
Tackling Software Navigation Issues of the Smalltalk IDE
Accepted to IWST’2009

David Röthlisberger
Software Composition Group,

University of Bern
roethlis@iam.unibe.ch

Oscar Nierstrasz
Software Composition Group,

University of Bern
oscar@iam.unibe.ch

Alexandre Bergel
Computer Science Department

(DCC), University of Chile
abergel@dcc.uchile.cl

Stéphane Ducasse
INRIA-Lille Nord Europe

stephane.ducasse@inria.fr

Abstract
The IDE used in most Smalltalk dialects, including Pharo,
Squeak and Cincom Smalltalk, did not evolve significantly
over the last years, if not to say decades. For other lan-
guages, for instance Java, the available IDEs made tremen-
dous progress as Eclipse and NetBeans illustrate. While
the Smalltalk IDE served as an exemplar for many years,
other IDEs caught up or even overtook the erstwhile leader
in terms of feature-richness, usability and code navigation
facilities. In this paper we first analyze the difficulty of
software navigation in the Smalltalk IDE and second illus-
trate with concrete examples the features we added to the
Smalltalk IDE to fill the gap to modern IDEs and to pro-
vide novel, improved means to navigate source space. We
show that thanks to the agility and dynamics of Smalltalk,
we are able to extend and enhance with reasonable effort the
Smalltalk IDE to better support software navigation, pro-
gram comprehension, and software maintenance in general.
One such support is the integration of dynamic informa-
tion into the static source views we are familiar with. Other
means include easing the access to static information (for
instance by better arranging important packages) or helping
developers re-locating artifacts of interest (for example with
a categorization system such as smart groups).

Keywords development environment, source code naviga-
tion, software analysis, visualization

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Object-oriented systems form a large space containing plenty
of source artifacts such as classes or methods. Often con-
ceptually related code is scattered and distributed in this
source space, thus locating the correct places responsible
for certain software features is challenging. Object-oriented
language features such as polymorphism, inheritance and
method dispatching make it very hard to discover the appro-
priate code in terms of classes and methods purely based on
the static software structure. To understand such software
features developers also need to have access to dynamic in-
formation. Having available behavioral information supports
developers in maintaining, extending and evolving software
products [Röthlisberger et al. 2008].

The primary tool used by developers to reason about
software systems is the integrated development environment
(IDE). It supports the navigation of static source artifacts
with dedicated browser facilities such as source code trees to
navigate from packages to classes and methods. In addition,
IDEs usually encompass tools to access software dynamics:
debuggers to follow the execution flow of a system, inspec-
tors to study objet state and profilers to analyze the efficiency
of specific system executions.

However, the ever-increasing complexity of software sys-
tems requires us to think about novel means to navigate
large software spaces. In recent years, the Smalltalk IDE
[Goldberg 1984] as contributed by dialects such as Squeak
[Ingalls et al. 1997], Pharo1 and Cincom Smalltalk [Visual-
Works] did not make significant progress in this regard. IDEs
for other languages like Java (e.g., Eclipse [Eclipse03a] or
NetBeans2) on the other hand significantly improved their
source space navigation facilities over the last few years.
For example, Eclipse provides Mylin [Kersten and Mur-

1 http://www.pharo-project.org/
2 http://www.netbeans.org/

1 2009/9/26



phy 2005], a tool analyzing the navigation history to visu-
ally give feedback to developers about the importance of
software artifacts for the task-at-hand. These visual clues
help developers to quickly navigate software systems in
a more accurate fashion when solving maintenance tasks.
NavTracks [Singer et al. 2005], another tool available for
Eclipse, supports software maintenance by recommending,
while looking at a specific class file, related files containing
classes relevant for the task-at-hand. Thanks to NavTracks’
recommendation list, developers can quickly identify source
artifacts that are likely to change in tandem with the cur-
rently selected artifact.

The history of Smalltalk clearly highlights its power to
serve as a platform, environment and testbed to experiment
with novel IDE facilities and techniques for software naviga-
tion [Goldberg 1984, Ingalls et al. 1997]. For this reason, we
implemented several ideas for a better and enhanced IDE in
Smalltalk. Concretely, we extended the OmniBrowser IDE
of Squeak and Pharo [Bergel et al. 2007] with a number of
novel and innovative facilities aimed at easing software nav-
igation and software maintenance.

In this paper we first discuss the problem of software
navigation in the Smalltalk IDE. Second, we explain and
present in Sections 3 to 7 our extensions to the OmniBrowser
IDE to mitigate these navigation issues. In these sections,
we also report on the validation we performed for some of
these techniques. Section 8 wraps up the paper with some
concluding remarks and future directions for further work.

2. Navigation Problem
Software navigation is a crucial prerequisite for program
comprehension. To gain an understanding for an unfamil-
iar software system, developers usually use their develop-
ment environment. We analyzed several recorded develop-
ment sessions to reveal how well this process is currently
supported in the traditional Squeak IDE. We further ana-
lyzed these sessions to elicit ideas for the improvement of
software navigation. In this section we report on the findings
of this study in terms of navigation issues and opportunities
to overcome these issues.

Most software systems spread their functionality over
multiple source artifacts. Even reasonably sized systems
contain several hundreds of these artifacts (classes, meth-
ods). As conceptually related code is often distributed over
the entire source space, understanding for instance a partic-
ular software feature requires developers to spend consid-
erable time and effort to navigate this feature. During the
navigation, it often even happens that developers lose the
context or the overview and have to start over searching for
the right path to be able to comprehend a software feature. In
the following, we illustrate these navigation problems with
some indicators obtained from empirical studies.

Problem indicators. As indicators for navigation difficul-
ties we consider the number of window switches (chang-

Indicator Average of 20 sessions

Number of window switches 38.85
Number of entities revisited 35.10
Edit / navigation ratio 9.51%
Number of navigation actions until first edit 52.14
Number of navigation actions between two edits 19.31

Table 1. Five indicators highlighting navigation issues oc-
curring in the Squeak Smalltalk IDE

ing focus from one window to another), the number of re-
visits of source artifacts purely for reading and understand-
ing (without modification), edit/navigation ratio (ratio of
edit actions compared to navigation actions), the extent of
navigation until first edit (how many navigation actions a de-
veloper performed until modifying the first artifact) and the
average extent of navigation between two edits (how many
navigation actions occur between two subsequent modifica-
tion actions). By analyzing 20 development sessions we ob-
tained the results displayed in Table 1 for these five indica-
tors. All these recorded and analyzed sessions originate from
developers working for 30 minutes on software maintenance
tasks in small or medium-sized applications with up to hun-
dred classes in Pharo and Squeak Smalltalk.

The concrete numbers for the various indicators obtained
in this survey confirm the hypothesis that navigating the
source space in Smalltalk is often difficult. Developers fre-
quently have to switch between different windows; opening
views on the same source artifacts several times is also a
frequent incident, even in short development sessions last-
ing for just half an hour. Moreover, developers usually spend
quite some time until they are able to locate in a maintenance
task the artifacts they actually want to modify to correct a
defect . The edit/navigation ratio is very low, with less than
ten percent. All these figures demonstrate that for the par-
ticular sessions we studied, the extent of navigation activity
required to identify an artifact to be changed is large. This
is in particular true for the beginning of a task when devel-
opers perform on average 52 navigation actions before they
locate the first entity they want to modify. Another indication
for a possibly ineffective navigation in IDEs is the high av-
erage number of navigation actions performed between two
subsequent modification actions (on average 19 navigation
actions).

Problem identification. Firstly, from the numbers shown
in Table 1 we conclude that software space navigation is
an important development activity that takes a considerable
amount of time. Secondly, we want to extract from these
numbers, as well as from interviews and discussions we
had with developers, the concrete reasons why the IDE does
not better support the navigation of software systems. We
identified five main reasons why the IDE at its current state
ineffectively supports navigation:

• Working set, context representation. The working set, that
is, the entities the developer is currently working with, is

2 2009/9/26



not appropriately represented and maintained in the IDE.
The IDE just opens views on source entities in various
windows, but does not maintain any connection or refer-
ences between these windows, thus it is not clear which
window belongs to which working set or task. The de-
veloper hence cannot identify the context in which he
opened a particular window. There is no mapping be-
tween windows and activity or task being performed. Up
to now, the IDE did not even provide a navigation history
to see what has recently been navigated in a window to
help the developer determining the activity in which this
window was opened originally.

• Distributed and distant artifacts. Conceptually related
source artifacts are often distributed over the software
space and distant to each other (for instance in different
packages), but the IDE does not support the easy naviga-
tion of distant entities. Packages are sorted alphabetically
in the package tree; software systems spread over various
packages could thus be distributed over the entire pack-
age tree, requiring the developer to scroll up and down
the tree while navigating the source code.

• Implicit and hidden dependencies. Many dependencies
and relations between different source artifacts are not
directly visualized in the IDE. To for instance reveal the
classes used by a package or another class, developers
would have to scan every single method to find out all
collaborating classes. Similarly, packages used by or de-
pendent on a particular package are also difficult to re-
veal as the IDE does not provide direct support to present
such dependencies. Even when dependencies are explicit
(such as super- / subclass relationships), the navigation
from one to the other is often still not easily possible. For
instance when having selected an overriding method in a
subclass, navigating to the superclass to study the over-
ridden method requires the developer to manually locate
and select the method in the superclass again.

• Behavioral information unavailable. Many dependen-
cies between source artifacts are not visible in the static
source code at all. Without using debuggers or inspec-
tors, developers cannot see these dependencies. But us-
ing these tools requires developers to manually set break-
points and to leave the familiar source code browser in
favor of a separate tool. However, the IDE itself could en-
hance the representation of the source code with runtime
information about types and dependencies. The presenta-
tion of runtime information in its static views enables the
IDE to make developers aware of runtime dependencies
and thus to provide means to better navigate them, for
instance to follow the execution flow from one method to
the other.

• Window plague. As IDEs show source entities in win-
dows or tabs, normally each artifact is opened in new
window. This quickly leads to a cluttering of the workspace

with many windows, in particular in Pharo and Squeak.
If the developer does not take the time to manually close
windows, the number of open windows steadily grows,
thus further worsening the navigation problem as devel-
opers have to spend considerable time to locate windows
of interest, some of them might even be hidden behind
others. However, manually closing windows is often dif-
ficult as developers cannot be sure which windows they
will still need in the future.

Problem solution. In the subsequent sections, we intro-
duce possible solutions mitigating the aforementioned prob-
lems. For each problem, we discuss two or three techniques
we have implemented to help developers better navigating
the software space in the IDE and to address a particular nav-
igation issue. For some techniques we also report on some
empirical feedback or other evaluation we conducted to as-
sess the usefulness and extent of improvement of this tech-
nique resulting in practice.

3. Representing Working Sets
To better represent working sets and context in the Smalltalk
IDE, we implemented several techniques such as Smart
Groups which developers can use to categorize artifacts in
working groups, for instance in groups for particular defects
they need to fix. A means to open multiple methods en-
ables developers to group together in a browser all methods
they need to understand and/or adapt for the completion of
a certain task. Having available the full history of all viewed
source artifacts for each browser enables developers to go
back and forth in their navigation history to reconsider their
work in their particular development context. The integra-
tion of test execution facilities makes it possible to embed
the test running process in the current working context, that
is, without having to open another tool or window such as a
dedicated test runner.

3.1 Smart Groups
Smart groups are a categorizing mechanism orthogonal to
the standard categorization applied in Squeak which is based
on (static) packages. Smart groups are displayed in the same
column as packages and the hierarchy view. Developers can
themselves create categories as they wish and place any
source artifact (package, class, method, class category, etc.)
in one or several smart groups. One smart group could for in-
stance hold all classes and methods implementing a logging
feature of an application, and another smart group could con-
tain the artifacts defining a HTML rendering feature. Thus
smart groups make distributed source artifacts accessible un-
der a manually give name such as “logging”.

Besides the manually managed smart groups, we support
also automatically created groups that hold results of sub-
mitted search queries. At the top of the browser there is the
so-called mercury panel accepting search queries for classes,
methods, class references, senders, implementors, etc. Af-

3 2009/9/26



Figure 1. Smart Groups: Manually created logging group and automatically created search groups.

ter submitting such a query, the developer obtains the re-
sult in a smart group named after the search query. When-
ever this group is selected, the query is processed again, thus
the search results are always accurate. Both types of smart
groups are illustrated in Figure 1.

Smart Groups are a similar concept as available in early
versions of Smalltalk when people were not working with
packages to maintain code, but with change sets. A particu-
lar change set can be considered as a smart group bundling
code from different classes and categories, that is, code not
statically related by means of hierarchy or containment. A
similar concept is also applied by Intensional Views [Mens
et al. 2006]. An intensional view is an executable descrip-
tion which yields a set of entities belonging to the views;
we refer to these entities as the extension of the view. The
Star Browser [Wuyts] allows the developer to classify dur-
ing navigation any source entity in different categories; the
classified source entities can be accessed under these classi-
fications.

3.2 Opening Multiple Methods
We support the display of several methods at a time in the
code panel. Developers can open several methods and see
their code in a row in the code panel, to for instance com-
pare their implementation. By pressing the command key, a
developer decides to open a method in an additional view in-
stead of browsing the method in an already existing method
view. Each method view can be pinned, moved, or closed.
Pinning means that the method in this view is fixed, that is, it
will not be overwritten with another opened method. If there
are only pinned method views open, browsing a new source
entity always triggers the opening of a new view. Changing
the order of the method views is possible by dragging and
dropping the dedicated move button on the move button of
another view. New methods are always viewed in the right
most method view, if this one is not pinned. Otherwise, a
new method views will be added to the code panel on the
right.

Viewing multiple methods at the same time and being
able to edit them independently is particularly useful when
working with conceptually related code scattered over dif-
ferent locations and classes. Developers are able to open all
methods that for instance implement a particular feature and
can study and alter their implementation at the same time in
the same browser window, even though these methods come
from different classes or even different packages.

Other environments or dialects related to Smalltalk al-
ready provide the possibility to edit multiple source enti-
ties at the same time, for instance Strongtalk [Strongtalk],
Newspeak3 [Bracha 2007] or Whisker [Way 2005].

3.3 Navigation History
As an extension to the browser, we provide history functions
such as back/forward button and full history access as a
drop down menu, similar to the way web browsers show
the history of visited web pages. Each source artifact we
navigated in a particular code browser is accessible in the
browser’s history, each entry in the full history also comes
with information about its type (package, class, method,
protocol, etc.) to ease the reading of the history list, see
Figure 2. Back and forward buttons always navigate to the
artifact we browsed before or after the currently active point
in history.

The developers we interviewed about the effect of these
history facilities reported us that they frequently take use
of this feature and benefit from its availability in two main
scenarios: First, when they explored a branch of the source
space that turned out to be a dead end, they can go back
in the history to the artifact from where they started the
exploration. Second, the history also gives an overview of
what they already explored in the past, which helps them
to quickly reconstruct the browser’s working context and in
particular also to identify important artifacts. Hence an ac-
cessible navigation history also supports program compre-
hension as it can serve as an overview of, for instance, all

3 http://bracha.org/Site/Newspeak.html

4 2009/9/26



Figure 2. The full history of all navigated source entities in this browser.

artifacts responsible for a certain software feature as they
have all been navigated in the past and are thus part of the
navigation history. In general, developers very much appre-
ciate having available the navigation history in their daily
development work and in each code browser.

3.4 Test Integration
Running (and writing) tests is an important development
activity. To account for this importance we wanted to make
the test execution as easy and smooth as possible. For this
reason, we extended the Pharo browser to be able to run test
methods and entire test cases or even test packages from
within the browser. By pressing command and ’t’, all tests
stored in the selected artifact are executed and the results
appear on the screen. If the tests fail, the browser asks the
developer whether he wants to open a debugger to locate the
cause of the failure or error.

We even extended the SUnit testing framework to also
store the results of a test run, that is, which test methods
passed, failed or raised errors. We exploit this information
in the browser to show by means of icons whether a test
method or test class progressed (more tests succeed since
the last stored run) or regressed (fewer tests succeed since
the last stored run). Such a visual clue on the status and
progress of fixing an entire test suite is particularly important
when working on a huge system which was for instance
upgraded to use a new library. With these visual clues we
thus want to express how much progress we made in fixing
this system and the test suite to comply to the new library.
Another example is when migrating a large system from one
Smalltalk dialect to the other. An example is the migration
of Moose [Nierstrasz et al. 2005] from Cincom Smalltalk
[VisualWorks] to Pharo.

4. Navigating Distributed, Distant Artifacts
The techniques presented in this section aim at easing the
navigation of distributed and distant source artifacts, for in-
stance entities organized in different packages. The Package
View contributes elaborated facilities to prominently display
manually selected packages or packages that have been re-

cently modified, loaded or updated. The Hierarchy View al-
lows developers to more conveniently navigate class hierar-
chies, for instance by changing on the fly the class around
which the hierarchy is shown. The automatic selection of
source artifacts is another means to save time while navigat-
ing. When browsing a class that has a method with the same
name as the previously selected one, the browser automati-
cally selects this method in the new class.

4.1 Package View
Smalltalk’s browser did not support Monticello packages,
but just showed class categories in its first column. We first
added support for packages as the top-most source entity
and list the class categories contained in a package below
it. We then implemented a tree to more conveniently browse
packages. Usually a standard Smalltalk image contains up
to a hundred packages and several hundred class categores,
thus browsing such a long list is time-consuming. As a
tree offers capabilities to collapse and extend branches, the
employed package tree helps to reduce the time to navigate
to a specific package or class category.

We also added features to more quickly locate important
packages: Modified or newly loaded or updated packages are
automatically placed at the top of the tree. Even further at
the top are packages that the developer manually placed to
appear prominently, see Figure 3. These two means to in-
fluence the order of the packages is considered as very im-
portant by developers working on systems consisting of sev-
eral different packages that might otherwise be spread over
the entire alphabetically sorted tree. Additionally, developers
can alter the package order by manually arranging packages
in a text file containing all packages in the currently defined
order.

4.2 Hierarchy View
The traditional Smalltalk code browser do not encompass
a dedicated view for class hierarchies integrated in a stan-
dard class browser. There was an external hierarchy browser
which developers could open in new windows, thus clutter-
ing the workspace with more and more windows.

5 2009/9/26



Figure 3. The package view in OmniBrowser with packages place at the top, manually and automatically.

We hence extended OmniBrowser to come up with an in-
tegrated hierarchy view. This view appears in the first navi-
gation column, that is, where the packages are displayed, as
shown in Figure 4. From a selected class we display all its
super- and subclasses. Clicking twice on a class in the hier-
archy, gives this class the focus, that is, the view shows its
super- and subclasses. This feature is useful to easily bring
up and navigate an entire class hierarchy. In the hierarchy
view, the next column shows all the packages defining or ex-
tended the selected class. The defining package is displayed
in bold. This feature supports the developer in locating class
extensions of particular classes.

4.3 Automatic Selection
To ease navigation of, for instance, class hierarchies, we im-
plemented advanced auto-selection facilities. The browser
now remembers the last selected method in a class. If we
then navigate for instance to the class’ superclass which im-
plements a method with the same name, this method is auto-
matically selected. This auto-selection feature is also active
when browsing to statically unrelated classes. If we currently
have selected the method size, then the browser will auto-
matically select in each class we navigate the method size,
provided that it exists. The browser remembers the selection
of size until the developer manually selects another method.

Another automatic selection occurs when browsing a
method category with just one method inside; this method is
automatically selected. When browsing search results stored
in SmartGroups (see Section 3.1), the browser automatically
jumps to methods complying to the submitted search query.

Automatic selection improves the efficiency of the devel-
oper as it saves him from cumbersomely locating in long
method lists of a new class the same method he already had
selected before. In particular when navigating hierarchies it
often happens that we want to study the implementation of a
specific method in different classes.

5. Revealing Implicit and Hidden
Dependencies

To make dependencies more explicit in the Smalltalk IDE,
we provide a dependency analyzing tool that lists for in-
stance the packages used by a given package by statically
analyzing all methods and classes of this package to de-
tect to which other packages it communicates. Icons shown
for each source artifact on the other hand can display addi-
tional information, for instance, information orthogonal to
the static tree structure in which the source code is typically
represented. In addition, we use icons to denote methods
containing halts, overridden methods, collection classes and
dirty packages. The use of traits creates other dependencies
such as all the classes using a trait or whether a method in
a class is locally defined or stems from a trait. Such depen-
dencies are now explicitly visible in the code browser.

5.1 Dependencies, References
There are various dependencies between different source ar-
tifacts, for example a package may have other packages as
prerequisite when a class uses other classes to outsource
logic and functionality. Many of these dependencies are hid-
den and not explicit, making them difficult to reveal. For in-
stance, developers often have to study many methods and
classes to gain an overview of the various dependencies a
package imposes. A package usually not just requires the
defined prerequisites, but also communicates to other, stan-
dard or non-standard packages, but without explicitly stating
them as prerequisites.

Developers of packages are often unaware of these im-
plicit package dependencies. As a consequence, delivering a
system based on dependent packages is challenging as sys-
tem clients may not have the same dependent packages or li-
braries installed, which ultimately prevents the system from
being installed. To be able to check and navigate dependent
packages, we provide an analysis tool in the IDE which ana-

6 2009/9/26



Figure 4. The hierarchy view in OmniBrowser.

lyzes the entire source code of the package to be checked and
searches for usages of classes or methods from other pack-
ages. All such occurrences are reported to the developer by
giving him a list of dependent packages (that is, the pack-
ages defining the located external classes or methods used in
this particular, analyzed package). For each dependent pack-
age the IDE can show all occurrences, that is, the places in
source code where a dependency is actually created, for in-
stance in a method sending messages to instances of an ex-
ternal class outside the current package.

In a reference view optionally place next to the source
code view we show classes used in the current source artifact
viewed by the developer. For a selected method or class, we
list instantiated classes, referenced, or classes whose meth-
ods are invoked. When Hermion is installed, which is fur-
ther described in Section 7, we can even display dynamic
references, that is, references statically not visible, such as
subclasses of a class implementing an invoked method. Stat-
ically we are only able to determine a reference to the super-
class implementing the method while dynamically we find
out that actually a subclass receives the message send at run-
time.

5.2 Icons
Icons serve the purpose of visually conveying information
that is otherwise not easy to represent, such as information
about errors in source code or additional structural informa-
tion, for instance whether a method is overridden in sub-
classes. We can use well designed icons to convey richer in-
formation than pure text could transfer. Another advantage
of icons is that they do not take much space: a 12 pixels
square icon conveys valuable information.

For all types of source artifacts we are able to show
one icon at a time. If a specific artifact qualifies for more
than one icon, we present the one with the highest priority.
We mostly use icons to visualize information otherwise not
easily accessible. The following list reports on the different
icons used for the four main types of source artifacts:

Packages, Class Categories.

• Package icon — to denote whether an entity is indeed a
Monticello package

• Published icon — for already published packages
• Dirty icon — packages that have been locally modified

but not yet committed
• Newer version — packages with newer version(s) in

repository than installed locally

Classes. For classes we visualize with an icon the type
of class, for instance an exception class. The developer can
himself easily add more class type icons by implementing
the method icon in the desired superclass.

• Exception icon — for Exception and subclasses
• Collection icon — for Collection and subclasses

Methods.

• Overridden icon — if a method is overridden in any
subclass

• Overriddes icon — if a method overrides the same
method from a superclass

• Overriddes icon — if a method overrides and is overrid-
den at the same time

• super send icon — method sending super to the same
method

• super send icon, but invoking different super method
• abstract icon — abstract method, that is, one sending

isSubclassResponsibility

• halt icon — method containing a halt
• flag icon — method sending flag:

• exception icon — method raising an exception

Test methods, test classes.

• green icon — test method or class running green
• yellow icon — test method or class running yellow
• red icon — test method or class running red

7 2009/9/26



Figure 5. Several method icons appear, such as abstract, overridden, overrides, or overrides and overridden.

• more green than red icon — test class with more green
than red running test methods

• equal green and red icon — test class with nearly the
same number of green and red running tests

• more red than green icon — test class with more red than
green running test methods

Figure 5 shows various method icons appearing for class
String. Many icons are even clickable. Clicking on such an
icon triggers the execution of an action appropriate for this
particular icon. Clicking on test-related icons for instance
triggers the running of the tests for which the icon appears.
Or clicking on the overridden icon navigates to the method
in a subclass overridding the selected method. If several
subclasses override this method, then we show a list of
classes from which the developer can choose one to navigate
there.

5.3 Traits Integration
A trait is a unit of behaviour that can be composed with other
traits and used by classes. Traits offer an alternative to mul-
tiple inheritance and promote the reuse of methods between
unrelated classes [Black and Schärli 2004]. However, the
Squeak IDE did not properly support traits and a develop-
ment process taking use of traits. We improved support for
traits in OmniBrowser by implementing various features:

• Traits used by a class. Next to the instance, documenta-
tion and class button appearing in the class column we
put a trait button. This gives all traits used by the se-
lected class in hierarchical order. Developers can study
each trait’s methods and modify or extend them. This trait
view is illustrated in Figure 6.

• Traits users of a class. For a selected trait, we provide a
command to locate all classes using this trait.

• Trait methods. When browsing a class, we see all meth-
ods originating from a trait in italic to be able to quickly
recognize the fact that we are dealing with code defined

in a trait. When re-compiling a method that belong to a
trait, the browser asks whether we want to change this
method just locally for this class or for the entire trait
(affecting other users of this trait as well).

• Required methods. In a trait we highlight in blue the
methods required to be implemented in classes using this
trait.

• Move to trait. For each non-trait method we can execute
an action called “move to trait” to move this method to
an existing trait.

• Exclude trait method. When selecting in a class using
a trait a method defined in this trait, we can trigger the
command “exclude from trait” which with we can either
remove the trait method just from this class or from the
entire trait.

• Other trait-related features. We extended the browser’s
search facilities to search for traits as we do for classes,
using the same tools. Or we implemented sorting algo-
rithms that can hierarchically sort traits as it is done for
classes.

This browser extension is very helpful when developing
applications using traits. The traditional browser did not
represent the relationships between a trait and the classes
using it, this means it was not possible to access a list of all
users of a trait. Recognizing trait methods in the method list
of a class was impossible without double-checking the trait
definition. Finding traits by name was also not supported as
the search facility covered only classes. Thus it was a huge
burden to develop applications using traits. The example of
traits highlights the importance of appropriate tool support
for the adoption of new techniques. Even when a novel
technique clearly brings important benefits, it will not be
adopted in practice if tools and development environments
do not reasonably support this new technique.

8 2009/9/26



Figure 6. Viewing a class using a trait and browsing this trait in the trait view.

5.4 Source-code Management Integration
Monticello4 is the standard tool used in Squeak and Pharo
to manage source code packages and repositories. Since we
provide direct support for Monticello packages, we opted to
also add more source code management facilities directly
to the source code view. In the package view we added
access to various Monticello functions such as committing,
updating, viewing history or changes, or importing a new
package. Adding support for other source code management
systems besides Monticello is straightforward.

6. Integrating Behavioral Information
To further ease software navigation and comprehension we
enhance the IDE’s static source views with some behavioral
information about message sends, variables accesses, or col-
laborators used in a given class or method.

As stated in the introduction to this paper (see Section 1),
it is often impossible to gain a deeper understanding for a
software system or parts thereof without also studying its
dynamics. While dedicated tools such as debuggers or in-
spectors can help developers to reconstruct and analyze the
execution flow, types of variables and even concrete vari-
able values, or runtime complexity of certain algorithms or
objects, the tools primarily used to navigate the source code,
the class or package browser or the hierarchy browser, do not
encompass information about software dynamics. We con-
sider this a serious hindrance to a more efficient program
comprehension and navigation and hence enhanced these
IDE tools to also display dynamic information. We refer
to the IDE enriched with dynamic information as Hermion
[Röthlisberger et al. 2008], which is basically an extended
version of the OmniBrowser we referred to in all other sec-
tions. Hermion only differs to OmniBrowser by its means
integrating dynamic information, otherwise it encompasses
all of OmniBrowser’s features.

4 http://www.wiresong.ca/Monticello

Concretely, we exploit dynamic information with three
basic means in the Squeak IDE:

i) Message sending. We enhance the source code view
with information about message sending (receiver, argument
and return types) and including number of occurrences of
each type. For this purpose, we introduce in the source code
icons that serve as a navigation aid. Clicking on such an
icon appearing right after a declaration of a message send in
source code brings the developer to the method that has been
invoked at that location. If this is a polymorphic call site, all
invoked methods are displayed in a list along with numbers
of invocations. The developer can choose the desired callee
to navigate there. For message send arguments we provide
lists of all occurred types, senders of a method we can
navigate by clicking on the back arrow appearing next to
the method header. If there are several senders, we see every
sender in a list. Figure 7 illustrates how these icons appear
in a concrete method.

ii) Type information. Similar as for message sends, we
also enrich every variable access, read and store, in the
source code view with additional information. We display
all types that have been bound to a particular variable at
this location in code in a list. For each type in this list we
give information about how often particular type occurred
at runtime. Clicking on a type brings the developer to the
definition of the corresponding class. Type information is
particularly useful in dynamic languages not having explicit
types, thus developers cannot anticipate to what types a
variable can be bound at runtime.

iii) Collaboration information. As another enhancement,
we list all dynamic collaborators of a method or a class, that
is, all classes that are referenced in each source entity. This
list appears on the right side of the method view. For each
referenced class, we are able to obtain all concrete locations
in code where this class has actually been referenced, for
instance all variables bound to an instance of this class.

To gather the dynamic information on which these three
enhancements are based, we use partial behavioral reflec-

9 2009/9/26



Reference ViewType ViewMessage Send Navigation

Sender NavigationBack Button

Figure 7. Enriched method source code view including a reference view in Hermion

tion as provided by Reflectivity [Denker et al. 2007]. This
approach also allows us to reason about sub-method level
operations, for instance to study the types of each temporary
variable used in the method body. Another benefit of Reflec-
tivity is the fine-grained selection possibilities it offers; we
can freely choose which particular methods or classes, even
specific objects, we want to analyze dynamically. These se-
lection capabilities are very important to reduce the overhead
coming along with runtime analysis. Currently, we experi-
ence a slowdown of factor three to five when we analyze
entire systems with Reflectivity to obtain the dynamic infor-
mation exploited by Hermion.

We gathered feedback from developers about how they
personally consider the usefulness of Hermion in their daily
work when maintaining software systems. The general feed-
back was that developers consider it as very useful to be able
to reason directly in the source code about software dynam-
ics such as variable types or invoked methods, in particu-
lar in a dynamic language that does not declare any types
and where it is hence often unclear, what kind of objects are
stored in particular variables or which methods are invoked
if for instance a selector with a frequent name such as size is
used. Further feedback stressed the usefulness of the collab-
oration view as this helps developers to find both, the classes
communicating with a selected class and the locations where
this communication is actually occurring.

7. AutumnLeaves - Mitigating the Window
Plague

To reduce the number of open windows we worked on a tool
and algorithms to automatically identify and ultimately close
obsolete windows. This idea and its realization is discussed
in this section.

AutumnLeaves are a means to automatically close obso-
lete, useless windows that will not be needed by the devel-
oper in the future, such as code browsers showing methods
that are not relevant anymore for the current development

focus or inspectors displaying objects no longer being of
interest. AutumnLeaves analyzes all navigation activities of
developers and associates a weight with each open window
and each navigated source entity. A window is automatically
closed (developers can decline this decision) if its weight
drops below a certain percentage of the average weight of all
open windows, which is called the closing threshold, usually
defined as 30% of the average weight. The weight of a win-
dow or an entity is increased on every user action (opening
artifacts, modifying code, moving or resizing windows, giv-
ing focus to windows, etc.). The total weight of a window
is the weight of itself and the weight of the currently dis-
played entity. Weight is also propagated to statically related
artifacts: if we for instance navigate a method, the weight
of its declaring entity is also increased. Weights of other re-
lated and open entities, such as senders and implementors
of this method, will also be increased. Note that Autumn-
Leaves does never decrease the weight of windows or enti-
ties; instead weights are always increased and for each win-
dow compared to the average weight of all windows. If we
would decrease the weight of windows unused for a longer
period of time, they would maybe drop out too quickly, for
instance if the developer is focusing on one single window
during this time. With its weighting mechanism, Autumn-
Leaves basically models the otherwise implicit references
between windows and thus identifies the obsolete windows,
similar to the way a garbage collector terminates unrefer-
enced objects.

Smalltalk’s window management allows windows to
overlap each other, we also have to take into account the
visibility of each window, that is, whether it is fully visi-
ble, partially visible or fully hidden by other windows. A
window hidden behind several other windows is much more
likely to be not useful anymore, or maybe the developer even
forgot about its existence. Thus we reward windows being
visible by giving them additional weight points after each
user action. The number of weight points given depends on

10 2009/9/26



Figure 8. Squeak arranges its windows on a desktop. Windows can overlap each other.

the visible portion of the window. Obtaining the focus also
increases the weight of a window, so does moving or resiz-
ing or typing in it. Developers can also pin certain windows,
those will never be closed by AutumnLeaves but always stay
open.

AutumnLeaves efficiently reduces the window plague (as
depicted in Figure 8) we are typically suffering from in
Smalltalk environments. Some experiments we performed
to assess the extent of the window plague revealed that in
a short development session lasting half an hour, develop-
ers performed on average up to 40 switches between differ-
ent windows and revisited 35 entities again without altering
them. These two numbers are a clear indication that develop-
ers lose the overview over their workspace as they are con-
fronted with too many windows for which they cannot main-
tain a clear mental model. From concrete empirical experi-
ments we learned that with AutumnLeaves we can remove
up to 40% of all open windows, while the same validation
showed that developers could have re-used later on only 40%
of those windows AutumnLeaves suggested to close. As em-
pirical data we analyzed 25 different recorded development
sessions concerned with the maintenance or implementation
of medium sized object-oriented applications.

8. Conclusions and Future Work
In this paper we first studied the characteristics and the ex-
tent of the navigation issues we typically encounter in the
Smalltalk IDE when working with large software systems.
Taking the identified causes for these navigation issues as a
starting point, we elaborated on several different extensions
and enhancements we implemented for the Smalltalk IDE to
address and at least partially overcome aforementioned is-
sues. These enhancements aim at easing software navigation
and at generally improving program comprehension while
working with software systems in the Smalltalk IDE. We

Extension Problem area

Smart Groups Working set, context representation
Opening multiple methods Working set, context representation
Navigation history Working set, context representation
Test integration Working set, context representation
Package view Distributed artifacts
Hierarchy view Distributed artifacts
Automatic selection Distributed artifacts
Dependencies, references Hidden dependencies
Icon Hidden dependencies
Traits integration Hidden dependencies
Source-code Management Integration Hidden dependencies
Hermion Behavioral information
AutumnLeaves Window plague

Table 2. Problem area covered and addressed by our IDE
extensions.

took the IDE OmniBrowser as the basis for our prototype
implementation due to its extensible design.

Table 2 summarizes the results of this paper, that is,
the specific problems addressed by the particular extensions
presented throughout the paper.

In the future, we will further work on the improvement of
the navigation issues mentioned in Section 2. The techniques
and enhancements presented in this paper certainly do not
completely solve these issues, thus we continue investigating
and analyzing how developers navigate software systems
in the IDE and want to identify further opportunities how
we can improve the navigation experience. After having
implemented new enhancements to the source navigation
in the Smalltalk IDE, we particularly want to validate the
concrete impact on productivity and navigation efficiency
resulting from these extensions. This goal also includes the
empirical evaluation of the work we already implemented
and presented in this paper by means of controlled empirical
experiments.

From the implementation point of view, we note that effi-
ciency of the IDE tools are an important issue, in particular
in Squeak and Pharo where UI widgets such as trees are not

11 2009/9/26



optimally implemented or where the package management is
not cleanly and tightly integrated in the system, yielding se-
rious performance penalties when accessing packages in the
IDE. Furthermore, all our extensions are heavily dependent
on the underlying framework for user interfaces (Morphic)
and browsers (OmniBrowser). This dependency seriously
hampers the freedom of choice concerning experimenting
with completely new navigation patterns as all these frame-
works offer very limited, traditional widgets and concepts
how to browse code. Future work thus also aims at entirely
rethinking browsing and navigation patterns and concepts by
means of developing our one foundation of frameworks to
efficiently and effectively do so.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the projects “Bring-
ing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 - Sept. 2010).

References
Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel

Wuyts. Meta-driven browsers. In Advances in Smalltalk — Pro-
ceedings of 14th International Smalltalk Conference (ISC 2006),
volume 4406 of LNCS, pages 134–156. Springer, August 2007.
ISBN 978-3-540-71835-2. doi: 10.1007/978-3-540-71836-9
3. URL http://scg.unibe.ch/archive/papers/
Berg07cOmnibrowser.pdf.

Andrew P. Black and Nathanael Schärli. Traits: Tools
and methodology. In Proceedings ICSE 2004, pages
676–686, May 2004. doi: 10.1109/ICSE.2004.1317489.
URL http://scg.unibe.ch/archive/papers/
Blac04aTraitsTools.pdf.

Gilad Bracha. Executable grammars in Newspeak. Electron. Notes
Theor. Comput. Sci., 193:3–18, 2007. ISSN 1571-0661. doi:
10.1016/j.entcs.2007.10.004. URL http://bracha.org/
executableGrammars.pdf.

Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe
Marschall. Sub-method reflection. In Journal of Object
Technology, Special Issue. Proceedings of TOOLS Europe
2007, volume 6/9, pages 231–251. ETH, October 2007.
URL http://www.jot.fm/issues/issue_2007_
10/paper14http://www.jot.fm/issues/issue_
2007_10/paper14.pdf.

Eclipse03a. Eclipse platform: Technical overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

Adele Goldberg. Smalltalk 80: the Interactive Programming Envi-
ronment. Addison Wesley, Reading, Mass., 1984. ISBN 0-201-
11372-4.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications (OOPSLA’97), pages 318–
326. ACM Press, November 1997. doi: 10.1145/263700.

263754. URL http://www.cosc.canterbury.ac.nz/

˜wolfgang/cosc205/squeak.html.

Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th inter-
national conference on Aspect-oriented software development,
pages 159–168, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-042-6. doi: 10.1145/1052898.1052912.

Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-
evolving code and design with intensional views — a case
study. Journal of Computer Languages, Systems and Structures,
32(2):140–156, 2006. URL http://prog.vub.ac.be/
Publications/2005/vub-prog-tr-05-26.pdf.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The
story of Moose: an agile reengineering environment. In
Proceedings of the European Software Engineering Confer-
ence (ESEC/FSE’05), pages 1–10, New York NY, 2005.
ACM Press. ISBN 1-59593-014-0. doi: 10.1145/1095430.
1081707. URL http://scg.unibe.ch/archive/
papers/Nier05cStoryOfMoose.pdf. Invited paper.

David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting
runtime information in the IDE. In Proceedings of the 16th Inter-
national Conference on Program Comprehension (ICPC 2008),
pages 63–72, Los Alamitos, CA, USA, 2008. IEEE Computer
Society. ISBN 978-0-7695-3176-2. doi: 10.1109/ICPC.2008.
32. URL http://scg.unibe.ch/archive/papers/
Roet08bDynamicInfoIDE.pdf.

Janice Singer, Robert Elves, and Margaret-Anne Storey. Nav-
Tracks: Supporting navigation in software maintenance. In In-
ternational Conference on Software Maintenance (ICSM’05),
pages 325–335, Washington, DC, USA, sep 2005. IEEE Com-
puter Society. ISBN 0-7695-2368-4. doi: 10.1109/ICSM.2005.
66.

Strongtalk. The strongtalk type system for smalltalk. URL http:
//bracha.org/nwst.html. http://bracha.org/nwst.html.

VisualWorks. Cincom Smalltalk, September 2003.
http://www.cincom.com/scripts/smalltalk.dll/.

Doug Way. Whisker: The O-O stacking browser, Decem-
ber 2005. www.mindspring.com/˜dway/smalltalk/
whisker.html.

Roel Wuyts. Star Browser.
http://www.iam.unibe.ch/∼wuyts/StarBrowser/.

12 2009/9/26


