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Abstract

Recovering architectural documentation from code is
crucial to maintaining and reengineering software systems.
Reverse engineering and program understanding ap-
proaches are often limited by the fact that (1) they propose
a fixed set of predefined views and (2) they consider either
purely static or purely dynamic views of the application.
In this paper we present an environment supporting the
generation of tailorable views of object-oriented systems
from both static and dynamic information. Our approach
is based on the combination of user-defined queries which
allow an engineer to create high-level abstractions and to
produce views using these abstractions.

Keywords: architectural recovery, program understand-
ing, object-oriented reverse engineering, dynamic analysis

1. Introduction

Understanding the structure and behavior of an appli-
cation being developed or maintained is essential through-
out the software development cycle. While documentation
should address this need, it is often neither complete nor up-
to-date and may not at all address the particular questions an
engineer is interested in. Recovering such information from
an existing application is an important aid to engineers con-
fronted with a variety of software engineering tasks.

In reverse engineering we seek to recover information
about design decisions which were taken in developing the
software. Just as in forward engineering there is a recog-
nized need for a variety of modeling techniques, or archi-
tectural views [2][20], so in design recovery we need to be
able to generate a range of views mined from both structural
and behavioral information about the code.

Reverse engineering and maintenance of object-oriented
applications presents special challenges [33]. In contrast

to procedural applications, where a specific functionality is
often identified with a subsystem or module, the functional-
ity in OO systems comes from the cooperation of interact-
ing objects and methods. Detecting and deciphering these
interactions in the source code is not easy: polymorphism
makes it difficult to determine which method is actually ex-
ecuted at runtime, and inheritance means that each object
in a running system exhibits behavior which is defined not
only in its class, but also in each of its superclasses. This
difficulty is further aggravated in the case of dynamically
typed languages like Smalltalk where no type definition is
available at compile time and where methods are never stat-
ically bound.

Tools like Sniff+ [29] and CIA++ [11], have been de-
veloped to support object-oriented application understand-
ing based on static information only. Their use for reverse
engineering remains limited, however, because of the diffi-
culty of filtering relevant from irrelevant information in the
great mass of data extracted. Program slicing techniques
could aid in code understanding by focusing on a relevant
aspect of a system. But slicing techniques which work for
procedural languages do not adapt well to OO languages
since dynamic binding and polymorphism make it difficult
to obtain precise control flow information. Some of these
techniques have recently been extended to handle features
of statically typed OO languages [22][31].

The use of dynamic information is an attractive option
in the reverse engineering of object-oriented software for
several reasons: first, an executed scenario is like a pro-
gram slice – it limits our scope of investigation. Second,
dynamic information is always precise with respect to the
executed scenario. Thirdly, obtaining an execution trace is
relatively simple as compared with control flow analysis re-
quired for obtaining a program slice statically. Finally, an
execution trace provides some information which can never
be extracted from static analysis, such as the number of in-
stances or the multiplicity of relationships between objects.



The main argument against the use of dynamic informa-
tion is its incomplete coverage of the code. In the context
of reverse engineering and program understanding this is
not necessarily a disadvantage. For program understand-
ing we do not always need complete information: we need
information that helps us to form concepts about the soft-
ware structure and helps us to formulate new hypotheses
and questions.

In this paper we show how we use a logic programming
language to query both static and dynamic information and
to generate a range of high-level views for object-oriented
applications. Static information about the program is repre-
sented by a meta-model which reifies object-oriented no-
tions such as class, superclass, inheritance and attribute.
This structural information is complemented with behav-
ioral information in the form of traces from program exe-
cution.

Our approach is related to work in reverse engineering
and in the use of dynamic information for program un-
derstanding. Reverse engineering techniques traditionally
make use of static information only, restricting the kinds of
questions which can be answered. On the other hand, pro-
gram understanding approaches which use dynamic infor-
mation present very fine-grained views of an application.
Such approaches are confronted with the challenge of ex-
tracting high-level views from a program trace, and have so
far focused mostly on visualization techniques for the large
amount of information generated through program execu-
tion [13].

The contribution of our approach is to allow an engineer
to steer his or her investigation of the code through an it-
erative process similar to that described by Murphy [24].
This is possible because the engineer can specify declara-
tively the kinds of views which are of interest. An initial
view answers some questions and introduces new ones, and
views can be refined to different levels of abstraction. Since
dynamic information is available, as well as static, a large
range of questions can be answered.

To evaluate our approach we have applied it to several
Smalltalk applications – one case study is presented in the
paper. It demonstrated the flexibility of the approach, and
encouraged us to continue our work in refining the analysis
of dynamic information and the generation of views.

The rest of the paper is then structured as follows: In
section 2 we show how we model object-oriented programs
and their execution using a logic programming language. In
section 3 we describe how high-level views of an applica-
tion can be created based on the model presented in section
2. Section 4 presents a case study to illustrate our approach.
Section 5 briefly discusses the implementation, and section
6 presents related work. Finally, section 7 concludes with
a discussion, evaluating our contribution and pointing to di-
rection for future work.

2. Modeling OO Programs and Their Execu-
tion

We model static and dynamic aspects of an object-
oriented application in terms of logic facts. Both static and
dynamic information are stored in a single logic database.
This section presents a model for static and dynamic ex-
ecution information which allows us to form queries that
combine both aspects.

2.1. Basic Relations

Static Relations.We represent static information about an
application using Prolog facts (see table 1). This informa-
tion is extracted using static analysis tools and represented
in the FAMIX model (see section 5 for more details).

Table 1. The basic static relations

class(ClassName, SourceAnchor)
a class and its source artifact

superclass(SuperClass, SubClass)
an inheritance relationship

attribute(Class, AttributeName, AttributeType)
class defines an attribute of a certain type

method(Class, MethodName, IsClassMethod, Category)
a class defines a method belonging to a category

access(Class2, Attribute, Class1, Method)
an attribute of Class1 is accessed by Method of Class2

invocation(Sender, Method, ReceivedMethod, Candi-
dates)
Method of Sender invokes ReceivedMethod on one of the Candidates

Note that the parameterCandidates of predicateinvoca-
tion gives the potential receivers of the invocation; an empty
list means that no candidates were found within the classes
of the application.

Below is a sample which provides information about the
classEllipseFigure of the HotDraw framework [1].

(1) class(’EllipseFigure’,’HotDraw-Figures’).
(2) superclass(’Figure’,’EllipseFigure’).
(3) method(’EllipseFigure’,’displayFilledOn:’,false,’displaying’).
(4) access(’EllipseFigure’,’self’,’EllipseFigure’,’displayFilledOn:’).
(5) invocation(’EllipseFigure’,’displayFilledOn:’,’fillColor’,[’Figure’]).
(6) invocation(’EllipseFigure’,’displayFilledOn:’,’paint:’,[]).

Dynamic Execution. Dynamic information is represented
as facts about method invocations in a program’s execution
(table 2). These are numbered according to sequence order
(SN) and stack level (SL). Eachsend or indirectsend fact
corresponds to to the invocation of an observed method on
an instance of a class. As an example, the send facts listed
below record the method invocations that follow the invoca-
tion of EllipseFigure(instance#39).fillColor. This sequence



Table 2. The basic dynamic relations

send(SN, SL, Class1, I1, Class2, I2, M2)
an instance I1 of Class1 invokes method M2 on instance I2 of Class2.
SN is the sequence number of the event, and SL is the stack level of the
method call.

indirectsend(SN, SL, Class1, I1, M1, Class2, I2, M2)
an instance I1 of Class1 sends the message M1, which is unobserved.
The next observed invocation is the execution of method M2 on instance
I2 of Class2.

corresponds to one execution of the invocation described in
line 5 of the static information above.

send(5,7,’EllipseFigure’,39,’EllipseFigure’,39,’fillColor’).
send(6,8,’EllipseFigure’,39,’Drawing’,85,’fillColor’).
send(7,9,’Drawing’,85,’FigureAttributes’,26,’fillColor’).
send(8,9,’Drawing’,85,’FigureAttributes’,26,’fillColor’).
send(9,7,’EllipseFigure’,39,’Drawing’,85,’compositionBoundsFor:’).

2.2. Derived Relations

The basic relations represent facts about the source code
and its execution. This section presents rules which form
a logic layer above the database of facts and allow more
sophisticated queries about the structure and behavior of the
application.

Querying static information. Rule 1 below specifies that a
subclassSubclass overrides a methodMethod defined in a
classClass. It makes use of rules 2,commonMethod, which
says thatClass1 andClass2 define a method with the same
nameMethod, and rule 3,inHierarchy, which defines what
it means for a class to be in the inheritance hierarchy of
another class.

rule1: overrides(Class, Subclass, Method) :-
commonMethod(Class1, Class2, Method),
inHierarchy(Class, Subclass).

rule2: commonMethod(Class1, Class2, Method) :-
method(Class1, Method, IsClassMethod, ),
method(Class2, Method, IsClassMethod, ).

rule3: inHierarchy(Class, Class).
inHierarchy(Class,Subclass) :-

superclass(Class,Subclass).
inHierarchy(Class,Subclass) :-

superclass(Superclass,Subclass),
inHierarchy(Class,Superclass).

Querying dynamic information. Rule 4 below specifies
that an instance ofClass1 invokes, either directly or indi-
rectly, aMethod on an instance of another class,Class2.

rule4: invokesMethodClass(Class1,Class2,Method) :-
send( , ,Class1, ,Class2, ,Method),
not(equal(Class1,Class2)).

invokesMethodClass(Class1,Class2,Method) :-
indirectsend( , ,Class1, , ,Class2, ,Method),
not(equal(Class1,Class2)).

Queries combining static and dynamic information.
Rule 5 below specifies that an instance ofClass1 in-
vokes aMethod on an instance of a metaclass ofClass2,
where the Smalltalk category ofMethod is instance creation
(Smalltalk creation methods, defined at the class level, ap-
pear as methods of a metaclass in our model. There is an im-
plicit Smalltalk convention to group instance creation meth-
ods into a category namedinstance creation). Rule 6 allows
one to go up the inheritance hierarchy to find the Smalltalk
category of theMethod, in case it is not defined byMeta-
class. Rule 5 thus defines acreaterelationship between two
classes – an instance of classClass1 creates an instance of
Class2 – and will be used in the case study to generate a
creationview (see section 4).

rule5: sendsCreate(Class1,Class2) :-
invokesMethodClass(Class1,MetaClass,Method),
metaclassOf(MetaClass,Class2),
methodCategory(MetaClass,Method,’instance creation’).

rule6: methodCategory(Class,Method,Category) :-
method(Class,Method, ,Category).

methodCategory(Class,Method,Category) :-
inHierarchy(Superclass,Class),
method(Superclass,Method, ,Category).

Discussion. Though the model we present for repre-
senting OO programs and their execution is language-
independent, its interpretation is not. For example, in
table 1, the interpretation ofSourceAnchor in the rela-
tion class(ClassName,SourceAnchor) is language-specific.
In Smalltalk this will correspond to a class category, in
C++ to a file name and in Java to a package name. Fur-
thermore, whereas in Smalltalk no type information is
available for attributes, or for precise identification of re-
ceiver candidates in an invocation, this kind of informa-
tion can be easily obtained from statically typed languages
like C++ and Java. Thus, some of the rules for the de-
rived relations hold for all OO languages, for example
overrides(Class,Subclass,Method), whereas others, such as
sendsCreate(Class1,Class2) are more language specific.

A querying approach similar to ours, but using static in-
formation only, has also been applied by [18][27][36] where
rules are used for the detection of certain structures or their
violations. In Program Explorer [21] both static and dy-



namic information are represented as logic facts. The static
information is used to filter out execution events to be visu-
alized, in order to support the discovery of design pattern in
C++ code.

Our goal, however, is not only to detect certain struc-
tures. Our approach supports the specification and gener-
ation of a wide range of views of an application to aid in
architectural recovery. The next section discusses the spec-
ification and generation of views.

3. Generating High-Level Views

We define a view of an application as a set of components
and the connectors between them [28]. In a view two com-
ponentsC1 andC2 are connected by a connector of typeR
if there exists at least one membere1 of C1 and one mem-
ber e2 of C2 such thatR(e1,e2) holds. An elemente is a
member of at most one componentC. To specify a view we
then use Prolog rules to define:

(1) a clustering to componentsC1; C2; :::; CN , which de-
fines a partition onE = fe1; e2; :::emg, the set of all the
elementse in our model.

(2) a relationR : ExE!f0; 1g, which specifies whether
or not a certain relationship holds between two elements.

For example, to generate a view that shows the message
sends (from an executed scenario) between the Smalltalk
class categories of the HotDraw framework we define a re-
lationR and a clusteringC using rule 7 and 8 respectively,
as shown below. In this caseE is the set of all classes in the
HotDraw framework, and is defined implicitly by rule 7.
The Prolog querycreateView( invokesClass,allInCategory)
then generates a view which is displayed as a graph (using
the dot tool [17]), as seen in Figure 1. Each node in the
graph corresponds to a HotDraw class category and each
directed edgeA!B means that at least one instance of a
class in categoryA invokes a method on an instance of a
class in categoryB.

createView(invokesClass,allInCategory).

R rule7: invokesClass(Class1,Class2) :-
invokesMethodClass(Class1,Class2, ).

C rule8: allInCategory(Category,ListOfClasses) :-
setof(Class,class(Class,Category),ListOfClasses).

View 1: Dynamic invocations between class categories.

This view gives us a coarse idea of the communication
between parts of the HotDraw framework. However, since
the categoryHotDraw-Framework groups together some of
the main classes, this clustering must be broken down to get
a better understanding of the behavior of the application.
This will be elaborated on in section 4.

Our prototype tool, Gaudi, defines basic and derived re-
lations as described in section 2, as well as functions to
generate views using these relations. Using these relations

HotDraw-Figures

HotDraw-Framework

HotDraw-Constraints

HotDraw-Handles

HotDraw-Toolbar

HotDraw-Tools

Figure 1. Invocations between class cate-
gories

a large number of relationshipsR between basic elements
and of clusteringsC are possible. Some of these will be
illustrated in the case study which follows.

4. Case Study: Understanding HotDraw

In this section we demonstrate how our approach sup-
ports reverse engineering and program understanding by ap-
plying it on the HotDraw framework [1]. We show how Pro-
log rules are used to defineR andC for specifying and gen-
erating a range of views of the framework. We first briefly
present HotDraw. We then define a scenario and specify and
analyze some views generated from this trace information.

4.1. The HotDraw Framework

HotDraw is a framework for semantic graphic editors. It
allows for the creation of graphical editors which associate
the picture with a data structure - that is, changing the pic-
ture also changes the data structure. The HotDraw frame-
work consists of 114 Smalltalk classes and comes with sev-
eral sample editors.

From the documentation we learn that HotDraw is based
on the Model-View-Controller triad [19]; these roles are
played by the classesDrawing, DrawingEditor andDrawing-
Controller respectively. Furthermore, it has a few other basic
elements:tools are used to manipulate the drawing which
consists offiguresaccessed throughhandles. Constraints
are used to ensure that certain invariants are met, for exam-
ple, that two figures connected with a line remain connected
if one of the figures is moved.

Though HotDraw has been documented in several pub-
lications, including patterns for customizing the framework
[14], the overall view of the framework is never described.
Moreover, several changes have been made to the frame-
work over the years, in particular to the implementation of
tools and of constraints, and most of the documentation is
out of date with respect to the version 3.0 we are using.



4.2. A Scenario

To fill the logic database we parsed the code to obtain a
static model of HotDraw [30]. To obtain the dynamic infor-
mation we instrumented all the methods defined for classes
in the HotDraw categories using Method Wrappers[3], and
ran a typical scenario on one of the sample applications,
DrawingEditor, to generate an execution trace.

The scenario we ran consisted of the creation of several
kinds of figures (rectangle, rounded rectangle, bezier, text
and image), deletion of a figure, grouping and ungrouping
of two figures (rectangle and rounded rectangle), cutting
and pasting one of the figures, moving a simple figure and
a grouped figure, changing fill and line color of some of the
figures and finally quitting the application.

4.3. Reverse Engineering HotDraw

1. Refining the high-level model. Our starting point is
the initial view generated, as shown in Figure 1. This
view shows all traced communication between instances, as
grouped by the Smalltalk category to which the class be-
longs.
Analysis. This view gives us some rough idea of the rela-
tionships of the main parts of HotDraw. We see that that the
HotDraw-Toolbar component communicates only with the
HotDraw-Framework component, thatHotDraw-Constraints
communicates withHotDraw-Figures andHotDraw-Handles
as would be expected.

We make, however, two observations with respect to this
initial view. First, since theHotDraw-Framework category
contains several of the main HotDraw classes, in particular
DrawingEditor, Drawing andDrawingController, we want to
view these separately. Second, we do not necessarily want
to see all the invocations in one view. In particular, we want
to distinguish between invocations which create instances,
and those in which instances just invoke methods on each
other.

2. Clustering. We therefore first define a new compo-
nent breakdown as shown below. This clustering creates
five components:Figure, Handle, Constraint, Toolbar and
Tool. Classes which are not mapped into components are
considered themselves components. This clustering is used
to view the creation invocations and the simple invocations
(see Figure 2 and Figure 3).

component(’Figure’,L]) :- allInCategory(’HotDraw-Figures’,L).
component(’Handle’,L) :- allInCategory(’HotDraw-Handles’,L).
component(’Constraint’,L) :- allInCategory(’HotDraw-Constraints’,L).
component(’Toolbar’,L) :- allInCategory(’HotDraw-Toolbar’,L).
component(’Tool’,L) :- allInCategory(’HotDraw-Tools’,L).

3. Creation Invocations. To distinguish between invoca-
tions which create instances and other kinds of invocations,

we define a rule which specifies acreaterelationship be-
tween classes.

rule9: sendsCreate(Class1,Class2) :-
invokesMethodClass(Class1,MetaClass,Method),
metaclassOf(MetaClass,Class2),
methodCategory(MetaClass,Method,’instance creation’).

sendsCreate(Class1,Class2) :-
indirectsend( , ,Class1, ,’new’,Class2, , ).

The first part of rule 9 – same as rule 5 in section 2.2 –
captures the events in which a method belonging to thein-
stance creation Smalltalk method category is invoked on a
metaclass. The second part of rule 9 captures the events
in which Class1 sends an unobserved (not instrumented)
methodnew, resulting in an invocation of some method on
Class2. We now use the clustering defined above to create
creationview in which these components appear, as shown
in Figure 2.

createView(sendsCreate,component).

R sendsCreate(Class1,Class2).

C component(ComponentName,ListOfClasses).

View 2: Creation invocations between components.

Figure

Handle

ToolConstraint

CompositeFigure

Drawing

DrawingController

DrawingEditor

Toolbar

Figure 2. Creation invocations between com-
ponents

Analysis. This view (Figure 2) tells us thatDrawingEdi-
tor createsDrawing, which createsDrawingController, as ex-
pected from the Model-View-Controller pattern. In contrast
to the other figures which are created byTool, Composite-
Figure is created byDrawing. As the componentsHandle,
DrawingEditor andDrawingController all point toTool, there
is some ambiguity about the creation of this component. To
find more about the creation responsibilities there we must
split theTool component into its constituent parts to get a
closer look. We first, however, create a view of non-creation
invocations between the components.

4. Non-creation Invocations. We want to obtain a high-
level view of the simple calls between instances, as shown



in Figure 3. To do this we define a rulesendsSim-
ple(Class1,Class2) which gives us all the invocations be-
tween instances which do not correspond to creation invoca-
tions. (Note: for the sake of brevity, we do not give the def-
initions of the Prolog rules from here on). We also exclude
all invocations between an instance of a metaclass A and
an instance of a class A, making the assumption that these
invocations are probably associated with creation events.

createView(sendsSimple,component).

R sendsSimple(Class1,Class2).

C component(ComponentName,ListOfClasses).

View 3: Invocations between components.

Drawing

Figure

FigureAttributes

CompositeFigure DrawingController

Handle

Tool

Constraint Toolbar

DrawingEditor

DrawingEditor_class

Figure 3. Invocations between components

Analysis. From Figure 3 we see thatDrawing is central to
the application – it communicates withFigure, Tool, Han-
dle, DrawingEditor andDrawingController. FigureAttributes
is invoked only byDrawing andFigure, and as the name sug-
gests, probably stores attributes like line width and color
which are relevant for all figures in the drawing. Con-
straints, figures and handles form a triad: this makes sense
since we know already from the creation view that figures
create handles which in turn create constraints. TheTool-
bar component is relatively independent of the other com-
ponents and invokes only methods onDrawingController.

5. About Tools. We want to get a better understanding
of how tools are implemented. For this we generate a new
view which gives us the creation relationships between the
classes, rather than the components. Furthermore, we want
to know the multiplicity of these relationships. For exam-
ple, whether each instance of a figure create only one or sev-
eral instances of a tool. The view in Figure 4 below there-
fore displays two kinds of edges. A filled edgeA!B means
that there is an instance of class A which creates only one
instance of class B. A dashed edgeA!B means that there
is an instance of ClassA which creates several instances of
classB.
Analysis. From this view (Figure 4) we see that instances
of the classTool are created byDrawingEditor, and that one

Drawing

CompositeFigureDrawingController

HandleTool

DrawingEditor

ButtonDescription

EndToolState

ImageFigure

PositionConstraint

TextFigure

TrackHandle

ToolState

BezierFigureRectangleFigure RoundedRectangleFigure

Figure 4. Multiplicity of creation invocations

DrawingEditor creates several instances. The classDrawing-
Controller also seems to create one instance ofTool; looking
more closely at this, through querying about this creation
event, we discover that when the application starts up and
DrawingController is initialized, it invokesselectionTool on
an instance ofTool class. The other tools are created later
when theDrawingEditor creates a tool for each icon in the
toolbar.

In Figure 4 we had expected to see a creation relation-
ship betweenTool andToolState. To understand this sin-
gularity we browsed the code and found that theTool class
(Tool class in our model) instantiatesToolState at load-time
using class methods, and so instances ofToolState were cre-
ated before the instrumented application was run. We also
discovered by browsing thatTool class also creates an in-
stance ofEndToolState representing the last state of the tool
state machine. Going back to the view in Figure 4 we won-
dered why instances ofHandle andTrackHandle were cre-
ating more instances ofEndToolState. Again, by browsing
the code, we understood that aHandle contains a per de-
fault action that is to return to the end state of the tool state
machine.

6. Tool, ToolState, SimpleTransitionTable. We now
have an inkling about the implementation of tools us-
ing state machines. To understand this in greater depth
we create a view which shows the communication be-
tween instances. By detecting the invocationsendCre-
ate(ToolState,RectangleFigure)we identify a trace sequence
corresponding to a mini-scenario around the creation of an
instance ofRectangleFigure. We then display the invoca-
tions between instances (Figure 5) in a form similar to a
UML collaboration diagram [2]: invocations are numbered
sequentially in the order they occur; missing numbers cor-
respond to self sends - these have been omitted in order to
make the graph more comprehensible. The one dashed edge
corresponds to a creation event.

Since the methods being invoked do not appear in this
view1, we generate a view which clusters method of a class

1Our initial view labeled the edges with the name of the method being
invoked, but the resulting graph is difficult to display here.
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Figure 5. Instance invocations around cre-
ation of a Rectangle figure

A which are called by class B in our mini-scenario. The re-
sulting view is displayed in Figure 6. It is to be interpreted
as follows: on the instance ofTool, the instance ofDrawing
invokes the methodpassInputDown, the instance ofDraw-
ingController invokeshandleEvent and so on.

Tool
Drawing

passInputDown
DrawingController

handleEvent:
ToolState

cursor:
cursorPointFor:

drawing
valueAt:

valueAt:put:

ToolState
Tool

evaluateIn:event:
isEndState

nextStateForEvent:tool:

Drawing
ToolState

add:

DrawingController
Drawing

currentTool
handleEvent:

RectangleFigure
Drawing
container:

preferredBounds

SimpleTransitionTable
ToolState

nextStateForTool:event:

Figure 6. Method groupings according to in-
voking class

Analysis. With the help of figure 6 and by browsing the
code, we interpret this collaboration: when a user event
happensDrawing invokesDrawingController.currentTool to
get the identity of the appropriate tool. It then passes in-
put down to theTool and tells theDrawingController to han-
dle the event. TheDrawingController then tells theTool to
handle the event. TheTool consults with the current tool
stateToolState/5398 (which in turn consults theSimple-
TransitionTable) to get the next tool state for the event. It
then tells the appropriate stateToolState/7253 to handle the
event.ToolState/7253 creates an instance ofRectangleFig-
ure, and tells theDrawing to add this figure to itself.Draw-
ing then repairs itself by askingRectangleFigure about its
bounds.

4.4. Lessons Learned

This experiment in reverse engineering HotDraw shows
that our approach supports the exploration of object-
oriented applications. The clustering of entities allowed us
to obtain several views with a different granularity going
from sets of classes grouped together to interaction between
instances. Moreover, the combination of static and dynamic

information helped to narrow our understanding following
the scenario.

A view works as a catalyst for generating questions about
the studied system and helps the engineer to focus the inves-
tigation of the code. It confronts the engineer with a new
model to compare to his or her initial mental model and as-
sumptions about the system. A view not only helped us to
understand HotDraw by showing relationships between the
entities, such as the creation between components, but also
by provoking questions about the absence of expected rela-
tionships or the presence of unexpected ones.

We have presented views as a combination of a simple
relationshipR(e1; e2) and a clusteringC. Our prototype al-
lows us to display also relationships in which arcs between
components are labeled. We are as well investigating differ-
ent kinds of views and how they are best displayed graphi-
cally, within the limitations of a simple graph layout tool.

5. Implementation

Our environment for query and view recovery has been
constructed as an integration of tools for extraction, analysis
and visualization.

yes 
| ?-:

Dotty

MethodWrappers

Smalltalk VM

Moose Tool
Famix Meta Model

Smalltalk VMSmalltalk Application

Dynamic Facts

Static Facts

Specifications

Parse Code

Code Instrumentation + Execution 

Views

Queries

Prolog Engine

GAUDI

Figure 7. View recovery from Smalltalk appli-
cations

We used the MOOSE tool to parse the Smalltalk code
and represent it in the FAMIX model (FAMoos2 Informa-
tion EXchange model, see [30]). This model defines a core
data model for object-oriented concepts – Class, Method,
Attribute and InheritanceDefinition– plus the necessary as-
sociations between them – Invocation and Access, and can
be extended using meta-modeling techniques.

The Smalltalk applications were instrumented using
Method Wrappers [3], which allow instrumentation at the
level of individual methods. The tracing information ob-
tained from executing an application was then written to a
file as Prolog facts. Gaudi, written in SICTUS Prolog [25],
consists of a set of rules defining relations and clusters used

2The FAMOOS ESPRIT project investigates tools and techniques
for transforming object-oriented legacy systems into frameworks. See
http://www.iam.unibe.ch/�famoos/



to create the views, and of functions to generate views. The
dot tool [17] was used to display the views generated by
Gaudi.

Discussion. We have applied our approach so far on
Smalltalk applications. It could, however, easily be adapted
to other class based object-oriented languages like C++ and
Java. Our current model does not support concurrent ob-
jects; one way to deal with concurrency would be to intro-
duce the notion of process in the meta model and to attach
the execution instances to these processes.

6. Related Work

Although some work on program analysis tools [6] and
debuggers [23] is related to ours, these kinds of tools have
a different goal than reverse engineering tools and are not
well adapted to creating high-level models and revealing
overall structures in the software. Here we relate our work
to research on reverse engineering, the use of dynamic in-
formation for program understanding and declarative rea-
soning about program structure.

Reverse engineering.Reverse engineering approaches all
seek to represent the software at a higher level than that of
the information which is directly extracted from the code.
They differ, however, in their solutions to the following
main issues: the data model on which the tool operates,
the strategy for creating a high-level model and the kinds
of views offered. The MANSART tool [12], as well as the
approach described in [10], requires information obtainable
from an abstract syntax tree (AST) of the program, and uses
’recognizers’ to detect language-specific clich´es associated
with specific architectural styles. Each style can then be
viewed as a simple graph. Rigi [35] and the reflexion model
tool [24] both use any set of relations extracted from the
code. The Rigi tool incorporates automatic clustering, but
also allows user defined grouping of the source model. It
allows for hierarchically embedded views of different re-
lations and presents a sophisticated user interface for ma-
nipulating these. The Reflexion model approach expects an
engineer to define a high-level model and a declarative map-
ping from the source relations to this model. Its view then
reports how close the high-level model comes to describing
the source code. Dali [15] is a workbench which integrates
several extraction tools and allows for the combination of
the views obtained from these different sources.

In terms of the data model required, our approach op-
erates on basic structural information about the OO code,
complemented by relations from program traces. Our strat-
egy for building a high-level model is, as in Murphy’s ap-
proach [24], to leave it up to the engineer. Finally, since
the engineer can formulate hypotheses declaratively over
the whole static and dynamic model, this means that a large
range of views can be obtained. We see the strength of our

approach in the flexibility it provides for tailoring views to
the questions of the engineer.

Use of dynamic information in program understanding.
Program traces have been used in software maintenance to
locate code implementing a particular program feature [34],
to extract business rules from COBOL programs [26], and
to discover program invariants [9].

For the understanding of object-oriented software, much
of the work on using dynamic information has focused on
techniques for visualizing the large amount of information
[8][16]. Program Explorer [21] allows the filtering of events
or objects of interest using static and dynamic information,
but abstractions of a granularity greater than a class can
not be viewed. ISViS [13] is a visualization tool which
displays interaction diagrams using a mural technique and
also offers pattern matching capabilities to aid in identify-
ing recurring patterns of events. Few tools offer architec-
tural level visualizations. Sefika et al.[27] can display the
interactions of architectural units such as subsystems, but
their approach requires an instrumentation specific to the
application. More recently, Walker et al.[32] use program
animation techniques to display the number of objects in-
volved in the execution, and the interaction between them
through user-defined high-level models.

We view our approach as complementary to techniques
like ISViS [13], or Walker et al.[32]. Like these techniques,
our work is based on the recognition that object level in-
formation from program traces is too fine grained for ar-
chitectural understanding. However, whereas Walker et al.
present an animation technique geared primarily for perfor-
mance tuning, and ISViS focuses on visualizing and detect-
ing interaction patterns, our goal is to allow an engineer to
specify the kinds of views that best suit his or her investiga-
tion.

Declarative reasoning about program structure. Pro-
log has been used as an inference engine for other reverse
engineering approaches, such as for the understanding of
dataflow in Pascal programs [5] and for reasoning about de-
pendency relationships between modules [7]. As mentioned
in section 2, it has also been used to query static program
information in order to find structural design patterns[18]
and to detect violations of programming conventions and
rules [27]. The detection of behavioral design patterns may
be easier with the incorporation of dynamic information;
the discovery of architectural patterns [4] presents a more
challenging problem. In SOUL [36] a logic-programming
language is integrated in the Smalltalk development envi-
ronment, allowing one to reason about static structure and
to enforce design rules and conventions.



7. Conclusions and Future Work

We have presented an approach to reverse engineering
object-oriented applications based on the use of a logic pro-
gramming language for recovering views of the code.

As argued in the introduction, dynamic information,
though incomplete, is useful in reverse engineering because
it acts like a program slice. Obtaining dynamic information,
however, requires that the system be executable (and instru-
mentable) – and so this approach will not work for parts of
systems, or other code which can not be executed.

Another question is the scalability of our approach. To
reduce the amount of trace information generated, tracing
can be more sparingly used, for example by instrumenting
the application at only some of the methods or classes. A
clever solution would be a feedback from the query results
to the instrumentation so that only relevant methods are in-
strumented. The choice of scenario executed also plays a
role in the amount of information generated. Finally, before
analysis is done, the trace information could be filtered to
keep only the relevant events.

The strength of our approach is the flexibility it offers in
two respects: the kinds of views which can be recovered,
and the kinds of questions which can be answered. First,
our approach is not restricted to generating a fixed set of
views, but allows an engineer to define views of interest by
declaratively defining the relations to be displayed and the
clustering to be applied. This makes it possible to create
views of varying granularity and so to ask questions at dif-
ferent abstraction levels.

Second, since our approach uses both static and dynamic
information, it can answer a large range of questions about
an application: where static information is less focused it
is complemented by dynamic information; static informa-
tion is used to cluster dynamic information into more man-
ageable components and dynamic information provides an-
swers to questions which cannot be answered with static
information only.

Finally, as seen from the case study presented, the views
generated work as catalysts for generating questions about
the studied system and helping to steer the process of design
recovery. Much as in Reflexion models[24], this iterative
process of comparing an expected model with a recovered
view is at the heart of program understanding and reverse
engineering.

We are continuing this work in applying our approach
to several Smalltalk applications. This will allow us to re-
fine our analysis rules and to discover which kinds of views
could be most useful in reverse engineering. We are also
interested in learning about the process of applying such a
tool in order to be able to offer guidelines on its use in re-
verse engineering.
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