
Accepted to IWST 2016

Phorms: Pattern Combinator Library for Pharo

Markiyan Rizun
Lviv National University of Ivan

Franko,
Inria, UMR 9189 – CRIStAL

mrizun@gmail.com

Gustavo Santos
Stéphane Ducasse

Inria, UMR 9189 – CRIStAL
University of Lille, CNRS

Centrale Lille, France
{firstname.lastname}@Inria.fr

Camille Teruel
Företagsplatsen

Stockholm, Sweden
camille.teruel@gmail.com

Abstract
Pattern matching is a common mechanism to provide analy-
sis and transformation of data structures. Such an approach
basically checks whether the containing elements of a data
structure are constituents of a pattern, described by the de-
veloper. This paper is a step towards having seamless object-
oriented pattern matching, which would be applicable to any
object in Pharo. We present a pattern matching library, called
Phorms, which enables users to compose patterns using the
syntax of the Pharo programming language. In this library,
patterns are objects and therefore can be inspected and de-
bugged using existing Pharo tools. Our solution is extensible
unlike The Rewrite Engine – Pharo’s current pattern match-
ing facilities. Moreover, by treating patterns as first class
objects, our library provides more flexibility in the pattern
matching process.

Keywords pattern matching, abstract syntax tree, object-
oriented programming

1. Introduction
Pattern matching is one of “most expressive features” [4] of
functional programming, where it was originally introduced.
The main goal of pattern matching facilities in functional
programming is to facilitate definition of functions on in-
ductive data structures. For instance, consider the following
pattern matching example in OCaml.

Listing 1 shows a binary tree datatype declaration and a
function flip that transforms a tree by switching the branches
of each nodes. The implementation of this function com-
pletely relies on pattern matching facilities. The function is

[Copyright notice will appear here once ’preprint’ option is removed.]

1 type btree = Leaf of int | Node of btree * btree;;
2

3 let rec flip t = match t with
4 Leaf(n) -> Leaf(n)
5 | Node(t1,t2) -> Node(flip t2, flip t1);;

Listing 1: Flipping a binary tree in OCaml

composed of two patterns: the first matches a leaf and binds
its value to the variable n and the second matches a node and
binds its two branches to the variables t1 and t2.

Despite the fact that the application of pattern match-
ing facilities in Listing 1 is not appropriate for the object-
oriented approach, there is no doubt that pattern matching
brings great benefits to object-oriented programming lan-
guages [8, 13]. In fact, pattern matching has been seamlessly
integrated into some object-oriented languages, for example
in Newspeak [6] and Scala. The most common way to ex-
ploit pattern matching facilities in OOP is to decompose the
object data without breaking encapsulation, i.e., by not per-
mitting the direct access to attributes of an object.

Currently, pattern matching facilities already exist in
Pharo [2, 3], via the The Rewrite Engine, a tool that fo-
cuses on source code rewriting.1 Since 1996, The Rewrite
Engine [11, 12] has been widely used as an efficient support
for code refactoring and code rewriting in Pharo, Dolphin
Smalltalk, VisualWorks and VASmalltalk. However this tool
can only express patterns of source code and not arbitrary
objects, i.e., patterns can only match Abstract Syntax Tree
(AST) nodes.

In this paper, we propose a general pattern matching li-
brary, i.e., the library is able to match not only AST nodes,
but any object in Pharo. This work is inspired by the pattern
matching library proposed by Geller et al. [6] for Newspeak.
Our library, called Phorms, enables users to operate patterns
as any other first-class objects, which has many advantages.
Patterns can be reused and composed, new patterns and pat-
tern combinators can be implemented by third-party libraries

1 http://www.refactory.com/the-rewritetool

1 2016/8/15

http://www.refactory.com/the-rewritetool

1 "matching part"
2 | ‘@temporaries |
3 ‘@.Statements.
4 ‘@receiver foo: ‘@argument.
5

6 "rewriting part"
7 | ‘@temporaries |
8 ‘@.Statements.
9 ‘@receiver bar: ‘@argument.

Listing 2: AST rewriting rule with The Rewrite Engine

and the standard development tools can be used to debug pat-
terns.

The paper is organized as follows: Section 2 presents
our criteria to evaluate pattern matching and how these fa-
cilities are currently proposed in Pharo. Section 3 present
our solution – Phorms– and some examples of usage. Then,
Section 4 presents a case of AST transformation using The
Rewrite Engine and Phorms. We discuss our plans for fu-
ture work in Section 5. Finally, we present related work in
Section 6 and Section 7 concludes this paper.

2. Motivating Example
In this section, we start by discussing the desirable features
of a pattern matching library specifically tailored for object-
oriented programming.

These features will help us evaluate Phorms and compare
it with other pattern matching solutions e.g., The Rewrite
Engine. Then, we present an example of pattern matching
with The Rewrite Engine in Section 2.2.

2.1 Requirements for a pattern matcher for OOP
In this paper, we establish the following criteria to evaluate
a pattern matching library.

Composition. Composable patterns promote the reuse of
existing (and potentially complex) patterns to create new
ones.

Genericity. It refers to the ability of a library to match and
transform any object via patterns, either created by the
developer or already existing in the language.

Extensibility. A pattern matching library must be extensi-
ble, i.e., one should have the possibility to specify and
add custom pattern classes to the library.

Debuggability. With complex patterns, it is valuable to be
able to debug the matching process to understand why a
subject that is expected to be matched by a pattern is not.

2.2 Existing Solution – The Rewrite Engine
In this section, we provide an example of existing pattern
matching in Pharo, e.g., The Rewrite Engine.

Listing 2 presents a code rewriting example, i.e., pattern
matching is used to find and transform pieces of code.

This example is made of two patterns: the first one spec-
ifies which AST nodes should be matched and the second
one specifies how they should be rewritten. The first pattern
matches block or method AST nodes whose last statement
is a message send with selector #foo. This block or method
node might have any number of temporary variables (line
2), then any number of unspecified statements (line 3) and
finally a message node with an arbitrary receiver, the selec-
tor (foo:) and one arbitrary argument (line 4).

The second pattern in the rewriting part indicates how a
matched node is rewritten. It keeps everything unchanged
except the final message whose selector is replaced by bar:.

2.3 The Rewrite Engine Evaluation
The Rewrite Engine has been widely adopted since 1996 [11]
as part of the Refactoring Browser. Both these tools have
been available on all major Smalltalk implementations. The
Rewrite Engine provides effective means to rewrite code. For
instance, The Rewrite Tool [10] uses this engine to perform
code rewriting.

Additionally, The Rewrite Engine design proposes a syn-
tax to express patterns as close as possible to the code. As
such, it introduces only a few new elements into Pharo’s syn-
tax. In the example we can clearly see that the rewrite rule is
close to usual Pharo code.

Nevertheless, while The Rewrite Engine is a powerful tool
for code transformation it has some limits.

Composition. Unfortunately, it is not possible to compose
rules created with The Rewrite Engine.

Genericity. While one is able to effectively rewrite source
code using The Rewrite Engine, it is not possible to match
and transform any other objects than ASTs.

Extensibility. Programmers are not able to extend the func-
tionality of The Rewrite Engine.

Debuggability. The Rewrite Engine does not provide any
tools to debug or inspect rules.

3. Phorms
In this section, we present the main components in Phorms
architecture, namely the phorms. Phorms are patterns that
can be used on both sides of a rewrite rule: on the left-hand
side, the matching side, to describe which kinds of objects
are to be matched and on the right-hand side, the transfor-
mation side, to describe what objects are to be constructed
in case of successful matches.

Each phorm type is implemented as a subclass of the
Phorm class. Such classes must implement two methods:
matchIn: aContext for matching and transformIn: aContext for
transformation. These methods take a context object as ar-
gument. The context gives access to contextual information
such as the subject, i.e., object being matched, and values of
bound variables from previous matches. These method can
succeed, in which case they return the context passed in ar-

2 2016/8/15

gument with a potentially updated subject, or they can fail, in
which case they return a failure object which embeds infor-
mation about where and why the match/reconstruct failed.

The behavior of the matchIn: and transformIn: is a subject
to one law: if the transformIn: method succeeds, it should
update the context with a subject that makes the matchIn:
method succeed. That is, the responsibility of the transformIn:
is to transform the subject into a new subject that the phorm
matches.

In addition to pattern matching, the main superclass
Phorm also provides the basic API to compose patterns. For
instance, the #and: message composes two patterns into an
instance of AndPhorm class, which succeeds if both sub-
patterns succeed, and the #named: message wraps a pattern
into an instance of NamedPhorm that binds a the subject of a
successful match to a given variable name.

We describe in the following sections some of the core
phorms and object deconstruction/reconstruction.

3.1 Simple Phorms
Equality phorms Equality phorms are constructed with
expressions of the type obj equals (or equivalently obj as-
Phorm).

Used on the matching side, an equality phorm matches
object equal to the given obj object. Used on the transforma-
tion side an equality phorm updates the subject to the given
obj object or leaves it unchanged if the subject is already
equal to obj.

There are also identity phorms that work similarly to
identity comparison instead of equality.

Conjunctive and disjunctive phorms Conjunctive phorms
are constructed with expressions of the type p1 & p2 & ... &
pn and disjunctive phorms with expressions of type p1 | p2 |
... | pn).

A conjunctive phorm matches a subject if all its sub-
phorms p1,p2,...,pn do. A disjunctive phorm matches a sub-
ject if one of sub-phorms does. These phorms are typically
not used on transformation side, but they can be.

Named phorms A named phorm wraps another phorm and
gives a name to successful matches for later reference in the
transformation side. These phorms are created with expres-
sions of the type p named: #aName. There is also a shorter
version in case p is the Any phorm: #aName var.

Used on the matching side, a named phorm binds #aName
to the subject if p succeeds and if #aName is not yet bound.
In case #aName is already bound the subject must be equal to
the value bound to #aName. This allows to express patterns
where different elements of the subject must be equal. Used
on the transformation side, a named phorm produces the
value bound to #aName

List phorms List phorms are the core phorms used for
object deconstruction and reconstruction.

Object deconstruction and reconstruction is performed
by sending two messages to the target object: (i) #decon-

struct must return a collection of attributes of the receiver
(i.e., the deconstructed object), and (ii) #reconstruct: must re-
turn a new instance of the same class than the receiver us-
ing an array of attributes as argument. These two messages
are already implemented for Pharo’s AST and for built-in
Pharo classes such as Association, Collection, Point, etc.. For
instance, Point»#deconstruct returns an array with two coor-
dinates of this point and Point»#reconstruct: returns an in-
stance of Point, which is created using the argument, an array
with two numbers for setting x and y coordinates. Clearly,
users are welcome to implement #deconstruct and #recon-
struct: messages for their custom objects.

List phorms deconstruct the subject and try to match the
resulting list of constituents according to its sub-phorms. A
list phorm is constructed with expressions of the type p1 , p2
, ... , pn.

Used on the matching side, a list phorm succeeds if p1
matches the first constituent of the deconstructed subject, p2
matches the second, etc.. Used on the transformation side,
a list phorm reconstructs the subject with an array of all its
sub-phorms productions. For example the phorm 1 asPhorm,
2 asPhorm, 3 asPhorm will produce the array #(1 2 3) an use
it to reconstruct the subject. The previous phorm can also be
noted using an array and each element of the array is coerced
to a phorm: #(1 2 3) asPhorm

While the default list phorm seen above tries to match
one element of the collection with one sub-pattern, the star
list pattern may match any number of elements with one sub-
pattern. For example the phorm 1 asPhorm, 2 asPhorm star, 3
asPhorm matches the array #(1 2 2 2 3) as well as the array
#(1 3). The star list phorm implements a lazy and non-blind
matching: it will match as few objects as possible to make
the entire list phorm match successfully.

Rewriting phorms Rewriting phorms wrap two other phorms
to describe a transformation: first phorm is used as the
matching side and the second one as the transformation
side. Alternatively, the transformation side can be defined
by a block, which takes the context as argument. Rewriting
phorms are constructed with expressions of the type match-
Phorm ==> transPhorm.

4. Evaluation
In this section we present a concrete example of AST trans-
formation that we implement using both The Rewrite Engine
and Phorms. At the end of this section we discuss and com-
pare both approaches based on the proposed example. List-
ing 3 presents source code that we would like to rewrite.

1 boolVar
2 ifTrue: [var := 1]
3 ifFalse: [var := 2]

Listing 3: Fragment of code that we want to rewrite

3 2016/8/15

Listing 4 presents what we would like to produce after
rewriting. Concretely, we move the assignment to the vari-
able var outside the message to #ifTrue:ifFalse:.

1 var := boolVar
2 ifTrue: [1]
3 ifFalse: [2]

Listing 4: Resulting code after rewriting

4.1 Matching
To begin with, we need to match the code presented in
Listing 3: the use of message send #ifTrue:ifFalse with the
same variable in assignment in both arguments. We also need
to bind the variable to a name, to reference it in the rewriting
part. Listings 5 and 6 present the matching patterns using
The Rewrite Engine and Phorms, respectively.

1 ‘@condition
2 ifTrue: [‘variable := ‘@value1]
3 ifFalse: [‘variable := ‘@value2]

Listing 5: Pattern matching using The Rewrite Engine

1 { #condition var.
2 #ifTrue:ifFalse:.
3 { #(). #(). { { #var var. #value1 var } }.
4 #(). #(). { { #var var. #value2 var } } }
5 } asPhorm

Listing 6: Pattern matching using Phorms

Both patterns match the code in Listing 3 in a similar way.
Using The Rewrite Engine, the pattern definition looks

similar to the code itself. We generalize both receiver of
the message #ifTrue:ifFalse (line 1) and the assigned variable
(lines 2 and 3). Additionally, we also generalize the assigned
value to be any expression, as indicated with the expressions
`value1 and `value2.

Using Phorms, we first specify the pattern that matches
the #ifTrue:ifFalse: message. Similarly to the example with
The Rewrite Engine, we generalize the receiver (line 1).
Then we define the arguments (lines 3 and 4), two blocks
that should have an assignment to the variable as statement,
but no arguments nor, temporaries.

Clearly, the pattern that we implemented using Phorms
is more complicated than the one created with The Rewrite
Engine. Nevertheless, our solution gives more control in
context of describing structure of object and its properties.
Phorms provides a possibility for the developer to specify
every detail of object in a pattern, therefore the developer
will be certain of the matching results. On the other hand,
the patterns created with The Rewrite Engine may give am-
biguous results in matching.

4.2 Rewriting
Listings 7 and 8 present the code rewriting step using The
Rewrite Engine and Phorms, respectively.

1 ‘variable := ‘@condition
2 ifTrue: [‘@value1]
3 ifFalse: [‘@value2]

Listing 7: Code rewriting using The Rewrite Engine

1 RBAssignmentNode of: {
2 #var var.
3 RBMessageNode of: {
4 #condition var.
5 #ifTrue:ifFalse:.
6 { RBBlockNode of: { #(). #(). #value1 var }.
7 RBBlockNode of: { #(). #(). #value2 var } }
8 }
9 }

Listing 8: Code rewriting using Phorms

Using The Rewrite Engine, as well as for pattern spec-
ification, the rewriting specification is closer to the source
code. We specify an assignment with the variable that was
inside the block (`@variable, line 1). Then we remove the
assignments inside the blocks altogether. This can be com-
pared to direct editing of usual code.

Using Phorms, it is necessary to reconstruct the assign-
ment node. To accomplish that, we specify which classes
will be responsible for reconstructing each AST node e.g.,
the receiver (line 4), block (lines 6 and 7), etc.. Specifi-
cally when reconstructing the blocks, they will contain the
assigned value. Similarly, when reconstructing the assign-
ment node, we do it outside the message send, using the new
message as argument.

Clearly, Phorms solution is more verbose than the syntax
of The Rewrite Engine. However, thanks to the extensibil-
ity of Phorms, it is straightforward to define new composi-
tion methods (as extension-methods) on the Phorm class for
ASTs equivalent to the verbose definition of the previous ex-
ample. The previous matching and transformation example
can be rewritten more concisely as shown in Listing 9.

1 "matching side"
2 #condition var
3 selector: #ifTrue:ifFalse:
4 arguments: {
5 { #var var assignTo: #value1 var } asBlock.
6 { #var var assignTo: #value2 var } asBlock }
7 ==>
8 "transformation side"
9 #var var assignTo: (

10 #condition var
11 selector: #ifTrue:ifFalse:
12 arguments: {
13 { #var var assignTo: #value1 var } asBlock.
14 { #var var assignTo: #value2 var } asBlock }

Listing 9: Matching and transformation using AST-specific
composition methods

4.3 Phorms Evaluation
In this section we present advantages of our solution that it
has over The Rewrite Engine.

4 2016/8/15

Composition. In Phorms, the patterns are first-class objects,
which allows one to compose them. On the other hand,
the internal implementation of patterns in The Rewrite
Engine does not support such functionality.

Genericity. Unlike The Rewrite Engine, our pattern match-
ing facilities may be used not only to rewrite ASTs, but
also to match and transform any other objects.

Extensibility. While The Rewrite Engine is sealed and can-
not be extended, our solution enables users to add to
Phorms their own pattern matching facilities in the form
of new phorms and new composition methods (as shown
in Listing 9).

Debuggability. As Phorms are made out of first class ob-
jects, the standard Pharo development tools like the in-
spector or the debugger can be used directly. Debugging
patterns from The Rewrite Engine is a bit more tedious.

5. Future Work
To improve debugging, we plan to extend the Pharo’s In-
spector to generate a visualization of the pattern. This way,
users would be able to inspect the structure of the pattern,
i.e., its sub-patterns, separately and more easily. Finally, we
would like to use Phorms instead of The Rewrite Engine in
our previous development – The Rewrite Tool.2 This integra-
tion will allow us to transform code via The Rewrite Tool
regardless of AST implementation.

6. Related Work
Tom is an embedded language that provides pattern matching
facilities to the host language (such as C, Java, Python,
C++, C#). It allows one to manipulate tree structures and
XML documents. Tom has powerful matching capabilities
and it is easy to use. However, pattern matching facilities are
provided as syntactic constructs and not as first-class objects.
The patterns are not as easily composable than with Phorms.

OMeta [13] is an object-oriented embedded language for
pattern matching. Like Phorms, it is able to handle arbi-
trary objects. As an embedded language, it relies on a spe-
cific syntax, more concise than the one of Phorms. OMeta
promotes reuse by means of inheritance between grammars,
where Phorms promotes reuse by composition of patterns.

PetitParser [2] is a parser combinator library. Its design
is close to the one of Phorms. Simple parsers can be com-
posed into more complex ones by means of various com-
binators. However, PetitParser is more specifically tailored
for parsing string of characters. Parsing can be seen as a spe-
cial case of pattern matching focused on transforming lists
(list of characters) into trees (parse trees). Phorms and Pe-
titParser thus focus on different domains even if they func-
tionalities overlap.

2 Available here: http://smalltalkhub.com/#!/~MarkRizun/RewriteTool/. A
video tutorial can also be found here: http://myfuncoding.blogspot.fr/

7. Conclusion
In this paper, we introduced an object-independent pattern
matching library for Pharo. Phorms enables one to match
and transform any objects, either composed by the developer
or already existing in the environment. We presented exam-
ples of composition of patterns for AST transformation, in
order to compare our solution with an existing library, i.e.,
The Rewrite Engine. The patterns built with Phorms are first-
class objects, which allows one to debug and inspect them.
Also, we highlight the fact that our library is easily extensi-
ble, which gives an opportunity for other developers to de-
velop and add their own pattern matching to Phorms. In our
evaluation, Phorms proved to be as efficient as The Rewrite
Engine. We identified some challenges for future work con-
cerning usability of our library specifically when matching
and transforming the AST.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020.

References
[1] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and

A. Reilles. Tom: piggybacking rewriting on java. In Proceed-
ings of the 18th international conference on Term rewriting
and applications, RTA’07, pages 36–47, Berlin, Heidelberg,
2007. Springer-Verlag. URL http://dl.acm.org/citation.cfm?id=
1779782.1779787.

[2] A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Deep
Into Pharo. Square Bracket Associates, 2013. ISBN
978-3-9523341-6-4. URL http://rmod.inria.fr/archives/books/
Berg13a-PBE2-ESUG-2013-09-06.pdf.

[3] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009. ISBN 978-3-9523341-4-
0. URL http://pharobyexample.org/,http://rmod.inria.fr/archives/
books/Blac09a-PBE1-2013-07-29.pdf.

[4] P. Ferrara. Static type analysis of pattern matching by abstract
interpretation. In 12th IFIP WG 6.1 International Conference
and 30th IFIP WG 6.1 International Conference on Formal
Techniques for Distributed Systems, pages 186–200, 2010.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1995.

[6] F. Geller, R. Hirschfeld, and G. Bracha. Pattern matching
for an object-oriented and dynamically typed programming
language. Master’s thesis, Universitätsverlag Potsdam, 2010.

[7] P. Klint, T. van der Storm, and J. J. Vinju. Rascal: A domain
specific language for source code analysis and manipulation.
In SCAM, pages 168–177, 2009.

[8] J. Liu and A. C. Myers. Jmatch: Iterable abstract pattern
matching for java. In 5th International Symposium on Practi-
cal Aspects of Declarative Languages, pages 110–127, 2003.

5 2016/8/15

http://smalltalkhub.com/#!/~MarkRizun/RewriteTool/
http://myfuncoding.blogspot.fr/
http://dl.acm.org/citation.cfm?id=1779782.1779787
http://dl.acm.org/citation.cfm?id=1779782.1779787
http://rmod.inria.fr/archives/books/Berg13a-PBE2-ESUG-2013-09-06.pdf
http://rmod.inria.fr/archives/books/Berg13a-PBE2-ESUG-2013-09-06.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf

[9] LPM. Lazy pattern matching.
http://moscova.inria.fr/ maranget/papers/warn/warn005.html.

[10] M. Rizun, J.-C. Bach, and S. Ducasse. Code transformation
by direct transformation of asts. In International Workshop on
Smalltalk Technologies, 2015. URL http://rmod.inria.fr/archives/
papers/Rizu15a-CodeTransformation.pdf.

[11] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96,
Chicago, IL, Apr. 1996.

[12] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS),
3(4):253–263, 1997.

[13] A. Warth and I. Piumarta. OMeta: an object-oriented language
for pattern matching. In DLS ’07: Proceedings of the 2007
symposium on Dynamic languages, pages 11–19, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-868-8. . URL
http://www.tinlizzie.org/~awarth/papers/dls07.pdf.

6 2016/8/15

http://rmod.inria.fr/archives/papers/Rizu15a-CodeTransformation.pdf
http://rmod.inria.fr/archives/papers/Rizu15a-CodeTransformation.pdf
http://www.tinlizzie.org/~awarth/papers/dls07.pdf

	Introduction
	Motivating Example
	Requirements for a pattern matcher for OOP
	Existing Solution – The Rewrite Engine
	The Rewrite Engine Evaluation

	Phorms
	Simple Phorms

	Evaluation
	Matching
	Rewriting
	Phorms Evaluation

	Future Work
	Related Work
	Conclusion

