Using Dynamic Information for the Iterative Recovery of Collaborations and
Roles

Tamar Richner and 8phane Ducasse
Software Composition Group, InstituirfTnformatik (IAM)
Universitt Bern, Neuluckstrasse 10, 3012 Berne, Switzerland
{richner,ducasse@iam.unibe.ch
http://www.iam.unibe.ch¢{richner,ducasse

Abstract method is actually executed at runtime, and inheritance

Modeli biect-oriented anplications using collabora- means that each object in a running system exhibits behav-
odeling object-orien pplicat using ior which is defined not only in its class, but also in each of

tions and roles is now well accepted. Collgborathn—based its superclasses.
or role-based designs decompose an application into tasks _ o
performed by a subset of the applications’ classes. Collab- 10 g€t & better understanding of the dynamic inter-
orations provide a larger unit of understanding and reuse actions between instances, developers often turn to tools
than classes, and are an important aid in the maintenanceWh'Ch d|splay.the run-time information as mteractloln di-
and evolution of the software. This kind of design informa- @grams. Designers of such tools are confronted with the
tion is lost, however, at the implementation level, making it challenge of dealing with a huge amount of trace informa-
hard to maintain and evolve an existing software applica- tion and presentmg it in-an understa_mdable form to_ the de-
tion. The extraction of collaborations from code is there- Veloper. Several visualization techniques, such as informa-
fore an important issue in design recovery. In this paper we 0N murals[9], program animation[22] and execution pat-
propose an iterative approach which uses dynamic informa- (€ views[14] have been proposed to reduce the amount of
tion to support the recovery and understanding of collabo- trace information presented and to facilitate its navigation.
rations. We describe a tool we have developed to support In this paper we propose an approach to the recovery of
our approach and demonstrate its use on a case study. collaborations which uses dynamic information, but does
Keywords: collaboration-based design, design recovery, notrely heavily on visualization techniques. Whereas most
program understanding, object-oriented reverse engineer-Visualization tools display an entire trace and give the user a
ing, dynamic analysis. feel for the overall behavior of an application, our approach
focuses on understanding much smaller chunks of interac-
tions and the roles that classes play in these.

We have developed a tool prototype, tBellaboration

In contrast to procedural applications, where a specific Browser to demonstrate the validity of our approach. We
functionality is often identified with a subsystem or mod- illustrate through examples how the Collaboration Browser
ule, the functionality in object-oriented systems comes from is used to query run-time information iteratively to answer
the cooperation of interacting objects and methods[23, 12].concrete questions about collaborations and interactions in
In designing object-oriented applications, the importance of Smalltalk programs.
modeling how objects cooperate to achieve a specific task The paper is structured as follows: in the next section
is well recognized [24, 15, 19, 3]. Collaboration-based or we briefly illustrate the concepts of collaboration-based de-
role-based design decomposes an object-oriented applicasign. In Section 3 we discuss the challenges of recovering
tion into a set of collaborations between classes playingsuch design artifacts and give an overview of our approach.
certain roles. Each collaboration encapsulates an aspect ofh Section 4 we introduce our approach and present the tool
the application and describes how participants interact towe have developed to support the recovery process. In Sec-
achieve a specific task. tion 5 we walk the reader through an example of program

The recovery of collaborations from existing code is an understanding using the tool and in Section 6 we discuss is-
important aid for understanding and maintaining object- sues arising from our case studies. The implementation is
oriented applications [23]. However, detecting and deci- presented briefly in Section 7. In Section 8 we review re-
phering interactions of objects in the source code is notlated work. In Section 9 we conclude with a discussion of
easy: polymorphism makes it difficult to determine which the approach and directions for future work.

1. Introduction

2. Collaboration-based Design clerk Menager Drector

Chainof Predecessor Predecessor Successor
In this section we illustrate the concepts of collaboration- Responsibillt
based design with a small example. Consider a class model
which describes a bureaucracy [18]. Observer Subject Observer
Empl oyee Composite Component Composite

arrangeBigMeeting

arrangeSmallMeeting

writeReport Mediator Colleague Mediator

| A | Figure 2. Class-collaboration matrix for Bu-

reaucracy. Each row represents a collaboration and
each cell describes the role the class plays in the col-
addSubordinate laboration.

Clerk Manager

writeReport removeSubordinate

arrangeSmallMeeting

writeReport
* [8]. Collaborations are usually modeled using UML inter-

Director action diagrams. These show how participants interact to

— achieve a task: they are usually succinct and show only one

arrangeBigMeeting . . .

arrangeSmalIMeeting instance of each kind of participant.

writeReport

3. Challenges to Recovering Collaborations
Figure 1. Class Diagram for Bureaucracy.
Since standard object-oriented languages do not provide

This is a hierarchy of Director, Managers and Clerks Ianguage constructs to gapture colla}boratipns, design infor-
which operates as described by the Bureaucracy patterﬁnat'on about c_:oIIaboratlon_s is lost in the]mplementat|on.
[18]. In effect, four of the GOF design patterns [7] govern Ina cpl_laboratlon, objects interact a}ccordlng to.a protocol
the interaction of the objects. A Manager or Director who d€scribing the set of allowed behaviors. At the implemen-
receives a request, delegates work to its subordinates, as iﬁi_tlon level the description of this behav_lor protocol is dis-
the Composite pattern: the Clerk plays the role of Compo- fributed throughout the code as two basic elemepestic-
nent and the Manager the role of Composite. A Manager|pantsanQroles The role of each pammpqnt is the part of
or Clerk receiving a request it can not handle forwards the the participant which enforces the interaction protocol.
request up the hierarchy, as in Chain of Responsibility: the N order to reverse engineer collaborations from code we
Manager and Clerks play the Predecessor role and the Di/Must first recover interactions of instances from the cogie.
rector the Successor role. Clerks or Managers who want toWWhich class instances interact with each other? Which
interact with each other first address their superior to coor-Methods are invoked in an interaction? Second, since
dinate them, as in the Mediator pattern: at the same hier-object-oriented code is full of interactions the challenge is to
archy level the objects are Colleagues, whereas the supef_lnd theS|gn|f.|cant|nterac.t|ons —the deS|gn collaborations
rior acts as Mediator. Finally, when a subordinate changes@re those which capture important behavioral concepts.
state, sgch as completing some work, or being absent, it resq. Recovering Interactions
ports this change of state to its superior: thus the superior
acts as Observer of its subordinate Subjects, as in the Ob- As argued in the introduction, static information does
server pattern. Figure 2 summarizes this information in a not provide us with the information necessary for identify-
class/collaboration matrix [21]. Itillustrates that an instance ing interactions of classes. To identify these we need con-
of a class participates in several collaborations, playing atrol flow information; this is difficult to obtain purely from
distinct role in each. static analysis, due to polymorphism, inheritance and dy-

Here we have described the collaborations and roles innamic binding.
terms of the design patterns they instantiate. Roles de- Recording information about message exchanges be-
scribes the responsibilities of objects in a collaboration, but tween instances as the program executes provides us with
how a role is actually modeled or specified is often left open control flow information required for deriving interactions
[19]. Some design techniques model roles using interfacesand with information about the context in which methods of
[15], or as part of a behavioral contract between participantsspecific instances are invoked. Program tracing, however,

results in a great volume of information about the interac- Uses pattern matching. We use pattern matching to find

tions of objects, where much of this information is dupli- similar execution sequences in the execution trace.
cated many times over in an execution trace. This condenses the amount of dynamic information

The main argument against the use of dynamic informa- from information about interactions of instances to in-
tion is its incomplete coverage of the code. But this very formation about patterns of interactions.

property is also its advantage [1]. In the context of reverse .) .
engineering we do not always need complete information: SUPports iterative recovery thrqugh querying. V\(e;
a program trace provides information about the behavior of ~ €nable the developer to identify the significant col-

the system exercising a certain functionality, and so helps ~ laborations by specifying what kind of information
us to tie functionality to behavior. he or see is mter'es.ted in. Th|§ is done through two

operations: specifying the desired pattern matching
Our Approach. To obtain control flow information we use criteria and querying the dynamic information in
dynamic informatiomecorded from program execution. To terms of classes and interactions of interest.

reduce the volume of information, while still maintaining

the informationcontent we use pattern matching to group 4, Sypporting the Recovery of Collaborations

similar sequences of method invocations in a pattern. This

allows us to abstract from a particular execution sequenceto The Collaboration Browser is a tool we have developed

a pattern of execution which occurs repeatedly in the trace.which supports such an iterative recovery process. In this
o] section we first explain some of the underlying terminology

3.2. Finding the Important Collaborations and concepts, then introduce the Collaboration Browser.

Once we have obtained information about interactions 4.1. Terminology and Concepts
- which instances interact with each other and the meth-)) _ _
ods invoked in these interactions - the challenge remains OUr starting point for the recovery of collaborations is

to identify theimportantinteractions - these will be the col- the €xecution trace - a record of all method invocation
laborations we are interested in. events for the instrumented classes. A short sample of such

It has been observed that without guidance from a user? race is given below.

the process of design recovery gives poor results [13]. Our1 EventDispatcher 5604 DrawinaController 3548 handleEvent

H H H H ventbDispatcher, ,DrawingController, ,nandleevent:
OV_Vn eXpe”ence with reverse en_gmeermg tools qorrOborateS DrawingController,3548,DrawingController,3548,currentTool
this observation. We do not believe, therefore, in the auto- 3 prawingController,3548,Tool, 14970,handleEvent:
matic extraction of collaborations and roles, but rather in an 4 Tool,14970,ToolState, 13668,nextStateForEvent:tool:
iterative process steered by the engineer. Typically, an en-

gineer approaching the code has a specific question in mind This trace sample consists of four_ method_ Invocation
~ asking something like “How is this task achieved?” rather events. For each event we record five items of information,

than *how does everything work in this application?” - and which we illustrate with the values for event 1: the class
this question steers the recovery process ' of the sender (EventDispatcher), the identity of the sender

Since we are not interested in all collaborations, norin all Sgr?t?t) Lr;ihcéla:Zi;Lé?Eésrggg;Vae;é [t)yzzwrrl]neg[r?gg tirn?/I(I)ekr()a’dtZi
the details of a collaboration, choosing the right interactions y

to look at and the right level of detail is important. the receiver (handlgEvent:). .
From the execution trace we aim to recover collabora-

Our Approach. In order to allow the engineer to focus on tions and roles approaching those used in design. We re-
the details relevant for his or her investigation we support serve the terngollaborationandrole to talk about the high-

aniterative recoveryprocess throughuerying level design concepts introduced in Section 2. Each method
_ invocation recorded in the execution trace gives rise to a se-
3.3. Overview of Our Approach quence of method invocations, an interaction which we call

a collaboration instance We then identifycollaboration

The approach we propose for recovering collaborations patternsby comparing similar collaboration instances.

and roles is:
o _) Collaboration instance.A collaboration instance is the se-
Based on dynamic information. To obtain control flow quence of message sends between objects, ordered as
information our approach uses dynamic information a call tree, which results from a method invocation (all

recorded from program execution. For each method message sends up to the return).

invocation event we record the sender class, sender

identity, receiver class, receiver identity, and name of Collaboration pattern. A collaboration pattern is an equiv-
invoked method. alence class of several collaboration instances.

In the trace sample above there are four collaboration matching scheme. For example, senders and receivers

instances: the first one includes all four events and corre- can be ignored, or matched on the identity of the ob-
sponds to the invocation dfandleEvent: on DrawingCon- ject or the class. The invoked method can be ignored,
troller. The second one consists of event 2 only, the third of or matched on method name or method category name.

events 3 and 4, and the fourth of event 4. . .
Events to exclude.The matching scheme allow us to ig-

role collaboration high-level concepts nore certain events in the trace: we can ignore events
4 s in which an object sends a message to itself, events
3 3 whose depth of invocation in the trace is above a given
limit, or events whose depth of invocation in the col-

querying

class interface collaboration pattern intermediate abstractions . . . -
in collaboration pattern laboration pattern is above a given limit.
pattern r%lching . . .
dase inerface collaboration instance Structure of the collaboration instance. A collaboration
‘ T instance is a tree of events. However, similar collab-
e _ _ oration instances may differ in their tree structure and
execution trace low-level artifacts . y . , .
still have the same 'meaning’. Therefore, in the match-
rations and roles stances as sets of events, thus ignoring all ordering and
nesting relationships between method invocations. In
this scheme collaboration instances are treated as iden-
A collaboration pattern is an approximation to the tical if they have the same method invocation events in
higher-level design concept of collaboration. The corre- their set.

sponding approximation to the high-level notion of role is
the set of (public) methods that a class presents in the con4.3 The Query Model
text of a collaboration pattern. We can obtain this informa-
tion by querying about a collaboration pattern.

Figure 3 above illustrates how pattern matching and
qguerying support the recovery of collaborations. Pattern

matching allows us to create the abstractionsaabora- cqjanoration patterns by querying this information. The

tion patterns These are indications for collaborations. The query model supports multi-way queries about the two ba-
execution trace can be queried to obtain the interface of agjq re|ations which are of interest to us in recovering collab-
class in the whole execution trace or in the context of a €ol- 4 ations: method invocations in the executed scenario, and

laboration pattern. The interface of a class in a collaboration yethod invocations in the context of a collaboration pattern.
pattern is an indication for the role of the class in the col-

laboration. Below we explain the pattern matching settings send(Sender,Receiver,Method) this relation holds when
and the querying facility available to an engineer using this there is an instance of the cla@snder which invokes
approach. Method on an instance of the claRgceiver, in the con-
text of the whole execution trace.

Once pattern matching has been performed with the set-
tings the engineer has specified, the dynamic information is
presented to the engineer in terms of classes, methods and
collaboration patterns. A developer focuses on the relevant

4.2. Pattern Matching Settings

sendInCollab(Sender,Receive,Method,Collab) this re-
lation holds when there is at least one collaboration in-
stance in the collaboration patte@ollab in which an
instance ofSender invokesMethod on an instance of
Receiver.

In an execution trace there are many collaboration in-
stances which are variations on the same prototype (design)
collaboration. We use pattern matching to group collabora-
tion instances inteollaboration patterns The settings for
the pattern matching criteria specify what it means for two
collaboration instances to be considered equivalent - they, 4 The Collaboration Browser
reflect what the engineer considers important about a col-

laboration. The Collaboration Browser presents the dynamic infor-
The pattern matching settings can be modulated alongmation to the user through four basic elements of informa-
three independent axes: tion: sender classes, receiver classes, invoked methods and

collaboration patterns. Each of these four elements is dis-
Information about an event. An event in the trace con- played on the screen in a separate panel as seen in Figure 4.
tains basically three items of information: the sender, Panels, b andc list the sender classes, the receiver classes
the receiver and the invoked method. For each of theseand the invoked methods respectively. Pandedmide both
three items we can include or omit information in the list collaboration patterns. The distinction between these

m} Collaboration Erowser x

Sender Class query trace | query collab. | Receiver Class
ArbitraryComponentSpec = [ButtonDescription e
BoundedWrapper CompositeFigure
CompositeFigure Drawing
Drawing CrawingController
CrawingController DrawingEditor
DrawingEditor EllipseFigure
EllipseFigure EndToolState
EndToolState FigureAttributes
EwventDispatcher FigureTransitionTable
Figure TransitionTahle Handle
Handle PositionConstraint.
KeyhoardProcessor RectangleFigure
IousetovedEvent SimpleTransitionTable
PositionConstraint Tool
FectangleFigure ToolbarController
RedButtonPressedEvent Toolbarview
FedButtonReleasedEvent. ToolState
ScroliWrapper a TrackHandle b
Tool
ToolbarController
ToolbarController class
Toolbaryiew
ToolState
TrackHandle
Invoked Methods rCollaboration Pattern
controller: [| with one of shortest with all
cursor Toolcontroller#302 A|DrawingControllerchangedTool# 1643 |+
handleEvent: Toolcursor# 1876 DrawingControllerchangedTookS16
initialize Toolselected# 1048 CrawingControllerchangedTool#31
selected Toolselected# 2600 DrawingControllertool# 1924
startState:
c d €
|
[Set CUrrentcvents f rEloadiasE
All ‘ Collab. ‘ Filter ‘ SelfSends ‘

Figure 4. Collaboration Browser window. Panelsa b andc list the sender classes, the receiver classes and the
invoked methods respectively. Pang@nde both list collaboration patterns. Parfigkovides functionality for filtering
out information.

two collaboration pattern lists is explained further below, as and a receiver clas3pol, have been chosen. Querying the
is the function of the button pantkl trace with these selected sender and receiver classes resulted
The Collaboration Browser supports the two key opera- in panelc being updated to list the methods of classl
tions for the recovery of collaborations: pattern matching which are invoked by an instance DfawingController.
and querying. Querying is done through the browser win-
dow, whereas the pattern matching criteria are currently se
by hand. In addition, the Collaboration Browser enables the
developer to filter out dynamic information, and to display
interaction diagrams.
In this section we explain the functionality of the Collab- .
oration Browser, giving some small examples. The screen EXample:in Figure 4 three methods of classol have
shots which provide the examples are from an analysis ofbeen selected in panei controller:, cursor and selected.

the HotDraw application, which will be presented in greater Paneld lists the collaboration patterns resulting from the
detail in Section 5. invocation of each one of the methods select&ablcon-

troller:, Toolcursor and twoToolselected collaboration pat-

Querying about senders, receivers and methods in the terns. In contrast, pane lists the (shortest) collabora-
context of the whole scenario.The “query trace” button tion patterns in which ALL these three methods of class
(at the top of the Collaboration Browser window) is used Tool come into play. The list shows four collaboration pat-
to query the relationships of sender classes, receiver classegrns, three with the nam@rawingControllerchangedTool,
and invoked methods in the context of the complete execu-but each with a different identity number, and one named
tion scenario. DrawingControllertool. The first three collaboration patterns

Example:in Figure 4, a sender clasBrawingController result from the invocation afhangedTool on an instance of

tQuerying about senders, receivers and methods in the
context of a collaboration pattern. The “query collab.”
button (at the top of the Collaboration Browser window) is
used to query the relationships of sender classes, receiver
classes, invoked methods and collaboration patterns.

El Infe raction Diagram

DrawingController, the last one from the invocation afol AL | 1 Conten bbrevte] nspeat | o
on an instance dbrawingController. @ Pravgcanrar P atom pEaE—

Note that the answer to the query about which collabo-
ration patterns include particular participants and methods
always provides thehortest(in terms of number of method
invocation events) collaboration pattern which meets the
criteria. It is clear that there are many longer collaboration
patterns which contain these shortest patterns and there is
no interest in exhaustively listing all of them. Paddists
the shortest collaboration patterns in whimhe of the se-
lected participants occurs, whereas pan@ts the shortest
collaboration patterns in whichll the selected participants
occur.

First, we can ask which collaboration patterns include
particular receivers and invoked methods. Second, selecting
a collaboration pattern either from panebr from panek,
we can ask about the senders, receivers and invoked meth-L
ods in the pattern, again using the 'query collab.’ button.
If senders, receivers or invoked methods are also specified,
the missing (unselected) elements will be returned as a re-
sponse to the query. Three queries are here of particular
interest:

changeeToo
selests

clear Selections

uuuuuu

Figure 5. Interaction Diagram window. The
interaction diagram corresponds to an instance of the
collaboration pattern at the top of pardh Figure 4.

collaboration pattern for given participants: Selecting a
list of participant classes, we ask in which collabora- HotDraw is a framework for semantic graphic editors
tion patterns instances of these classes occur togetherwhich allows for the creation of graphical editors which
associate the picture with a data structure. The HotDraw
role of a class: selecting a collaboration pattern and a re- framework comes with several sample editors. From the
ceiver class we ask about the role (a set of methods)gocumentation we learn that HotDraw is based on the
this class plays in the collaboration pattern. Model-View-Controller triad: these roles are played by the
classesDrawing, DrawingEditor and DrawingController re-
spectively. Furthermore, it has a few other basic elements:
toolsare used to manipulate the drawing which consists of
figuresaccessed throughandles Constraintsare used to
ensure that certain invariants are met, for example, that two

Filtering out dynamic information. To focus the investi- figures connected with a line remain connected if one of the
gation on the events of interest the developer can filter outfigures is moved.

method invocation events for selected senders, receivers and

methods, or focus on an instance of a selected collaboratiorf °'Mulating questions. From browsing the code we see
pattern. This is done using the buttons in panel that the documentation available describes an earlier version

of HotDraw. We are interested in particular in the imple-

Displaying an instance of a collaboration pattern. The mentation of tools. Tools are used to manipulate the draw-
interaction diagram window displays an instance of the se-jng: create new figures or manipulate the existing figures.
lected collaboration pattern as a sequence diagram. On the drawing editor tools are represented by icons on the

Example:In Figure 4 the collaboration pattern called top panel (see Figure 6). In a previous version tool responsi-
DrawingcontrollerchangedTool#1643is listed in at the top of pjlities were handled by the classesader, Command and
panele. When this collaboration pattern is selected, an in- 1o0l, whereas in the current version different tools are im-
stance of the pattern is displayed as an interaction diagramplemented through states.
shown in Figure 5. In order to understand how tools are implemented in this
version of HotDraw we formulate several questions:

role equivalence: selecting a collaboration pattern and a
role (a set of methods), we ask which classes play this
role in the collaboration pattern.

5. Understanding Tools in HotDraw

. . o with which classes does the clagm®l collaborate?
In this section we demonstrate how our approach sup-

ports the understanding and recovery of collaborations by e what role does the clagsol have in different collabo-
applying it on the HotDraw framework [2][4]. rations?

e how are user events handled (e.g. selecting a tool andhe name of the class which implements the method. We
pressing a mouse button) ? have listed each collaboration pattern only once, though in
some cases there are actually several collaboration patterns,

Collecting Dynamic Information. We instrument all variations on the execution of the method in question.

methods in the HotDraw c!ass_es, then run a short scen_ario Collaboration Pattern Name
on the sample HotDravv_ edjtor in which we make use of dif- DrawingController changedTool
ferent tools from the editor’'s upper panel. DrawingController tool:
Pattern Matching. We create collaboration patterns by DrawingController handleEvent:
running the pattern matching with the following options: (i) Drawing handleForMouseEvent:
information about an event: sender: none, receiver: name Tool handleEvent:
of class defining method, method: method name, (ii) events Tool figureAtEvent:
to exclude: depth of invocation: 20, relative depth of in- Tool startState:
vocation: 3, self-sends: to be ignored, (iii) structure of the Tool selected
collaboration instance: a set of events. ToolState nextStateForEvent:tool:
The scenario executed generated 53,735 method invoca- EndToolState evaluateln:Event:
tion events. The pattern matching resulted in 183 collabo- FigureTransitionTable nextStateForTool:event:
ration patterns. ToolbarController redButtonReleasedEvent
El@ oRD 2o D;.:.::m; I Table 1. Collaborations involving Tool

A

Some of the collaboration patterns listed in the table are
nested in each other. We query each collaboration pattern
about its participants (senders, receivers and methods), and
so deduce the nesting relationship betw®gawingCon-
troller handleEvent: and some of the other collaboration pat-
terns.

DrawingController handleEvent:
Tool handleEvent:
ToolState nextStateForEvent:tool:
FigureTransitionTable OR
SimpleTransitionTable nextStateForTool:event:

Tool changedToState:event:

o =1 EndToolState evaluateln:Event:

' ' EndToolState OR ToolState isEndState

Figure 6. HotDraw sample editor

Investigating Tool handleEvent:. From the nesting relation-
ship illustrated above, we understand that when a tool han-
Looking at the collaborations of Tool. We look for collab- dles an event it first asks the current state of the {tmll-
oration patterns in which instances Tafol participate. As State, for the next state to go to (depending on the event).
discussed in Section 4, each method invocation recorded inlt then asks the next state to take over by invokénglu-
the trace is a collaboration instance, and each collaboratiorateln:Event:. It is this state object which does the rest of the
instance is mapped to a collaboration pattern. Thus manywork of handling the event.
collaboration patterns correspond to a trivial interaction of We would like to understand which classes participate in
just one method invocation. In general, then, to arrive at the collaboratiorfool handleEvent: and what role they play,
more interesting collaboration patterns, we identify patterns and also to understand the different variations of this collab-
in which several classes participate or in which a subset oforation. We therefore query to obtain collaboration patterns
the methods of a class are involved. resulting from the invocation dfandleEvent: onTool. The

For each class in the execution trace (listed in the re- result of this query are four collaboration patterns. The dif-
ceivers panel) we query to obtain the shortest collaborationferences between these is illustrated in Table 2: since the
patterns in which botfiool and this class participate. Allthe pattern matching criteria matched only to relative depth of
collaboration patterns obtained in this way are summarized3, only differences in the method invocations up to a rela-
in Table 1. The name of each collaboration pattern corre-tive depth of 3 are seen in the collaboration pattern. The
sponds to the event information specified in the matching differences are due to different methods executed. The ta-
scheme - in this case the name of the invoked method andble lists the four variations, each one in a separate row. For

handleEvent:| nextStateForTool:event] evaluateln:event:| nextStateForEvent:tool] isEndState
1 Tool SimpleTransitionTable| EndToolState ToolState ToolState
2 Tool SimpleTransitionTable| EndToolState ToolState EndToolState
3 Tool ToolState
4 Tool FigureTransitionTable | EndToolState: ToolState ToolState

Table 2. Different collaboration patterns for ~ Tool handleEvent:.

Class name handleEvent #1+#2 handle Event #3 handleEvent #4
handleEvent:
Tool handleEvent handleEvent figureAtEvent:
nextStateForEvent:tool nextStateForEvent:tool
ToolState evaluateln:event: nextStateForEvent:tool; evaluateln:event:
isEndState isEndState
evaluateln:event: evaluateln:event:
EndToolState isEndState isEndState

SimpleTransitionTable

nextStateForTool:event:

nextStateForTool:event:

FigureTransitionTable
Drawing

figureAt:

Table 3. Class-Collaboration description for collaboration Tool handleEvent: Each column corresponds to a
collaboration, each row to a class. The table cells give the role of the class in the collaboration. The methods in bold
represent unexpanded collaborations which result in variations on the collaboration patterns.

each variation, the name of the class which implements theHotDraw, and to recover some important collaborations.
executed method is listed under the column of the method. We continued in the vein of the investigation described

Looking more closely at an instance of each one of theseabove to discover the role dbol in other collaborations as
patterns using the interaction diagram display we see thatwell. Each collaboration recovered represents an important
there are principally three variations, since collaboration task in whichTool interacts with other classes. By character-
pattern 1 and 2 are similar. In contrast, collaboration pat- izing the collaboration and their variations we gain a better
tern 4 in which aFigureTransitionTable participates, differs understanding of how the functionality of the software is
considerably from the three others. For each one of thesecarried out through the interaction of instances.
collaboration patterns we query about the participants of the

collaboration pattern and their role. From these queries weEXperience with the Collaboration Browser. We also
learn that when theextStateForTool:event: isinvokedonan ~ Used the Collaboration Browser to decompose an execution

instance ofFigureTransitionTable, rather than on &imple- trace into a class/collaboration matrix and to understand the

TransitionTable, then it in turn requestsool to provide the function of a class by partitioning its interface into several

figure associated with an event by invokiigureAtEvent:. roles and identifying the collaborations in which it plays
these roles [16]. The case studies demonstrated that the

Characterizing a collaboration. By querying about each queries aid us in locating interesting collaborations and in
of these four collaboration patterns we extract the role thatynderstanding the role of a class in a collaboration. They
the participant classes play in each collaboration. This also show that the task is not simple: we cannot automati-
information is not straightforward to present, since we cally obtain enlightening information — rather we must work
see that there are two collaboratiofdToolState evalu- in interpreting the information obtained and in deciding on
ateln:event: andDrawing figureAt:, whose participants are the best way to explore collaboration patterns. It is also a
not predictable - they depend on the user event, and on the:hallenge to find the right pattern matching criteria for each
figures which are in the drawing. We therefore choose to case study so that we are not presented with too many varia-

characterize the predictable elements of the collaborationtions on a method execution, while at the same time getting
patterns and to leave the variable elements open. This cagome information about important variations.

be seen in Table 3, where the variable collaborations have

been denoted by bold faced method names. The iterative process. The process of extracting collabo-

rations using the Collaboration Browser is an iterative one

- the result of one query leads to another query, and so the

user focuses on classes and collaborations of interest. Be-
The case study presented shows how querying with thelow we sketch the process, giving a rough ordering of dif-

Collaboration Browser is used to investigate interactions in ferent kinds of queries.

6. Discussion and Evaluation

1. Creating collaboration patternsWe start by setting tation at the method level. The visualization of collabora-
the pattern matching criteria and launching the patterntion instances as sequence diagrams is based on the Inter-
matching to create the collaboration patterns which action Diagram tool[5]. Pattern matching is implemented
form a base for the querying. using hashing.

2. Querying about interfacesin querying we generally g Related Work

start by finding out which classes communicate with

each other. For this we query to find the interface @ Our work on recovering collaborations in intended as

class presents to other classes. a part of a query-based approach for iterative understand-
ing of object-oriented applications. The recovery of col-
laborations provides us with low-level views of a software
application, and as such is most useful when integrated
in an approach which can also provide us with high-level
4. Looking at all the participants for a collaboration pat- Views showing the interaction of components or subsystems

tern. Once we have obtained several collaboration pat- [17][16].

terns which are of interest, we want to know which ~ Most of the work on understanding interactions in

classes participate in a given collaboration pattern, andobject-oriented applications has focused on visualization,
what role each class plays. where the challenge is to develop techniques for visualiz-

ing the large amount of information generated by program
5. Understanding a collaborationThe interaction dia- tracing [10, 11, 22, 20]. For a more thorough survey of
gram displays aid us in understanding a collaboration. these and other reverse engineering approaches we refer the
We can also load an instance of a collaboration patternreader to [16]. Here we compare our work with two visu-
as the current base of dynamic information, and begin alization approaches which use pattern matching [14][9] to
at step 2. again, this time working with a smaller base jdentify design abstractions.
of dynamic information. The work of DePauw et al. [14], now integrated in Jin-
sight!, experiments with a range of displays which allow an
Limitations. We treat a collaboration instance as the execu- engineer to visually recognize patterns in the interactions of
tion sequence odll the events which result from a method classes and objects. ISVis [9] is a visualization tool which
invocation, rather than looking at an arbitrary sequence ofdisplays interaction diagrams using a mural technique and
events within a method invocation. This has simplified also offers pattern matching capabilities. Our work is simi-
the implementation of pattern matching as an operation onlar to these two approaches, both of which identify recurring
trees. But we could also consider a broader definition of patternsin a trace as an aid to recognizing important design
collaboration instance, and as a result a broader notion ofconcepts. In contrast to these, however, our work is not ori-
collaboration. ented primarily towards program visualization. We use only
In our characterization of collaborations we represent the a simple sequence diagram visualization to display the col-
role of a class in a collaboration as a set of all the methodslaboration pattern chosen. Our main focus is on querying
invoked on instances of that class in the collaboration. Thatthe dynamic information to help in the recovery of collab-
is, in a single collaboration, we do not consider that differ- orations and the understanding of the roles different classes
ent instances of the same class play different roles, or thaplay in these. We see our work as complementary to the
a single instance could switch roles. A finer analysis of a Visualizations proposed in [9] and [14]: whereas these tools
particular collaboration pattern could yield a more refined display an entire trace and give the user a feel for the over-
partitioning of different roles. all behavior of an application and the repeated occurrence
Finally, we have argued in the introduction that although of patterns in order to identify different phases of execution,
dynamic information is valid only for the particular scenario our approach focuses on the roles of classes in much smaller
executed, it provides focus in the investigation: it acts as chunks of interaction.
a program slice with respect to control flow and is always =~ We know of only one other approach which explic-

3. Looking for a collaboration patternWe query about
collaboration patterns in which certain classes patrtici-
pate, or ones in which certain methods come into play.

precise with respect to the executed scenario. itly tries to reverse engineer collaborations[6]. The ap-
) proach uses static information to arrive at a description of
7. Implementation participant-roles in a collaboration and relies heavily on the

input of a user who must select the initial participants and
their roles in the collaboration and determine appropriate
acquaintances to include in the collaboration.

The Collaboration Browser is implemented in Smalltalk
and currently handles single-threaded Smalltalk applica-
tions. We instrument the application to be investigated us-
ing Method Wrappers[5]. This allows selective instrumen- thttp://iwww.alphaworks.ibm.com/tech/jinsight

9. Conclusions

(6]

In this paper we have presented an approach to the re-
covery of collaborations which is general enough to be ap- [7]

plied to software applications implemented in any class-
based object-oriented language. The approach begins wit

H 18]

an execution trace and condenses this information by repre-

senting program behavior in terms of collaboration patterns.

It presents this information to developers in terms of sender [9]
classes, receiver classes, invoked methods and collaboration
patterns and allows developers to query each of these items

in terms of the others. In this way it lets a developer focus [10
on the aspect of the application of interest without wading

through a lot of trace information.

We have shown through an example how the Collabo-
ration Browser is used to discover important collaborations

[11]

in an application and to understand the roles that classes

play in these collaborations. Our initial experience with the [12]

Collaboration Browser on three case studies showed that the

approach is promising, but it also demonstrated the limits of
automatic recovery of design artifacts. To be successful the ;4
use of the tool must be embedded in an iterative recovery

process steered by a particular question or hypothesis.

Our approach demonstrates the feasibility and utility of

[13]

using dynamic information to extract collaboration abstrac- [1°]

tions without reliance on visualization techniques. There
are tradeoffs to be made between our approach for ex-
tracting compact representations of collaborations and ap-

[16]

proaches which use visualization techniques to display in- [17]

teraction patterns over the low-level interactions in the
whole trace. We therefore consider our approach as com-
plementary to other reverse engineering techniques: no sin-
gle tool can satisfy all the requirements for design recov-

. . - r[18]
ery, rather guidance is needed as to which tools are best fo

which maintenance tasks.

Acknowledgments.Thanks to Matthias Rieger for his help
and for his comments on the manuscript. We also thank

Roel Wuyts for his helpful comments.

References

[1] T. Ball. The concept of dynamic analysis. Rroceedings

of ESEC/FSE’99number 1687 in LNCS, pages 216234,

1999.
[2] K. Beck and R. Johnson.

Springer-Verlag, July 1994,
[3] G.Booch, J. Rumbaugh, and I. Jacobs®he Unified Mod-
eling Language User GuidéAddison Wesley, 1999.

[4] J. Brant. Hotdraw. Master’s thesis, University of Illinois at

Urbana-Chanpaign, 1995.

[5] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to

the Rescue. IProceedings ECOOP’98 NCS 1445, pages
396-417. Springer-Verlag, 1998.

Patterns generate architectures.
In Proceedings ECOOP’94LNCS 821, pages 139-149.

[19]

[20]

[21]

[22]

(23]

[24]

K. DeHondt.A Novel Approach to Architectural Recovery in
Evolving Object-Oriented System®hD thesis, Vrije Uni-
versiteit Brussel, 1998.

E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign
Patterns Addison Wesley, Reading, Mass., 1995.

R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented sys-
tems. InProceedings OOPSLA/ECOOP’980lume 25,
pages 169-180, Oct. 1990.

D. Jerding and S. Rugaber. Using Visualization for Archi-
tectural Localization and Extraction. Rroceedings WCRE
pages 56 — 65. IEEE, 1997.

] K. Koskimies and H. M$senbck. Automatic synthesis of

state machines from trace diagran®oftware Practice and
Experience24(7):643-658, July 1994.

D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA'9%pages 342-357. ACM Press,
1995.

S. Lauesen. Real life object-oriented systertSEE Soft-
ware, pages 76—83, March 1998.

G. C. Murphy and D. Notkin. Reengineering with reflexion
models: A case studyEEE Computer8:29-36, 1997.

W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization.Proceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS '98pages 219-234. USENIX, 1998.

T. Reenskaugworking with Objects: The OORAM Software
Engineering MethodManning, 1996.

T. Richner.Recovering Behavioral Design Views: a Query-
Based Approach PhD thesis, University of Berne, May
2002.

T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In H. Yang and L. White, editor$roceed-
ings ICSM'99 (International Conference on Software Main-
tenance)pages 13-22. IEEE, Sept. 1999.

D. Riehle. Bureaucracy. In R. Martin, D. Riehle, and

F. Buschmann, editor®attern Languages of Program De-
sign 3 pages 163-185. Addison Wesley, 1998.

D. Riehle and T. Gross. Role model based framework design
and integration. IrProceedings OOPSLA '98 ACM SIG-
PLAN Noticespages 117-133, Oct. 1998.

T. SysH, K. Koskimies, and H. Miler. Shimba — an envi-
ronment for reverse engineering java software syst&of-
ware — Practice and Experiencg(1), January 2001.

M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. Rmceedings
OOPSLA'96 pages 359-369. ACM Press, 1996.

R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. Broc. OOP-

SLA'98 pages 271-283, 1998.

N. Wilde, P. Matthews, and R. Hutt. Maintaining object-
oriented softwarelEEE Software (Special Issue on "Mak-

ing O-O Work™), 10(1):75-80, Jan. 1993.

R. Wirfs-Brock and B. Wilkerson. Object-oriented design:
A responsibility-driven approach. PRroceedings OOPSLA

'89, pages 71-76, Oct. 1989. ACM SIGPLAN Noatices, vol-
ume 24, number 10.

