benchmark validation on
recorded data sets of navigation and modification activities
performed by several developers working on various devel-
opment tasks. Section IV reports in detail about this bench-
mark validation. In a nutshell, we assume that AutumnLeaves
performs well if it does close windows not used anymore
later in the recorded development session. According to
that idea, we ran the benchmark on 25 recorded develop-
ment sessions and ultimately selected the best performing
threshold and weights. We had to trade off correctness
(not closing windows used later on) against effectiveness
of AutumnLeaves (measured with the reduction in average
number of open windows) and favored correctness if the
results between two weight configurations were similar. We
have chosen the initial weight configurations (how much
specific actions should increase weight) based on our per-
sonal experience for the importance of actions and varied
the concrete weight around the initially chosen weight for
each action by two weight points up and down.

For the threshold we experimented with all values from
5% to 50% in 5% intervals. We discovered that the effect of
AutumnLeaves, that is, the reduction of number of windows,
drops quickly when lowering the threshold while correctness
remains relatively stable. However, when the threshold raises
above 30%, the correctness value starts to drop fast, hence
we have chosen to close a window when its weight falls
below 30% of the average window weight. This threshold
could be further optimized, but we consider 30% as a
reasonable value.

The weights of all windows are refreshed and checked
against the threshold after each user action. As a user action
we consider opening a window, typing or scrolling in a
window, moving or minimizing windows. To determine en-
tity weights, we additionally consider viewing (“opening”),
creating, modifying, and deleting methods and classes. The
final weight of a window is the sum of its own weight and
the weight of the entity it currently displays. If the displayed
entity is a single method, we also add the weight of its class
to the window weight (only applicable for Smalltalk as we
cannot open views on single methods in Java).

To build references between windows we mostly use the
entities displayed in a window. If we modify a method,
we increase the weight for this entity, but also for the
containing class. We thus propagate weight according to



Action Class Method Propagation

Viewing (“opening”) 3 3 1.5
Modifying 8 10 4
Creating 4 4 2
Removing - - 2

Table II
WEIGHT ADDITION TO SOURCE ENTITIES UPON CERTAIN ACTIONS ON
THE SAME OR DEPENDENT ENTITIES. PROPAGATION MEANS ADDING

WEIGHT TO RELATED ENTITIES, FOR INSTANCE FROM A METHOD TO ITS
CLASS OR FROM A CLASS TO ITS SUPERCLASS.

Action Weight addition

Initial opening 12
Moving 1
Resizing 1
Getting focus 2
Typing in it 8
Visibility (in Squeak also fractions thereof) 1

Table III
WEIGHT ADDITION TO THE A WINDOW UPON CERTAIN ACTIONS ON

THIS WINDOW.

static relationships between source artifacts: From a method
to its class, from a class to its direct superclass and all direct
subclasses, from an inner class to its outer class, from an
interface to all implementing classes. Propagated weight is
always half of the direct weight for the entity: If we add
weight 10 to a method, its class gets 5 points. Table II lists
the different weights for all actions on entities, Table III
for window actions. With these settings we obtained best
results concerning correct identification of unused windows
and reduction of number of windows.

Some IDEs allow developers to hide or overlap windows
with others. In Squeak for instance, windows can overlap
and partially or fully hide windows behind. In Eclipse, only
a limited number of tabs is visible on the screen. Older tabs
are only visible in the drop-down menu to the right of the
tab bar. We consider visible windows to be more important
than hidden ones. Thus we reward fully visible windows or
tabs with an additional weight point after every user action.
In Squeak, we additionally take into account the degree of
visibility, that is, the portion of the window being at the
front on the desktop and add the visible proportion of one
weight point to the window weight on every user action. The
desktop management facility of Squeak allows windows to
be stacked.

To make sure that the weighting mechanism also properly
handles windows in which no navigation actions happens but
that are just selected to view their contents, we increase the
weight of a window by two points when obtaining the focus.
This weight is only given when the developer looks for more
than three seconds at the window to only reward windows
the developer inadvertently selected.

We consider all kinds of windows dealing with entire
source entities, that is, class browsers (showing classes and
methods), debuggers, inspectors, workspaces (for code snip-

pets), list windows (list of class references, method senders
or implementors, variable references, etc.). The window has
to focus on a particular entity, that is, one single class or
one single method. In Eclipse we consider the method in the
center of the source view as the selected method. For Eclipse
views such as the package explorer or the type view we
consider just the selected entity but not other visible entities
close to the selected one. If the entire list shown in a list view
such as the package explorer was considered, we could not
easily identify relations between different windows based on
displayed source artifacts as most windows would be related
to each other when using the entire content of list views.
Other types of windows such as simple text editors, file
browsers, or XML editors are not handled by AutumnLeaves
and will thus never be automatically closed.

B. Variation Points

Pinning of windows. One variation point is a pinning
facility for windows. A window manually pinned by the
developer will never be closed by AutumnLeaves. It will
always stay there even if its weight has dropped below
the threshold. Such a feature is useful for windows serving
as libraries or documentation. Developers might never type
in these windows, maybe not even interact with them, but
still they serve a purpose to show content of interest to
developers, content that is permanently important, such as a
list of constants. Thus the pinning mechanism makes sure
that such reference windows can stay. Developers are free
to pin any kind of windows and as many as they want.
The pinning mechanism also makes sure that the windows
opened for a specific task do not get closed by AutumnLeaves
when interrupting this task to work on something else.
For instance, the pinning could be categorized, so that all
windows for the same tasks can be identified by the pinning
category.

Visibility of windows. In Squeak, windows can overlap
other windows. Thus the visibility of a window, that is,
whether it is fully visible at the front, partially visible
because of other windows covering it, or totally hidden by
other windows, certainly has an influence on the importance
of a window to the developer. We can assume that a fully
hidden window at the end of the stack is less likely to be
used by the developer than a (partially) visible window.
Maybe the developer even forgot about the existence of
such a hidden window. We currently account for this fact by
rewarding visible windows with additional weight points on
each user action, in Squeak depending on the extent of visi-
bility. In Eclipse a tab is either fully visible or fully hidden,
thus a visible window always obtains a full reward point.
However, another mechanism to take into account visibility
could be to check visibility just at the moment Autumn-
Leaves actually suggests to close a particular window. We
defined two thresholds at which windows should be closed:
a higher boundary for hidden or partially hidden windows



(e.g., 40%) and a lower boundary for visible windows (e.g.,
20%). We experimented with both mechanisms and report in
Section IV-A on differences between these two concerning
correctness.

Weighting previously selected entities. Another variation
point is how viewed entities should influence the weight of
a window. In particular in Squeak, developers often navigate
entities directly in particular windows as most windows
provide browser facilities to navigate source code (Eclipse
differs here as its windows only provide local navigation
facilities, for instance scrolling from one method of a class
to the next). Thus the importance of such a window not
only depends on the currently displayed source artifact, but
also on the recent history of therein navigated artifacts. As
Squeak offers means to easily navigate the history of a
browser window, similar to functionality provided by web
browsers, a previously viewed class is still conveniently
accessible from within this window. If this displayed class
is important and many other windows refer to it, then this
particular window should have a higher importance even
when the developer navigates further to a particular method
of this class, as the old viewed entity is still easily accessible
from within this window. We thus take into account in
Squeak not just the currently selected entity, but also the
two artifacts navigated before this entity when computing
the weight of a window. The window weight is thus the
sum of the weight of the window itself and the weights of
the first three entities in the window navigation history. We
have chosen the number three and not more to be able to
react to changes in development focus, for instance if open
windows are reused for a new exploration path, previous
entities should not influence the window weight for too long.

Weights. The weights we have chosen (see Table II and
Table III) are another, important variation point. The rational
behind the currently defined weights is to particularly take
into account the content displayed in windows, that is, the
navigated source artifacts, classes and methods, to be able to
relate different windows to each other. However, as a varia-
tion we can also put more emphasis on actions performed on
the windows themselves, such as the time spent in a window
(for typing, scrolling, or having the focus). The emphasis on
the entities can be further relaxed by not propagating weight
from an entity to related entities (for instance, from a method
to its declaring class). Section IV-A discusses the impact of
weight propagation to related entities.

IV. VALIDATION

In this section we validate our work in two basic direc-
tions: First, we perform a benchmark validation to study the
correctness of AutumnLeaves, that is, whether our approach
correctly identifies candidate windows to be closed. Second,
we report on the practicality of AutumnLeaves, that is, how
developers assess its usefulness in practice, when working
on concrete tasks in their daily work.

A. Correctness

To evaluate the correct and desired functioning of Au-
tumnLeaves, that is, identifying the appropriate candidate
windows for closing, we performed a benchmark validation.
A benchmark validation has the advantage of being easily
replicable, it eases the comparison of results, and can be used
to test a restricted functionality, such as the effect of different
weights on the performance of AutumnLeaves. The same
validation procedure has been used by other researchers to
evaluate similar works such as code completion engines [18].

Procedure. In a nutshell, the benchmarking procedure we
implemented replays a recorded sequence of user interac-
tions occurred in the IDE. After each action, we let Autumn-
Leaves compute the weight of all windows as discussed in
Section III. If the algorithms identify a candidate window
for removal, we look forward in the recorded user actions
whether the developer ever used this window again and if
so, what kind of actions he performed in this window.

In total, we analyzed 25 recorded development sessions of
eight different developers. Each development session lasted
between half an hour and three hours. In these sessions, very
different tasks have been performed in different software
systems. The development sessions used in this evaluation
are not the same as those mentioned in Section II to
make the results more generalizable and less tailored to
the data used to identify the problem we want to solve
with AutumnLeaves. The sessions used for the validation
are longer and more complex in terms of application and
task size than those used in Section II. Also the developers
are different persons, except one developer who contributed
different recorded sessions to this evaluation as well as to
the initial identification of the problem. Most developers
are either graduate or PhD students that worked on var-
ious tasks in research projects. We asked developers that
we personally know to install our recording tool in their
IDE and to submit us recorded sessions of any kind. The
recording tool we implemented instruments the IDE code to
send announcements about all navigation and modification
activities occurring in each window we are interested in. In
this validation benchmark we iterate over all recorded data
sessions to find out for each window when it has been lastly
used. In a second iteration we evaluate after each recorded
action whether AutumnLeaves suggests to close a window
and check whether it has still be used by the developer
afterwards.

The participating developers described us what kind of
tasks they performed in the respective session. From these
descriptions we identified six different task categories: Im-
plementing a new system from scratch (2 sessions), im-
plementing a new feature for an existing application with
which the developer was either familiar (3) or unfamiliar
(4), fixing a defect in a system (7), optimizing a system’s
performance (1), and a pure navigation task to gain an



initial understanding for an unfamiliar software system (8).
A new feature implementing task was for instance to add a
navigation history button showing all previously navigated
source artifacts in the Squeak browser. One navigation task
for example was concerned with determining the classes
responsible for rendering arrowed lines between figures in
a drawing program. Most of the 25 development sessions
stem from development in Squeak, while only a few (three
sessions) originate from Eclipse. The systems on which de-
velopers were working had a size of approximately hundred
up to five hundred classes, except the application that has
been developed from scratch. After evaluating the general
performance of AutumnLeaves we specifically test whether
this performance depends on the nature of the task being
performed in a development session.

The best result for the performance of AutumnLeaves
is certainly if the developer never again used the window
AutumnLeaves suggested to close. Even if he used the
window later on in the recorded activity log, we analyze
how often the window has been used and whether it has
been used to navigate or modify the same or a related entity
(for instance, method or subclass of a class, a class in the
same package of a class, etc.). If the window was later on
used to navigate something completely different, we rate the
decision of AutumnLeaves as correct as the developer could
also have opened an entirely new window instead of re-
using an existing one. If the window has been used to work
on the same or on related artifacts, we count the related
actions performed in this window and give AutumnLeaves
a correctness rating of the reciprocal value of the counted
user actions in this particular window. If AutumnLeaves for
instance suggests to close a window that has been used
ten times afterwards, we give this decision a correctness
value of 0.1. If the window has been used just once, the
decision is still considered as fully correct. However, if a
window has been used more than 10 times, we rate the
decision of AutumnLeaves as entirely wrong. To obtain
the final correctness rate for AutumnLeaves in a particular
development session, we summed up all correctness rates
for all candidate windows AutumnLeaves suggested to close
and divided this by the number of total candidates.

Results. Table IV shows the correctness results we got
for different development sessions. Due to space restrictions
we do not show all 25 but just five selected sessions, and
the total performance averaged over all 25 sessions. The five
selected tasks are in this order: New feature implementation
(Squeak), defect correction (Squeak), navigation (Squeak),
performance optimization (Eclipse), navigation (Eclipse).
This table also shows the correctness value if computed in
an “all or nothing” manner: Only considering a window
to be closed that is never used anymore afterwards is
rated as a correct performance of AutumnLeaves. Thus this
correctness value is the percentage of perfectly correctly
identified windows to be closed. We also analyzed the data

sets to identify windows that have not been suggested by
AutumnLeaves for removal, but have not been used after
a certain moment. These windows can be considered as
false-negatives as AutumnLeaves should have identified them
as well. We also determined the average time between the
last usage of a window and the moment AutumnLeaves was
able to pinpoint a window to be closed. This measure gives
evidence on how fast AutumnLeaves is able to detect changes
in the direction the development takes, for instance if the
developer explores another, unrelated branch of the source
space. A window is considered as being used until the end
of the session if the last hundred user actions involved
this window; such a window is thus not a false-negative.
Furthermore, we give details about the reduction of the
average number of open windows (measured in intervals of
five minutes).

Discussion of the results. The results in Table IV show
that AutumnLeaves usually correctly closed windows when
a few usages of a window closed by AutumnLeaves are
still acceptable, that is, these usages reduce the correctness
rate just reciprocally to the number of usages. However, the
correctness value dropped significantly when only closing
a window never used later on is acceptable. Nonetheless,
we can still trust the suggestions of AutumnLeaves as those
windows have not been used often after AutumnLeaves
suggested their closing and hence cannot possibly have
played a crucial role in the development session.

With 6.12 windows, the average number of false negatives
is pretty low. We consider this as a very promising perfor-
mance of AutumnLeaves, in particular when comparing with
the average number of opened windows (65.20). However,
it takes AutumnLeaves a considerable amount of time (on
average more than 10 minutes) to identify a window not used
in the future. This means that with the current weighting
mechanism, it is difficult to react on quickly changing
directions in development focus. If for instance the developer
finished exploring a part of the application (e.g., the database
layer), it takes time until this is reflected in the content
displayed in the various windows. The developer has to
navigate further in most windows or even manually close old
windows in order to make AutumnLeaves aware of the new
development focus. We will tackle this problem in future
work.

The reduction of the number of average open windows
(minus 12.50) is also a positive sign for the performance of
AutumnLeaves. We can consider any reduction of the number
of open windows to be an improvement, provided that truly
obsolete, unused windows have been closed. Even though
we do not have evidence on how much more efficient devel-
opers are when they are confronted with less windows, the
automatic closing of windows provided by AutumnLeaves
certainly helps developers to more quickly gain an overview
of their workspace and of the subject system and to hence
ease the source space navigation and exploration.



Session 1 Session 2 Session 3 Session 4 Session 5 Average

Number of opened windows 82 41 109 33 61 65.20
Correctness (with some later window usage permitted) 74.18% 51.26% 47.52% 59.74% 80.20% 61.61%
Correctness strict 53.33% 40.00% 46.29% 52.94% 63.63% 51.76%
Number of windows incorrectly closed (false-positives ) 7 15 29 8 12 13.50
Number of windows incorrectly not closed (false-negatives) 8 4 11 3 7 6.12
Time elapsed between last usage and closing [minutes:seconds] 8:12 7:52 12:56 9:06 5:34 10:09
Avg. number of windows without AutumnLeaves 25.20 15.86 32.50 19.94 27.34 28.53
Avg. number of windows with active AutumnLeaves 17.84 8.41 18.88 10.20 11.95 26.03
Delta in avg. number of windows AutumnLeaves 7.36 7.45 13.62 9.74 15.39 12.50

Table IV
CORRECTNESS, FALSE-POSITIVES, FALSE-NEGATIVES AND AVERAGE NUMBER OF WINDOWS IMPROVEMENTS PROVIDED BY AutumnLeaves OF FIVE

RANDOMLY SELECTED SESSIONS AND AVERAGED OVER ALL 25 SESSIONS.

Another interesting result would certainly be the naviga-
tion time, that is, whether less windows indeed reduce the
navigation time. We have not yet evaluated enough data to
obtain significant results, but early evaluations indicate that
the navigation time and effort is lower with less windows
open. In future work we address this question in more detail.

Task-dependent results. The task-dependent evaluation
we performed revealed that both correctness and effec-
tiveness (window reduction) depend on the nature of the
task. We obtained the highest correctness values for new
feature implementation and defect correction tasks (non-
strict correctness of 67.37% averaged over all such tasks).
However, for these tasks the reductions of windows was, at
9.46 windows, below the average of all 25 sessions (12.5
windows). For tasks concerned with implementing a new
system, performance optimizations or pure navigation, the
correctness was lower (59.86%) and the reduction rate higher
(13.85 windows). We attribute these results to the fact that
tasks in which developers mostly navigate a constrained part
of the system require opening fewer windows than tasks
involving navigation of several, possibly unrelated parts
of the system. AutumnLeaves can more correctly but less
often identify obsolete windows when the general focus
is on statically strongly related entities. Furthermore, fea-
ture implementation and defect correction tasks encompass
heavily the use of structural relationships between source
artifacts (e.g., inheritance), thus AutumnLeaves can more
correctly identify related windows. We leave as future work
to find means for weight propagation based on non-structural
information to obtain better performance for the other kind
of tasks such as exploration tasks.

Variations. We tested the effect of weight propagation
and different threshold mechanisms with two different ex-
periments: i) not considering propagation of weight and ii)
using two threshold instead of just one.

In the first experiment we ran two benchmarks: one
using all weights as determined in the first experiment,
including propagation, and another one omitting propagation
of weight. The latter experiment gives slightly lower values
for both, correctness and reduction of average number of
windows (2.56% less correct and 5.46% less reduction of

number of windows). Thus we consider propagation of
weight to related entities as important, although its effect
is not huge.

Instead of rewarding on each user action windows that
are fully or partially visible, we evaluated in the second
experiment a variation of AutumnLeaves which defines two
thresholds, a lower boundary for visible windows and a
higher boundary for hidden windows. As the latter are more
likely to not be useful anymore, we assume that they can
vanish earlier. For this experiment we have chosen a lower
threshold of 20% of the average window weight and an
upper threshold of 40% (compared to the standard threshold
of 30%). The results of this experiment averaged over all
25 session are the following: correctness slightly increased
to 63.58% while strict correctness (no later window usage
permitted) dropped to 50.94%. The delta of average number
of windows increased to 14.3 windows, while false-negatives
and false-positives did not show significant changes. We
conclude that this variation did not yield remarkably better
results.

Threats to validity. There are several threats to validity in
the experiment we performed. Firstly, the data sets we used
cover pretty short development sessions (up to three hours)
and were concerned with rather simple and constrained
tasks. Large industrial projects may encompass longer and
more complex and open tasks (threat to external validity).
However, we consider these development activity logs as
being fairly typically for medium-sized applications, in par-
ticular as there were four different applications involved. We
can also assume that even if the tasks have been rather small
and short in our data sets, the performance of AutumnLeaves
nonetheless scales up to larger tasks as those are likely to
have similar constraints and characteristics with respect to
window usage.

Secondly, the fact that a window is not explicitly used
anymore in the recorded data set is not necessarily a sign that
it was not important later on (threat to construct validity).
The developer could have looked at the content of such a
window without interacting with it. At least in Squeak it is
possible to have a window in the front and reading its content
without ever selecting and giving it the focus. However, this



is not possible in Eclipse. Although such situations might
have occurred in the recorded development sessions, we
assume those to be very rare. Thus they should not have
a significant influence on the reported results and on the
prediction quality of AutumnLeaves. In both environments
developers might have glanced at a window just shortly to
find out that it the wrong one

Thirdly, developers that gave us the data sets also reported
on the task they performed therein. From their description,
we assigned each task to the six different task categories.
We did not manually study the data sets or asked developers
further, whether they worked on just one single task without
any perturbations or whether they performed some other
sub-tasks or unrelated work in this recorded activity log.
Some descriptions of tasks were ambiguous as developers
performed work not unmistakably assignable to one single
task (threat to internal validity). Thus the task-dependent
evaluation of AutumnLeaves contains some pitfalls regarding
accuracy of the results, as the different performance of
AutumnLeaves in some tasks is partially also explained with
perturbations in the data sets and difficulties in assigning
these sets to particular tasks. We consider this effect as
marginal though. Another threat concerning task-dependent
evaluation is that we did not have an equal distribution of the
data sets on the six tasks. For instance, there was only one
single data set concerned with performance optimization but
seven data sets contained a navigation task. This imposes a
serious threat to construct validity.

B. Practicality

While the results of the benchmark validation elaborate
on the correctness of AutumnLeaves, the practical usefulness
of our proposal is not assessed by such validation. We thus
study the practicality of AutumnLeaves in this section.

From the discussion with developers, we learned that a
crowded workspace with tons of open windows seriously
hampers development efficiency, no matter on which task
they are working. In particular when navigating software
systems to reverse-engineer them, for instance to build a
mental model of a system in order to be able to extend or
correct particular software features, developers suffer from
too many open windows, which can ultimately lead to a
lost of overview. Any solution to overcome this window
plague comes as a relief, developers reported. However, it
is considered as important to have full control over the win-
dows. Developers are not willing to accept a fully automatic
closing mechanism, instead they always want to have the
power of veto, for instance if AutumnLeaves suggests to
close a window actually being used as an important reference
point.

In developer interviews we also revealed an interest in
visual clues about how important AutumnLeaves considers
a window. This not only supports developers in estimating
when a particular window will be removed, but is also

helpful in locating windows still being actively used. Au-
tumnLeaves currently visualizes the internally maintained
weighting of windows by showing in the window title bar
different colors. For windows considered as active (their
weight is above the threshold), the title bar is colored in a
heat gradient from red to blue, while red means very impor-
tant, blue less important, as suggested by other researchers
[6], [10]. Windows identified for closing are grayed out in
a gradient from light gray to black, where black indicates
a weight way below the threshold. Such visual clues also
serve as a navigation aid to developers, as they often find
the window of interest by looking at the title bar colors. In
most cases an interesting window has a non-gray color and
often even a red color.

As future work we leave to empirically determine the
impact of different weights (as shown in II and Table III)
in practice, the gain on productivity of AutumnLeaves or the
correlation between the window importance computed by
AutumnLeaves and what developers themselves consider as
important windows.

V. DIFFERENCES BETWEEN IDES

As the two IDEs, Eclipse and Smalltalk, have fundamental
differences in their window management (as mentioned
in Section II), we expect differences as well regarding
AutumnLeaves. Even though the Eclipse data sets do not
significantly differ from the Squeak data sets, the low num-
ber of Eclipse data sets (3 compared to 22 for Squeak) does
not allow us to draw a statistically relevant conclusion yet.
Generally, the AutumnLeaves algorithms are less complex in
Eclipse as for instance visibility is just a boolean variable —
either a tab is visible in the tab bar or it appears in the tab
list (making it essentially invisible). Moving and resizing of
windows is not relevant in Eclipse (compared to Squeak).

Usage data shows, however, that in Eclipse more windows
are open on average (see Section II), probably due to the fact
that Eclipse only supports limited navigation in windows
(for instance, we cannot open a new class in an existing
window). So far we have not analyzed enough data sets
from Eclipse to judge whether we have to adapt considerably
the AutumnLeaves algorithms or the weighting mechanism
to adapt to the navigation differences in Eclipse compared
to Squeak. The data we analyzed gives us the impression
that AutumnLeaves is robust enough to also properly handle
Eclipse window management. Further work aims at gather-
ing and analyzing more Eclipse development data. At the
moment we are optimistic that AutumnLeaves requires only
fine-tuning of, for instance, the weighting procedure to work
equally well in Eclipse as in Squeak.

VI. RELATED WORK

Development environments, particularly Seesoft [6],
FEAT [20], NavTracks [21] and Mylyn [10], aim at a
goal similar to that of our proposal, that is, improving



the navigation of the source space and thus easing reverse
engineering and understanding software systems. However,
there are several fundamental differences to our proposal.

The Seesoft software visualization system [6] eases soft-
ware analysis by mapping each line of code to a colored
row. The color indicates an interest metric: red lines are
for instance most recently changed lines and blue lines
least recently changed. Seesoft is not able to reason about
navigation activities in the IDE. AutumnLeaves works at a
higher level than source code lines. We analyze window
and entity usage in development sessions to reduce the
number of windows and to thus help developers to avoid
being distracted from their development focus by obsolete
windows.

FEAT [20] applies a concern graph to visualize scattered
but conceptually related code elements together in order
to navigate concerns. However, in the original FEAT tool,
developers had to manually create this concern graph. Ro-
billard et al. [19] enhanced FEAT to automatically infer
concerns, however, users still have to accept or decline the
inferred concerns; our approach does not require any explicit
user action, but does not reason about software concerns.

NavTracks [21] exploits the navigation history to rec-
ommend files related to the file the developer is currently
looking at. This approach works at the granularity of files,
hence does not take into account specific methods or classes.
However, a recommendation list helps little to obtain an
overview over the whole system; the developer just sees a list
of artifacts possibly related to a specific artifact, but is not
supported in locating all interesting entities in a “big picture”
view. With this approach, developers may still be overloaded
by tons of windows and thus may have difficulties to find
their way in the workspace.

Mylyn (formerly known as Mylar) [10] computes a
degree-of-interest value for each source artifact based on the
historical selection or modification of the artifact. The back-
ground color of the artifacts highlights their relative degree-
of-interest in the context of the current task — interesting
entities are assigned a “hot” color. In Mylyn the information
used to compute the interest value is relatively simple:
selecting and editing an artifact increases the interest; if no
further event occurs the interest decreases over time. In our
approach, we propose to also take into account removal and
creation of entities. Furthermore, we propagate weight, our
measure for importance, to statically related entities. While
Mylyn purely reasons about software artifacts, we put the
focus on windows showing these entities, and visualize the
importance of windows, not of source artifacts. By removing
unimportant windows, we indirectly support developers to
more quickly locate entities of interest in their reduced
working set of windows. Similarly Strathcona which focuses
on recommending examples using structural dependencies
[8] does not propagate weights and uses heuristics to identify
examples, it does not support the automatic closing of

windows.
Fluid source code views are related to our approach in the

sense that they allow programmers to fluidly shift attention
to related source code entities [3]. As such fluid source code
views reduce the need for programmers to navigate and to
open extra windows. Still we believe that our approach is
orthogonal since it focuses on the windows opening plague.
Combining AutumnLeaves and fluid source code views is a
definitively interesting future work.

Other researchers tackle the problem of software navi-
gation by providing high-level visualizations of the system,
either focusing on static system structure or dynamic system
behavior, or both. Usually such visualizations are not directly
integrated in development environment but accessible in
separated tools. Löwe et al. [14] for instance merged infor-
mation from static analysis with information from dynamic
analysis to generate visualizations. Reiss [17] visualizes the
dynamics of Java programs in real time, e.g., the number
of message sends received by a class. Program Explorer
[12] provides interactive visualizations of design patterns to
better navigate and understand frameworks. Moose [15] is
a software analysis platform encompassing various software
visualizations such as different polymetric views [13] sup-
porting reverse engineering tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we studied the window plague occurring in
most modern IDEs such as Eclipse or Squeak Smalltalk.
We analyzed several development sessions of various de-
velopers to reveal the extent and graveness of workspaces
crowded with plenty of windows. Developers remarked that
an automatic means to close windows is beneficial for
them and thus we built AutumnLeaves, a mechanism that
observes all open windows and how they are related to
each other by associating a weight to each window. This
weight reflects the current importance of a window and its
content (classes or methods) and thus AutumnLeaves can
identify obsolete windows that are most likely not useful
anymore in the current development session. AutumnLeaves
hence automatically closes this window, if developers do not
decline this. We evaluated AutumnLeaves with a benchmark
validation analyzing 25 recorded development sessions to
determine the correctness of AutumnLeaves’ algorithms. The
correctness results reveal that AutumnLeaves is usually able
to pinpoint the windows that are appropriate candidates for
closing. We further reported on the practicability of our
approach and critically discussed it.

In the future we aim at extending AutumnLeaves to cover
all kinds of windows opened in an IDE, also windows
containing non–source files such as configuration files or
XML documents. For this purpose we have to find means to
relate such content to traditional source artifacts, for instance
by parsing the content to locate names of classes or methods
so that we find references to already open windows. Another



goal for the future is to experiment with other weights for
the various actions or with other mechanisms to associate
these weights, for instance to assign weight based on the
extent of modification occurring in an entity and a window,
or to steadily evaporate weights of windows not being used
for a longer period of time, for instance to close them
more quickly. Furthermore, we plan to gather more empirical
evidence from developers, to for example answer questions
such as whether people agree with the closing suggestions
drawn by AutumnLeaves or whether human beings can them-
selves faster or more correctly identify obsolete windows.
This also includes performing a large controlled experiment
to evaluate the impact of AutumnLeaves on productivity in
practice.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 - Sept. 2010) and of ESUG (the European
Smalltalk User Group) http://www.esug.org/

REFERENCES

[1] V. Basili. Evolving and packaging reading technologies.
Journal Systems and Software, 38(1):3–12, 1997.

[2] T. A. Corbi. Program understanding: Challenge for the
1990’s. IBM Systems Journal, 28(2):294–306, 1989.

[3] M. Desmond, M.-A. Storey, and C. Exton. Fluid source code
views. In ICPC ’06: Proceedings of the 14th IEEE Inter-
national Conference on Program Comprehension (ICPC’06),
pages 260–263, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[4] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings
of ICSE ’00 (22nd International Conference on Software
Engineering), pages 467–476. ACM Press, 2000.

[5] Eclipse platform: Technical overview, 2003. http://www.-
eclipse.org/whitepapers/eclipse-overview.pdf.

[6] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—a
tool for visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18(11):957–968, Nov.
1992. Depth.

[7] A. Goldberg. Smalltalk 80: the Interactive Programming
Environment. Addison Wesley, Reading, Mass., 1984.

[8] R. Holmes and G. C. Murphy. Using structural context
to recommend source code examples. In Proceedings of
ICSE’05, pages 1–10, 2005.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical Smalltalk
written in itself. In Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA’97), pages 318–326.
ACM Press, Nov. 1997.

[10] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th inter-
national conference on Aspect-oriented software development,
pages 159–168, New York, NY, USA, 2005. ACM Press.

[11] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented ides: a detailed study
of corrective and perfective maintenance tasks. In ICSE ’05:
Proceedings of the 27th international conference on Software
engineering, pages 125–135, 2005.

[12] D. Lange and Y. Nakamura. Interactive visualization of design
patterns can help in framework understanding. In Proceedings
ACM International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’95),
pages 342–357, New York NY, 1995. ACM Press.

[13] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[14] W. Löwe, A. Ludwig, and A. Schwind. Understanding
software - static and dynamic aspects. In 17th International
Conference on Advanced Science and Technology, pages 52–
57, 2001.

[15] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05),
pages 1–10, New York NY, 2005. ACM Press. Invited paper.

[16] C. Parnin and C. Görg. Building usage contexts dur-
ing program comprehension. In Proceedings of the 14th
IEEE International Conference on Program Comprehension
(ICPC’06), volume 0, pages 13–22, Los Alamitos CA, 2006.
IEEE Computer Society.

[17] S. P. Reiss. Visualizing Java in action. In Proceedings of
SoftVis 2003 (ACM Symposium on Software Visualization),
pages 57–66, 2003.

[18] R. Robbes and M. Lanza. How program history can improve
code completion. In Proceedings of ASE 2008 (23rd In-
ternational Conference on Automated Software Engineering),
pages 317–326, 2008.

[19] M. P. Robillard and G. C. Murphy. Automatically inferring
concern code from program investigation activities. In Pro-
ceedings of the 18th International Conference on Automated
Software Engineering, pages 225–234, Oct. 2003.

[20] M. P. Robillard and G. C. Murphy. Feat: A tool for
locating, describing, and analyzing concerns in source code.
In Proceedings of 25th International Conference on Software
Engineering, pages 822–823, May 2003.

[21] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Supporting
navigation in software maintenance. In International Confer-
ence on Software Maintenance (ICSM’05), pages 325–335,
Washington, DC, USA, sep 2005. IEEE Computer Society.

[22] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engineer-
ing, SE-18(12):1038–1044, Dec. 1992.


	Introduction
	Window Plague in IDEs
	AutumnLeaves
	AutumnLeaves in a Nutshell
	Variation Points

	Validation
	Correctness
	Practicality

	Differences between IDEs
	Related Work
	Conclusions and Future Work
	References

