
Code Transformation by Direct Transformation of ASTs

M. Rizun
Lviv National University of Ivan Franko,
RMoD team, Inria Lille – Nord Europe

mrizun@gmail.com

J.-C. Bach S. Ducasse
RMoD team, Inria Lille – Nord Europe,

University of Lille, CRIStAL, UMR 9189
{jeanchristophe.bach,stephane.ducasse}@inria.fr

Abstract
Software evolves to be adapted to the environment, due to
bugs, new features and design changes. Code transforma-
tions can be done manually, but that is a tedious and error-
prone task. Therefore automated tools are used to assist de-
velopers in this maintenance operation.

The Pharo environment includes its own refactoring tool
— the Rewrite Engine — that allows one to transform meth-
ods by directly specifying parts of the AST to be rewritten.
In addition, it proposes a parse tree transformation engine.
However this tool and the used DSL to express the patterns
for matching and transforming trees are complex to under-
stand and master. In this context, writing a transformation
rule is not a trivial task.

We present a graphical tool built on the top of the Rewrite
Engine — the Rewrite Tool — that abstracts the creation
of transformation rules and proposes high-level AST oper-
ations that are simpler to understand than syntactic descrip-
tions. It helps to automate the process of code transformation
with a user-friendly interface.

Keywords AST, refactoring, rewriting, code transforma-
tion

1. Introduction
Code transformation is a core activity in software engineer-
ing. Most of the time of the development process is spent
on software maintenance [DDN02]. While simple localized
code modifications can be manually done without the help
of any tool, it is dangerous and time-consuming for multiple
changes in a row. Not only is manual refactoring error-prone,
but the refactorings are not reusable for future changes.
Therefore it is necessary to use tools to assist and automate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWST’15, July 15–16, 2015, Brescia, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3857-8/15/07. . . $15.00.
http://dx.doi.org/10.1145/2811237.2811297

code transformations during the whole application devel-
opment life-cycle. Most current IDEs support refactorings
[RBJO96, Tic01]. In addition to mere refactorings, some
IDEs support the definition of specific code transformations
[VCM+13]. These transformations are not struct refactor-
ings in the sense that they do not have to ensure behavior
preservation [FBB+99].A constraint that a transformation-
assistant has to fulfill is to be understandable without too
much effort. To be helpful and effective, the helping tool
should not be more difficult to understand and to use than
the code to be refactored.

In this paper, we introduce such a tool — the Rewrite
Tool1 — to ease the definition of code transformations in
Pharo. The Rewrite Tool helps the developer express trans-
formation rules to apply on methods. The tool does not ex-
pose a complex DSL driven syntax but offers simple oper-
ations on AST (Abstract Syntax Tree) nodes such as trans-
form node into a variable. These rules can be saved for a
later reuse. Thus the Rewrite Tool helps to improve long-
term maintenance efficiency by building a set of refactoring
rules.

The paper is organized as follows: Section 2 describes
the context and the problem starting from an example. Then,
Section 3 presents our solution — the Rewrite Tool — and
its use. Section 4 discusses about features, limitations and
future work about the tool. Section 5 concludes this paper.

2. Context and problem description: intuitive
tooling is mandatory

Code transforming process consists of the following steps:

1. Definition of the code to change (or its shape)

2. Definition of the desired target code (or its shape)

3. Searching all occurrences of the code to replace in the
source code

4. Replacing all found occurrences by target code

Doing this process manually can only be considered for
very specific modifications, which are localized in the source
code. Due to the risks and cost of code transformation and
1 Available here: http://smalltalkhub.com/#!/~MarkRizun/RewriteTool/ A
video tutorial can also be found here: http://myfuncoding.blogspot.fr/

http://smalltalkhub.com/#!/~MarkRizun/RewriteTool/
http://myfuncoding.blogspot.fr/

refactoring, a manual process on real applications with large
codebase is not effective. Therefore, tools are mandatory to
handle such tasks.

Such tools have at least two features to offer to be us-
able in real environments: a mechanism to express different
parts of a transformation (we could consider it as a relation
between a source — left-hand side — and a target — right-
hand side) and a mechanism to execute the transformation
on different scopes.

Well-known tools from the Unix community such as sed,
awk or perl offer this feature. However, they consider code
as character strings without any structure, therefore their
search&replace language are expressed as flat patterns. As
a consequence, developers have to be very careful with
their pattern definitions, when performing massive trans-
formations on source code to avoid disasters. Even a sim-
ple renaming can be dangerous. A good counter-measure
is to consider source code as a tree-structure entity in-
stead of a flat plain text. That is exactly the way tools
from the XML world [W3C99, RCD+11], compilers, in-
terpreters and more generally program transformation tools
(such as ASF+SDF [BDH+01], Tom [BBK+07], RASCAL
[KvdSV09, KHVDB+11, KvdSV11] and Spoofax [KV10])
are managing code. This implies to define the shape of the
structure the developers want to transform. This shape is
usually named a pattern and is expressed with a specific
language. This way to express a transformation has also its
own drawback: to define a pattern, one has to know and
understand the structure of the tree.

As a modern and fully-tooled environment, Pharo sup-
ports creating rules that allows one to perform automated
code transformations. This feature is provided by the Rewrite
Engine2. This engine makes it possible to create rewrite rules
that perform code transformations at different levels of com-
plexity.

Consider a non-trivial example of transformation of a
method in which some collection is initialized. Then, if the
size of this collection is greater than 3, some calculations
are done and a new element is added to this collection. After
that, the result is computed. Assume the method contains the
source code shown in listing 1.

All in all, this code has few problems that should be
rewritten. First, it could be made more readable by adding a
guard clause, i.e., collection size >= 3 ifFalse:
[ˆself]. As a result all computations from the ifTrue:
[] block can be extracted, and put after guard clause. More-
over, temporary variables can be moved from the ifTrue:
[] block to temporaries list at the beginning of the method.
Second, instead of writing the assignment of the result
variable two times, it can be done once, by assigning it to re-
sult of the ifTrue: [] ifFalse: [] message. After
such transformation, the resulting code would be as illus-
trated by listing 2.

2 http://www.refactory.com/the-rewritetool

| collection result |
collection := LinkedList

newFrom: {1.2.3.4.5}.
collection size >= 3
ifTrue: [
| temp1 temp2 otherCollection |
otherCollection := {’a’.’b’.’c’}.
temp1 := collection size - 1.
temp2 := otherCollection size+1.
collection addLast: temp1 / temp2.
collection last = 1
ifTrue:
[result := self calculateResult]

ifFalse:
[result := ’Wrong element.’]]

Listing 1. Source code to transform

| collection result
temp1 temp2 otherCollection |

collection := LinkedList
newFrom: {1.2.3.4.5}.

collection size >= 3
ifFalse: [^self].

otherCollection := {’a’.’b’.’c’}.
temp1 := collection size-1.
temp2 := otherCollection size + 1.
collection addLast: temp1 / temp2.
result := collection last = 1
ifTrue: [self calculateResult]
ifFalse: [’Wrong element.’]

Listing 2. Resulting code after transformation

Obviously, doing such a transformation by hand in each
and every method of the system is a very time-consuming
and annoying task. Also, there is always a risk to make
a mistake during the transformation. Assume, we want to
carry out described transformation automatically. In order to
do that, the LHS and RHS parts of the rewrite rule have to
be implemented using Rewrite Engine. Matching and trans-
forming parts of rule should be implemented as shown by
listing 3. In this listing, all metavariables (variables used by
Rewrite Engine to match objects) are denoted by a backquote
character (‘) which can be associated to other symbols such
as #, @, . (dot), {} or another ‘. Semantics of this operators
are explained in table 1.

This rule is clearly non-trivial to implement, not to men-
tion that influential mistake may be made accidentally.
For instance, the programmer may miss a dot character
when declaring statement metavariable, and instead of state-
ment metavariable ‘.InitializationStatement he
declares ‘InitializationStatement metavariable.

http://www.refactory.com/the-rewritetool

"Left-Hand Side part"
| ‘@temporaries |
‘.InitializationStatement.
‘@condition1

ifTrue: [
| ‘@otherTemporaries |
‘@.Statements.
‘@condition2
ifTrue:

[‘‘@value := ‘‘@calculate]
ifFalse:

[‘‘@value := ‘#wrongLiteral]]

"Right-Hand Side part"
| ‘@temporaries ‘@otherTemporaries |
‘.InitializationStatement.
‘@condition1
ifFalse: [^self].

‘@.Statements.
‘‘@value := ‘@condition2

ifTrue: [‘‘@calculate]
ifFalse: [‘#wrongLiteral]

Listing 3. Pattern expressed with Rewrite Engine to capture
the method presented in listing 1

This represents a single variable, not a statement as we need.
Such an inattention leads to serious consequences. In the
previous example, the desired result will not be achieved,
as LHS part of rule will not match described source code.
When a rule with such a mistake is applied, no error or ex-
ception will be shown. Thus, the desired transformation will
not be made in the system.

Like similar tools, Rewrite Engine has its drawbacks: to
create rules, it uses a specific language, whose syntax can
be difficult to understand. Table 1 gives an overview of the
options that can be associated to the backquote character in
order to understand the pattern expression of listing 3. The
developer has to be careful when writing complex patterns,
to avoid any confusion between symbols. The dot symbol
expresses the statement for a metavariable after a ‘ or after
‘@, however it is still the instruction separator in Pharo with-
out any ‘. Another important point when using the Rewrite
Engine syntax is to carefully choose metavariable names, as
different metavariable names match different AST nodes.

Plus, when using a DSL, operation semantics may be
blurry. For instance, in the case of the Rewrite Engine, @ is a
construct whose semantics changes whether it is associated
to a backquote symbol or a dot symbol. In the general case
(and in documentation), @ is associated to list. However,
it rather means subtree when only used with ‘. Therefore,
a new Pharoer might be confused by the tool and only use
it by mimicing existing examples in a try&error pattern.

Symbol Explanation
matches any literal objects
. matches single statement

@ matches list of objects like statements, message
keywords, etc.

‘ when match is found, recursive search is done
inside matched node

Table 1. Summary of option symbols used in the Rewrite
Engine language and their semantics

This is obviously not an acceptable development process in
a professional environment.

3. Proposed Solution
To mitigate the problem exposed in section 2, the language
can be formalized, meaning disambiguated, but it still could
not be accessible to average programmers. Moreover, after
the language problem, comes the rule application one: with-
out any clear API or user interface, it is difficult to apply
rules to certain environment scope, i.e., packages, classes or
methods. Therefore, to take advantage of the power of the
Rewrite Engine, the rule application process demands an ex-
perienced developer. The solution most IDEs chose is to hide
complexity and difficulty behind an intuitive, understandable
and user-friendly interface. That is exactly the objective of
the Rewrite Tool: having an intuitive abstraction for the com-
plex and powerful Rewrite Engine.

Another attempt to write such a tool was done a few years
ago with Flamel3, but it was not maintained. Therefore we
decided to begin to write another one from scratch to ensure
a full understanding of the process. Our tool also focuses on
the usability and aims at developers, who are not necessarily
experimented senior Pharoers.

3.1 Rewrite Tool
We propose to introduce and detail Rewrite Tool — a tool
which offers a solution to code transformation problems.
It abstracts Rewrite Engine to take advantage of its power
for the creation of rules of different level of complexity,
without dealing with the syntax of the specific language.
Rewrite Tool also allows users to implement and apply code
transformations easily. It is consists of two parts:

• First one is rewrite rule builder (referenced as Builder,
shown in figure 1) that allows users to implement rewrite
rules using Rewrite Engine. The fact that rule creation
process does not require from users to know syntax of
this engine is an important and interesting aspect of the
tool.

• Second part is rewrite rule browser (referenced as Browser,
shown in figure 2): it enables users to instantly apply
rules to desired environment scope.

3 https://pharorwrules.wordpress.com/

https://pharorwrules.wordpress.com/

Figure 1. Rewrite Rule Builder

In the bottom section of Builder, a transformation rule
is displayed, i.e., matching and transforming parts of rule.
While the user creates a rule in this segment of Builder, he
can simultaneously see the result of applying this rule to
source code from input pane (top left panel). The result is
displayed in the output pane (top right panel). It means, that
once user modifies a rule, he instantly gets feedback in the
output pane. Both input and output panes are located above
the transformation rule part of Builder.

Concretely, Rewrite Tool offers operations which are ac-
cessible via a contextual menu. In addition to general ac-
tions such as Change, Rename, Undo/Redo, Generate Rule
and Browse rules, there are many operations that abstract
Rewrite Engine DSL, avoiding to write a pattern with the
dedicated syntax:

• Abstract condition: expresses a pattern with a condition
(in Pharo) on matched nodes

• Abstract literal: adds a metavariable representing a literal
(e.g., 1, ’a’, true, etc.)

• Abstract object: adds a simple metavariable to match a
simple object

• Abstract statement: allows the expression of pattern that
watches a statement

• Abstract statements: allows the expression of a sequence
of patterns

• Abstract temporaries list: matches a list of temporary
variables

These operations have to be used in the left-hand panel
and in the right-hand panel to build the source and target
patterns composing the transformation rule.

3.2 Rewrite Tool at work
In the following subsection, we describe rewrite rule imple-
mentation process. Assume that the goal is to transform each
piece of code that uses the construction illustrated in list-
ing 4.

result := a < b
ifTrue: [a]
ifFalse: [b]

Listing 4. Source code to be refactored

The code transformation should change it to a better im-
plementation as in listing 5 that uses max:.

result := a max: b

Listing 5. Expected result of the transformation

Transformation rule writing. In this example, two objects,
possibly numbers are compared. Actually, we are not inter-
ested in any detailed information about these objects. In or-
der to create a rule that will do the transformation as pre-
sented, we use the Builder. In the input pane we put an ex-
ample of the source code, that we desire to transform. As
well, we have to set the same code in left-hand side part of
transformation rule. Next, we put code that we want to have
as a result of code transformation, into right-hand side part
of the transformation rule. Now, the Builder is ready to work
with the rewrite rule itself. For now, in transformation rule
section, we have very specific rule, which will change only
those places, where specific objects are used, i.e., result,
a and b. However, we would like to have a rule that will
work in general case, and change each occurrence of such a
construction independantly of the objects which are used in
it. In order to make it, we should select the result variable
in matching part of rule, right-click on it and execute Ab-
stract object action. The same manipulation has to be done
with a and b variables. Notice, that when we apply Abstract
object action on result or any other variable, it is replaced
in both - matching and transforming parts of the rewrite rule.
Also, if we had used the result variable more than once
in any part of rule, all occurrences of it would have been re-
placed. This little automation, among many others, helps to
avoid annoying and time consuming manual work. As a re-
sult of these actions, we get the code illustrated by listing 6
in the transformation rule section (bottom left panel).

Note that “@ characters have been generated and are
part of the Rewrite Engine language syntax. An informed
developer could also directly interact with it. Listing 7 shows
the right-hand side of the transformation rule (in the bottom
right panel).

‘‘@variable1:=‘‘@variable2 < ‘‘@variable3
ifTrue: [‘‘@variable2]
ifFalse: [‘‘@variable3]

Listing 6. Left-hand side of the transformation rule

‘‘@variable1 :=
‘‘@variable2 max: ‘‘@variable3

Listing 7. Right-hand side of the transformation rule

Now we have a complete rewrite rule, that is usable to
perform the desired code transformation. New variables,
which replaced result, a and b, are called metavariables.
They are used by the Rewrite Engine to match objects in
source code. Each metavariable is recognized by the parser
as a node of AST. Classes that represent metavariables are
in the AST-Core-Pattern package. For example, metavari-
able in listing 8 matches any sequence of statements. As a
reminder, table 1 in section 2 summarizes Rewrite Engine
syntax.

‘.@Statements

Listing 8. Metavariable matching any sequence of state-
ments

Rule creation. Clicking the "Generate rule" button finishes
the rule creation process. A name for the rule — and there-
fore the subclass of RBTransformationRule representing it
— is requested in order to generate it. This newly created
class can be used to perform code transformations program-
matically, or using Browser which is shown in figure 2.

Rule execution. Browser enables users to apply rule to
certain packages, classes and methods. Before performing
code transformation, the tool displays changes, which are
going to be done. Browser shows all rules, that are present in
the current image, in bottom part in the dropbox. All of them
can be reused for later code transformations. Programmer
can then select the rules and the transformation scope before
applying them.

3.3 AST code representation
In order to have reliable automated code transformations, we
work with the AST representation of code instead of manip-
ulating source code itself in the left-hand side and right-hand
side parts of the rule. The AST provides detailed information
about source code and its structure. For instance, figure 3, re-
spectively figure 4, illustrate the AST representing the code
of listing 6, respectively listing 7.

Every node of the AST, in the Rewrite Tool, provides its
own options during rule creation process. For example, when
user selects an instance of RBBlockNode, he has an option
to create a metavariable, that matches any block — instance

of RBPatternBlockNode. Manipulating AST instead of
text allows one to easily compare nodes for equality, which
is important to be able to massively transform code in a re-
liable way. As was mentioned earlier, when we apply Ab-
stract object action on a given variable X, all Xs references
are replaced in LHS and RHS parts of rewrite rule. This au-
tomation is achieved by comparing all AST nodes for equal-
ity with X variable node. Those changes are also traced: for
Rewrite Tool, AST keeps track of old nodes for each partic-
ular node. Meaning, that when user replaces X variable node
with some metavariable node, i.e., performs Abstract object
action on X variable, this new node has a property named
#oldNodes which contains X variable node. This infor-
mation is very valuable for traceability and undo actions on
specific nodes to return to the previous state.

The AST is obtained by parsing the source code with RB-
Parser RBParser» #parseRewriteExpression:.
RBParser also returns corresponding nodes for metavari-
ables as well. As a result, it is possible for us to get an AST
representation of any rewrite rule. Rewrite Tool functional-
ity is based on this, inasmuch any action, made with LHS or
RHS part of rule, has to be applied to AST.

4. Discussion and future work
As discussed in the article, in order to achieve reliable
and precise code transformation, Rewrite Tool, in partic-
ular Rewrite Engine, manipulates AST representation of
source code. This is the usual way to work in the pro-
gram transformation community where tools such as Ras-
cal [KvdSV09, KHVDB+11], Spoofax [KV10] and Tom
[BBK+07] have been developed for this purpose. In the
large Eclipse community, code transformations and refactor-
ing tools are usually plugins relying on AST manipulation
with JDT (Java Development Tools) as we do in Pharo.

Generally, transformation does not depend on code it-
self, instead it relies on AST representation of this code.
Although Rewrite Tool can currently only be used to create
rewrite rules at the method level, there is no reason not to be
able to transform any other entities represented by AST such
as packages or classes. It would allow developers to perform
higher level transformations. To work in this direction, a first
step before extending the Rewrite Tool would be the specifi-
cation of a full compilation unit in Pharo: an AST represent-
ing it, including packages and classes (not only methods),
should be defined. Then, Rewrite Tool could be adapted to
be able to perform transformations on such ASTs. For ex-
ample, transformations like "Move to class side" refactoring
could be managed by the tool. It would also allow one to ma-
nipulate a whole class hierarchy or package dependencies.
In the future, we would like to extend the Rewrite Tool in or-
der to be able to write major refactoring and program trans-
formations. It would give developer an user-friendly inter-
face for a complex task.

Figure 2. Rewrite Rule Browser

Figure 3. AST representation of listing 6 snippet (LHS)

Another interesting improvement of the tool would be the
extension of the graphical user-interface in a way the devel-
oper could draw the transformation, as in some tools that can
be found in the MDE or graph transformation communities.
It would imply to integrate a graphical view of the patterns
and a way to express an operation and a relation between
a source node and a target node. This kind of improvement

Figure 4. AST representation of listing 7 snippet (RHS)

would not be very useful for a skilled Pharoer but would be
interesting for casual programmers, beginners or users from
other communities.

5. Conclusion
To conclude, we have presented the Rewrite Tool which is
a pragmatic tool to assist developers in code transformation
activities. The base structure it manipulates through patterns
is AST. Rewrite Tool helps to automate code transformations
by providing an clear user-friendly interface for an efficient
but complex tool on which it relies (Rewrite Engine). It
allows one to express Pharo method transformations that can

be saved for a later reuse. In the future, it will be extended
for wider and higher level code transformations. This will
allow its use as core tool for program transformations.

References
[BBK+07] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-

Etienne Moreau, and Antoine Reilles. Tom: pig-
gybacking rewriting on java. In Proceedings of
the 18th international conference on Term rewrit-
ing and applications, RTA’07, pages 36–47, Berlin,
Heidelberg, 2007. Springer-Verlag.

[BDH+01] M.G.J. van den Brand, A. van Deursen, J. Heering,
H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language De-
velopment Environment. In Reinhard Wilhelm,
editor, CC’01: Proceedings of the 10th Interna-
tional Conference on Compiler Construction, vol-
ume 2027 of LNCS, pages 365–370. Springer-
Verlag, 2001.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nier-
strasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison Wesley,
1999. ordered but not received.

[KHVDB+11] Paul Klint, Mark Hills, Jeroen Van Den Bos, Tijs
Van Der Storm, and Jurgen Vinju. Rascal: From al-
gebraic specification to meta-programming. In Pro-
ceedings Second International Workshop on Alge-
braic Methods in Model-based Software Engineer-
ing (AMMSE), pages 15–32, Zurich, Suisse, 2011.

[KV10] Lennart C.L. Kats and Eelco Visser. The spoofax
language workbench: rules for declarative speci-
fication of languages and ides. SIGPLAN Not.,
45:444–463, October 2010.

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju.
Rascal: A domain specific language for source code
analysis and manipulation. In SCAM, pages 168–
177, 2009.

[KvdSV11] Paul Klint, Tijs van der Storm, and Jurgen Vinju.
EASY Meta-programming with Rascal. In João
Fernandes, Ralf Lämmel, Joost Visser, and João
Saraiva, editors, Generative and Transformational
Techniques in Software Engineering III, volume
6491 of Lecture Notes in Computer Science, pages
222–289. Springer Berlin / Heidelberg, 2011.

[RBJO96] Don Roberts, John Brant, Ralph E. Johnson, and
Bill Opdyke. An automated refactoring tool. In
Proceedings of ICAST ’96, Chicago, IL, April
1996.

[RCD+11] Jonathan Robie, Don Chamberlin, Michael Dyck,
Daniela Florescu, Jim Melton, and J Siméon.
XQuery Update Facility 1.0. W3C, March 2011.

[Tic01] Sander Tichelaar. Modeling Object-Oriented Soft-
ware for Reverse Engineering and Refactoring.
PhD thesis, University of Bern, December 2001.

[VCM+13] M. Vakilian, N. Chen, R. Z. Moghaddam, S. Ne-
gara, and R. E. Johnson. A compositional paradigm
of automating refactorings. In ECOOP’13, 2013.

[W3C99] W3C. XSL Transformations (XSLT) Version 1.0,
November 1999.

	Introduction
	Context and problem description: intuitive tooling is mandatory
	Proposed Solution
	Rewrite Tool
	Rewrite Tool at work
	AST code representation

	Discussion and future work
	Conclusion

