
Preliminary Steps Towards Modeling
Blockchain Oriented Software

Henrique Rocha
Inria Lille - Nord Europe
Villeneuve D’ascq, France
henrique.rocha@gmail.com

Stéphane Ducasse
Inria Lille - Nord Europe
Villeneuve D’ascq, France
stephane.ducasse@inria.fr

ABSTRACT
Even though blockchain is mostly popular for its cryptocurrency,
smart contracts have become a very prominent blockchain appli-
cation. Smart contracts are like classes that can be called by client
applications outside the blockchain. Therefore it is possible to de-
velop blockchain-oriented software (BOS) that implements part of
the business logic in the blockchain by using smart contracts. Cur-
rently, there is no design standard to model BOS. Since modeling is
an important part of designing a software, developers may struggle
to plan their BOS. In this paper, we show three complementary
modeling approaches based on well-known software engineering
models and apply them to a BOS example. Our goal is to start the
discussion on specialized blockchain modeling notations.

CCS CONCEPTS
• Software and its engineering → Designing software; Entity re-
lationship modeling; Unified Modeling Language (UML); •Applied
computing → Business process modeling;

KEYWORDS
Blockchain, Modeling, Smart Contracts, UML, BPMN, ER Model
ACM Reference Format:
Henrique Rocha and Stéphane Ducasse. 2018. Preliminary Steps Towards
Modeling Blockchain Oriented Software. In Proceedings of the 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB’18). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3194113.3194123

1 INTRODUCTION
Blockchain has become very popular recently due to the general
adoption of cryptocurrencies [12]. Blockchain provides a platform
for monetary interactions without the need of a central trusted
authority [1, 10, 12, 17]. Cryptocurrencies like Bitcoin [14] and
Ether [6] are common enough to be recognized among most people.

Roughly speaking, “blockchain is a globally shared, transactional
database” [7]. Although far from a traditional database, this simple
definition can provide a good point-of-view on blockchain. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WETSEB’18, May 27, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5726-5/18/05. . . $15.00
https://doi.org/10.1145/3194113.3194123

blockchain database is managed by a peer-to-peer network where
all peers store a complete copy of the database. Each record in this
database is a block that is linked to the previous one forming a
sequence. The blocks are immutable, which promote trust because
the records cannot be altered or deleted.

Even though blockchain technology is mostly recognized for
its cryptocurrencies, it has been used for other applications as
well [3, 4, 9, 11, 13]. A very prominent application of blockchain is
managing smart contracts [12].

Smart contracts are programs written in Turing-complete lan-
guages that run on the blockchain platform [1, 10, 12]. If we follow
the analogy that blockchains are like databases, then smart con-
tracts are like stored procedures since they execute procedural
programming in the blockchain data. However, a better analogy
is to see smart contracts as classes, because they are composed of
data attributes and functions [7]. Moreover, a contract can extend
another through inheritance just like classes in object-oriented
programming.

Once a contract is deployed in the blockchain, it can interact with
other contracts or client applications. Client applications employ
proxies to remotely call contract functions just as calling any other
object. This simple way to interact with contracts allows developers
to implement applications that combine standard developing with
blockchains. For instance, we could implement all business logic
in smart contracts while the user interface is implemented as a
desktop or web application. Likewise, we could also create a hybrid
blockchain application, where only a part of business logic uses
blockchain. The term blockchain-oriented software (BOS) defines
these types of applications that work with blockchain [19].

However, currently, there is no standard notation available to
design or model BOS. A system using blockchain could need a
specialized notation to represent it [19]. The lack of specialized
notation can over-complicate the adoption or migration to BOS,
since the interaction between the blockchain and the application
will not be properly specified. In this paper, we present three com-
plementary modeling approaches for BOS based on the following
modeling standards: Entity Relationship Model, Unified Modeling
Language, and Business Process Model and Notation. We also use
a simple application scenario to illustrate our modeling as well
as describing the advantages and disadvantages of each modeling
approach. Our goal is to begin the discussion on the lack of specific
modeling notations to specify BOS and provide a starting point for
discussion and better notations.

The remainder of this paper is organized as follows. In Section 2,
we present some basic concepts on the modeling standards that we
use in this paper. Section 3 describes our BOS application example,
its blockchain contract, and the three modeling approaches applied

https://doi.org/10.1145/3194113.3194123
https://doi.org/10.1145/3194113.3194123
https://doi.org/10.1145/3194113.3194123

WETSEB’18, May 27, 2018, Gothenburg, Sweden Rocha et al.

to specify parts of it. In Section 4, we compare and discuss the
modeling for BOS. Section 5 presents the related work. Finally,
Section 6 presents the conclusions and future work ideas.

2 BACKGROUND
In this section, we present basic concepts to three modeling stan-
dards that we employ on this paper: Entity Relationship Model
(Section 2.1), Unified Modeling Language (Section 2.2), and the
Business Process Model and Notation (Section 2.3).

2.1 Entity Relationship Model
The entity-relationship model (ER model) was originally proposed
by Chen [2] and it is a popular high-level design formodeling data in
relational databases [5, 20]. The ER model is used in the conceptual
design for databases and it defines entities and the relationship
among them. The ER model can also be extended to be used in a
database’s logical design. In such case, the model is enhanced with
additional detail on how the data and the relations will be stored in
the database. Moreover, we can graphically express the database
logical structure and design defined in the modeling by drawing as
a diagram [20].

2.2 Unified Modeling Language
Unified Modeling Language (UML) [16] is a general purpose stan-
dard to specify, describe, design, visualize, and document software
systems. The UML standard is a unification of many object-oriented
modeling notations from the 1980s and 1990s. Therefore, UML was
specially designed to model software programmed using the object-
oriented paradigm [8]. The Object Management Group (OMG) con-
trols the UML standard since 1997.

UML defines 13 diagrams that can be classified into three cat-
egories: Structure, Behavior, and Interaction. UML structure dia-
grams are composed of Class Diagram, Object Diagram, Compo-
nent Diagram, Composite Structure Diagram, Package Diagram,
and Deployment Diagram. Behavior diagrams include Use Case Di-
agram, Activity Diagram, and State Machine Diagram. Finally, the
interaction diagrams are the following: Sequence Diagram, Com-
munication Diagram, Timing Diagram, and Interaction Overview
Diagram [8, 16].

2.3 Business Process Model and Notation
Business Process Model and Notation (BPMN) [15] is a graphical
notation to specify business process. BPMN is also controlled by the
OMG (i.e., the same group that controls UML). Roughly speaking,
a BPMN presents a flow-oriented representation of a software re-
quirement [18]. Therefore, BPMN is useful to describe and capture
the functional behavior of a requirement.

3 MODELING
In this section, we present our modeling approaches applied to a
BOS. First, we describe a BOS example and its smart contract as
a scenario for our modeling (Section 3.1). Second, we present a
data driven approach to model our example (Section 3.2). Third,
we show a structure driven approach using UML class diagram
(Section 3.3). Finally, we present a process driven modeling using
BPMN (Section 3.4).

3.1 Application Example
We will use a simple BOS as an example for our modeling ap-
proaches. Let’s suppose a store that wants to create a fidelity point
program. The store already has a web application to manage and
sell its products. By using smart contracts, the fidelity points can
be exchanged freely among clients without the need of the store’s
involvement. We need to use blockchain accounts to increase the
security on the contracts and link those accounts to the store’s
regular client database.

The fidelity points requirements are similar to the cryptocur-
rency example for smart contracts [7]. Listing 1 shows the contract
with the basic functions for the fidelity points.

Listing 1: Solidity Store Points Contract
1 pragma solidity ^0.4.18;
2

3 contract FidelityPoints {
4 mapping (address => uint) private points;
5 address private owner;
6

7 event Sent(address from, address to, uint
amount);

8

9 function FidelityPoints() public {
10 owner = msg.sender;
11 }
12

13 function createPoints(address receiver, uint
amount) public {

14 assert(msg.sender == owner);
15 points[receiver] += amount;
16 }
17

18 function send(address receiver, uint amount)
public {

19 assert(points[msg.sender] >= amount);
20 points[msg.sender] -= amount;
21 points[receiver] += amount;
22 Sent(msg.sender, receiver, amount);
23 }
24

25 function consumePoints(address consumer, uint
amount) public {

26 assert(msg.sender == owner);
27 assert(points[msg.sender] >= amount);
28 points[consumer] -= amount;
29 }
30

31 function balance() public view returns (uint) {
32 return points[msg.sender];
33 }
34 }

Listing 1 starts by defining the Solidity version (line 1) and the
contract definition (line 2). In Solidity, address is a primitive type
that refers to an ethereum account (i.e., a user or another contract).
Mappings are like hash tables, which we used to store the fidelity
points (unsigned integers or uint) and using the client addresses as
key (line 4). Moreover, we created an event to allow applications to
react to changes performed by this contract (line 7). The constructor
(lines 9-11) stores the contract creator for security checks later. The
rest of the contract defines the following functions:

Preliminary Steps Towards Modeling
Blockchain Oriented Software WETSEB’18, May 27, 2018, Gothenburg, Sweden

• createPoints (lines 13-16). This is the only function that cre-
ates new points, therefore only the contract owner can in-
voke it. The assert function checks for a condition and throws
an exception if such condition is not met. In this particular
function, we assert that the person executing it is the con-
tract owner.

• send (lines 18-23). This function allows one client to send
his points to another one. We assert that the user does not
spend more points than he/she has. We also call the Sent
event, which we previously defined, to allow applications to
react to the transfer.

• consumePoints (lines 25-29). This function allows the store to
consume points from one client (probably because the client
spent his fidelity points). We assert that only the contract
owner can invoke this function and also that the client has
sufficient points to be consumed.

• balance (lines 31-33). This function allows the client to check
his balance in our fidelity points. Since this function does not
change the state of the contract as it only returns a stored
value, we marked the function with the view keyword so it
does not cost anything for the client to execute it.

In a real software development scenario, it would be better to
plan and design the application before coding. However, since there
aren’t specific modeling notations or tools for BOS, we started
coding the contract based on our scenario requirements. We want
to model not only the smart contract but also its interactions with
our application.

3.2 Data Driven
Since blockchain is like a database, we could try to model it focusing
on its data. Therefore, we can specify the data in a BOS using an ER
model for the conceptual and logical design. If the BOS also uses a
relational database in its application (a common scenario) then we
can easily enhance the ER model for the relational database with
the blockchain data.

This data driven modeling approach has the advantage to be easy
to understand, use and capture data. Since ER modeling is a very
popular standard, most software engineers are already familiar with
its design. Another advantage is the possibility explicitly model the
link between the blockchain and the relational database. The main
disadvantage is that ER model can only capture data and it is not
able to model the functional structure and behavior. An important
part of a smart contract is not only data but also its functions and
behavior.

For example, lets model our contract data using an ER model
(Figure 1). Our smart contract needs to store the owner of the
contract and a list containing the points for each client. We model
the list as a one-to-many relationship in the ER model, but in the
contract, we implemented that as a mapping (Listing 1, line 4). The
mapping uses the client blockchain id (a primitive address type) as
a key to access the points. We also create a relationship between
the points in the blockchain and our private Client database, so
that we can keep track on our main application.

When we extend the ER model conceptual design (Figure 1) for
the logical design, we can specify the implementation of blockchain
and relational database artifacts for each entity (Listing 2). For

Figure 1: Store Points contract ER model example.

instance, we can specify the Point entity as a mapping in the logical
design (line 3). We can also place a foreign key to implement the
relationship between Point and Client (line 9, bcAddress attribute).
Therefore, the ER model can be used to specify the data in BOS. On
the other hand, we can see that most of the contract code (Listing 1)
is functions and very little is used for data. Thus, an ER model is
insufficient to design all aspects of a BOS.

Listing 2: Store Points ER model logical design
1 --- Blockchain
2 CONTRACT (owner: address,
3 point: mapping address=>uint)
4

5 --- Relational DB
6 CLIENT (id int primary key, name varchar(100),
7 address varchar(100), type int,
8 creation_ts timestamp,
9 bcAddress byte(20) foreign key)

3.3 Structure Driven
The UML notation has six diagrams to model the structure of object
oriented systems. Since smart contracts are very similar to classes,
we can use UML diagrams with little adaptation. Therefore we can
model an object oriented application and its blockchain structure
by using UML. One advantage of using UML structure diagrams
is that we can easily model and specify the functions and data
attributes on smart contracts. Moreover, since UML is a popular
modeling standard, it is easy for software engineers and developers
to understand it. The disadvantage of structure modeling is that
we can not specify the functional behavior of business process; for
that we would need behavior models or a methodology focused on
process.

For example, we present our contract (Listing 1) modeled as a
UML class diagram (Figure 2). The class diagram represents the
internal structure of the contract. In this example, we also model a
Client entity class similar to the ER model we showed earlier (Fig-
ure 1). In fact, we placed the attribute bcAddress in the Client entity
because of the relationship in the ER model (between Point and
Client). As we can see, there is no relationship between the Client
class and the contract, because the class diagram cannot capture the

WETSEB’18, May 27, 2018, Gothenburg, Sweden Rocha et al.

link between the data as the ER model. Moreover, class diagrams
relationships (e.g., aggregation, composition, etc.) may mislead de-
velopers on how to implement the interaction with the blockchain
and code superfluous (and costly) objects into the blockchain.

Figure 2: Store Points contract and client class diagram ex-
ample.

In Figure 2, we did not model other classes to not clutter the
diagram. However, if we model more classes and contracts together
in the same diagram, then we would need a special notation to
differentiate them for a better visualization. For instance, consider
that we improved the diagram with more classes for the application
domain (Figure 3). We used a small “chain” icon in the contract
graphical representation as a notation to more easily identify it as
a blockchain artifact.

Figure 3: Enhanced contract and client class diagram exam-
ple with special blockchain notation.

3.4 Process Driven
Although very useful, both Data and Structure Driven modeling
approaches cannot specify details of a process. When we deal with
BOS, a business process may need a detailed specification to help
developers and engineers implement it. BPMN is an appropriate
notation to specify business process. The main advantage is that we
can specify the process behavior easily. On the other hand, we are

not able to model complex data using BPMN. Another disadvantage
is that it is difficult to model an overview of the software using
BPMN, as we are focusing on specifying individual business process.

For example, let’s consider the business process of a client already
registered in our online store web application, and such client wants
to register for our blockchain fidelity program. We can use BPMN
to specify the process (Figure 4) and the swimlane notation (i.e., the
named box container also referred as pool) to specify interactions
with blockchain. We could also use an icon (similar to the one we
used for Figure 2) to highlight blockchain tasks.

4 DISCUSSION
As we can see from the previous section, all models have their
advantages and disadvantages when specifying BOS. The ER model
(Figure 1) is good at capturing the data elements and their relation-
ship. In fact, data driven modeling like ER model might be the only
suitable notation to specify data relationship between blockchain
and a private database. Since the data on blockchain is publicly
accessible, it is important to not expose important or sensible data
on smart contracts. Therefore, we carefully decide what to place
on the blockchain and then link the contract data to our private
(and possibly more secure) database. In our ER model example (Fig-
ure 1), the clients’ blockchain address and their amount of points
are exposed. However, it is not possible to acquire the clients’ name
and home address without accessing our private database. Both
blockchain and private database data are linked by the relationship
between the Point and Client entities, which translates to a foreign
key into the Client table (Listing 2, line 9).

The class diagram (Figure 2) can model the internal structure
of smart contracts. When we compare to the ER model, it has the
advantage to model not only data attributes but also the functions.
Since smart contracts functional behavior could be as important
as its data, we might need to model all the internal structure of a
contract. On the other hand, a class diagram is not suitable to model
all data relationship in a BOS. The relationship between the client
blockchain address (stored in the contract) and the Client entity
on the private database (Figure 1, and Listing 2) could be properly
modeled in the class diagram.

The BPMN notation (Figure 4) is best suited to specify business
process. Since the process behavior itself, in a BOS, could require a
more detailed design specification. When we compare the BPMN
to a class diagram or even an ER model, we can see that BPMN
cannot properly model complex data or the internal structure of
BOS artifacts. However, the swimlane notation is useful to model
the interaction between the application and the blockchain. Indeed,
BPMN might be the notation that requires least adaptations to
properly model a BOS business process.

5 RELATEDWORK
Porru et al. [19] argue that we need to develop specialized tech-
niques for BOS. The authors describe issues and challenges faced
when working with blockchain from a software engineering point-
of-view, and they propose ideas and practices to improve the state-
of-art on BOS. One of the ideas suggested by the authors was the
need of specializedmodeling for BOS.More specifically, they argued
that existing models could be adapted to better specify blockchain.

Preliminary Steps Towards Modeling
Blockchain Oriented Software WETSEB’18, May 27, 2018, Gothenburg, Sweden

Figure 4: Client registers for the fidelity program BPMN example.

This was the inspiration for our work were we modeled a simple
BOS example, which showed that current models are insufficient to
specify all aspects of BOS. We also suggest simple adaptations to
improve the modeling, but our main goal it is to start the discussion
on the modeling of BOS.

We could not find many research aimed at BOS modeling. Xu et
al. [21] argue that blockchain technology has many configurations
and variants and they present a taxonomy based on blockchain
properties and flowchart. They propose to use such elements to
guide and build an initial checklist. Such properties are for example
authority, storage and decentralization. Their outcome is a con-
figuration of a blockchain system with technical details such as
block creation time, block size, consensus algorithms. We plan to
introduce the concerns of authority, storage and trust relationships
as important property to be represented by our modeling approach.

As far as we know, our paper is the one of the first to begin
modeling blockchain software. Most research related to smart con-
tracts and blockchains leans towards security. For example, Luu
et al. [12] investigate the security problems of executing Solidity
smart contracts and propose solutions to make the contracts more
secure. Bhargavan et al. [1] proposed a framework to convert smart
contract to their own functional language F*, which was design
to better verify the correctness and security of smart contracts.
Juels et al. [10] analyse criminal smart contracts that are unsecured
contracts and practices and raising the awareness of developing
countermeasures against criminal contracts.

6 CONCLUSION
The popularity of cryptocurrencies made blockchain a hot topic
among common people, practitioners, developers, and researchers.
Another prominent blockchain application is smart contracts; pro-
grams that store a state and execute functions. By using smart
contracts, we can develop software that maintains part of its data
or logic in the blockchain. For this type of software, we use the
term blockchain-oriented software (BOS).

In this paper, we present a simple example of a BOS, an online
store creating a fidelity point program based on blockchain. For the
BOS example, we took three modeling routes each focusing on one

particular aspect: data driven, structure driven, and process driven.
For the data driven, we created an ER model which is mostly used
to specify data in relational databases. For the structure driven,
we selected the class diagram as our model among all six UML
structure diagrams. For the process driven, we used the BPMN
notation. Every approach has its strengths and weakness, and a
specialized notation for BOS is needed to properly design it. Our
goal in this paper is not to propose a general solution, but to start
the discussion and raise awareness to the lack of modeling notations
for BOS.

We are working on the following directions for future work:
(i) use a real BOS software development, to model and document
its design process; (ii) verify if the behavior and interaction UML
diagrams may also need adaptations to properly specify BOS; (iii)
create a tool support for modeling BOS, as well as reverse engineer
code into models, and use models to auto-generate code.

ACKNOWLEDGMENT
This work was supported by Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council, CPER Nord-Pas
de Calais/FEDER DATA Advanced data science and technologies
2015-2020. This research was also supported by UTOCAT.1

REFERENCES
[1] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-

lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. For-
mal Verification of Smart Contracts: Short Paper. In 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS ’16). ACM, New York,
NY, USA, 91–96. https://doi.org/10.1145/2993600.2993611

[2] Peter Pin-Shan Chen. 1976. The Entity-relationship Model&Mdash;Toward
a Unified View of Data. ACM Trans. Database Syst. 1, 1 (March 1976), 9–36.
https://doi.org/10.1145/320434.320440

[3] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD ’17). ACM, New York, NY, USA, 1085–1100. https://doi.org/10.1145/
3035918.3064033

[4] Stefan Dziembowski. 2015. Introduction to Cryptocurrencies. In 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,
New York, NY, USA, 1700–1701. https://doi.org/10.1145/2810103.2812704

1https://www.utocat.com/en, verified 2018-03-06

https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/2810103.2812704
https://www.utocat.com/en

WETSEB’18, May 27, 2018, Gothenburg, Sweden Rocha et al.

[5] Ramez Elmasri and Shamkant Navathe. 2010. Fundamentals of Database Systems
(6th ed.). Addison-Wesley Publishing Company, USA.

[6] Ethereum Foundation. 2014. Ethereum’s white paper. (2014). https://en.wikibooks.
org/wiki/LaTeX/Bibliography_Management

[7] Ethereum Foundation. 2017. Solidity Documentation Release 0.4.18. (2017).
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf

[8] Martin Fowler. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3 ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[9] Adiseshu Hari and T. V. Lakshman. 2016. The Internet Blockchain: A Distributed,
Tamper-Resistant Transaction Framework for the Internet. In 15th ACMWorkshop
on Hot Topics in Networks (HotNets ’16). ACM, New York, NY, USA, 204–210.
https://doi.org/10.1145/3005745.3005771

[10] Ari Juels, Ahmed Kosba, and Elaine Shi. 2016. The Ring of Gyges: Investigating
the Future of Criminal Smart Contracts. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 283–295. https://doi.org/10.1145/2976749.2978362

[11] Benjamin Leiding, Parisa Memarmoshrefi, and Dieter Hogrefe. 2016. Self-
managed and Blockchain-based Vehicular Ad-hoc Networks. In 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (UbiComp
’16). ACM, New York, NY, USA, 137–140. https://doi.org/10.1145/2968219.2971409

[12] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In CCS’2016 (ACM Conference on Computer and
Communications Security).

[13] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. 2015. Demystifying
Incentives in the Consensus Computer. In 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15). ACM, New York, NY, USA,
706–719. https://doi.org/10.1145/2810103.2813659

[14] Satoshi Nakamoto. 2009. BitCoin: A peer-to-peer electronic cash system. (2009).
bitcoin.org

[15] Object Management Group. 2011. Business Process Model And Notation. (2011).
http://www.omg.org/spec/BPMN/2.0 Version 2.0, document formal/11-01-03.

[16] Object Management Group. 2015. Unified Modelling Language. (2015). http:
//www.omg.org/spec/UML/2.5 Version 2.5, document formal/15-03-01.

[17] Russell O’Connor. 2017. Simplicity: A New Language for Blockchains. In Proceed-
ings of the 2017 Workshop on Programming Languages and Analysis for Security
(PLAS ’17). ACM, New York, NY, USA, 107–120. https://doi.org/10.1145/3139337.
3139340

[18] ChunOuyang,MarlonDumas,WilM. P. VanDer Aalst, Arthur H.M. Ter Hofstede,
and Jan Mendling. 2009. From Business Process Models to Process-oriented
Software Systems. ACM Trans. Softw. Eng. Methodol. 19, 1, Article 2 (Aug. 2009),
37 pages. https://doi.org/10.1145/1555392.1555395

[19] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. 2017.
Blockchain-oriented Software Engineering: Challenges and New Directions.
In Proceedings of the 39th International Conference on Software Engineering
Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, 169–171. https:
//doi.org/10.1109/ICSE-C.2017.142

[20] Abraham Silberschatz, Henry Korth, and S. Sudarshan. 2011. Database Systems
Concepts (6 ed.). McGraw-Hill, Inc., New York, NY, USA.

[21] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba.
2017. A Taxonomy of Blockchain-Based Systems for Architecture Design. In
IEEE International Conference on Software Architecture (ICSA). 243–252. https:
//doi.org/10.1109/ICSA.2017.33

https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf
https://doi.org/10.1145/3005745.3005771
https://doi.org/10.1145/2976749.2978362
https://doi.org/10.1145/2968219.2971409
https://doi.org/10.1145/2810103.2813659
bitcoin.org
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/1555392.1555395
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSE-C.2017.142
https://doi.org/10.1109/ICSA.2017.33
https://doi.org/10.1109/ICSA.2017.33

	Abstract
	1 Introduction
	2 Background
	2.1 Entity Relationship Model
	2.2 Unified Modeling Language
	2.3 Business Process Model and Notation

	3 Modeling
	3.1 Application Example
	3.2 Data Driven
	3.3 Structure Driven
	3.4 Process Driven

	4 Discussion
	5 Related Work
	6 Conclusion
	References

