
Practical Dynamic Grammars for Dynamic Languages ∗

Lukas Renggli
Software Composition Group,
University of Bern, Switzerland

scg.unibe.ch

Stéphane Ducasse
RMoD, INRIA-Lille Nord

Europe, France
rmod.lille.inria.fr

Tudor Gîrba
Sw-eng. Software Engineering

GmbH, Switzerland
www.sw-eng.ch

Oscar Nierstrasz
Software Composition Group,
University of Bern, Switzerland

scg.unibe.ch

ABSTRACT
Grammars for programming languages are traditionally spec-
ified statically. They are hard to compose and reuse due
to ambiguities that inevitably arise. PetitParser combines
ideas from scannerless parsing, parser combinators, parsing
expression grammars and packrat parsers to model grammars
and parsers as objects that can be reconfigured dynamically.
Through examples and benchmarks we demonstrate that dy-
namic grammars are not only flexible but highly practical.

1. INTRODUCTION
It is common practice to define formal grammars using a

dedicated specification language which is then transformed
into executable form by code generation. Typically these
transformation algorithms validate that the grammar is a
subset of Context Free Grammars (CFGs), such as LL(k),
LR(k), or LALR(k). Then the algorithm optimizes and
transforms the grammar into a parser. While this process
can give parse-time guarantees and ensure that the parse
is unambiguous, the resulting parsers are inherently static.
The grammar is hard-coded and cannot be easily changed (at
run-time) nor can it be easily composed with other grammars.
Numerous researchers have addressed these issues in the past
[10, 2, 15, 5]. Earley and SGLR(k) parsers are composeable
[6, 16], however the parse results are usually ambiguous and
the grammar definition is static and cannot be changed after
compilation.

In this paper we present PetitParser, a parser framework
that makes it easy to dynamically reuse, compose, trans-
form and extend grammars. We can reflect on the resulting
grammars and modify them on-the-fly. We report on the “dy-
namic” features of this framework and how this is beneficial
to grammar development.

The remainder of this paper is structured as follows: Sec-

∗In 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tion 2 introduces the PetitParser framework. Section 3 dis-
cusses important aspects of a dynamic approach, such as
composition, correctness, performance and tool support. Sec-
tion 4 presents a short overview of the related work, and
Section 5 concludes the paper.

2. PETITPARSER
PetitParser takes four existing parser methodologies and

combines the best properties of each:

• Scannerless Parsers [16] combine lexical and context-
free syntax into one grammar. This avoids the common
problem of overlapping token sets when grammars are
composed. Furthermore language definitions become
more concise as there is only one uniform formalism.

• Parser Combinators [11] are building blocks for parsers
modeled as a graph of composable objects; they are
modular and maintainable, and can be changed, recom-
posed and reflected upon.

• Parsing Expression Grammars (PEGs) [8] provide or-
dered choice. Unlike CFGs, the ordered choice of PEGs
always follows the first matching alternative and ig-
nores other alternatives. PEGs are closed under union,
intersection, and complement; and can recognize non-
context free languages.

• Packrat Parsers [7] give linear parse time guarantees
and avoid problems with left-recursion in PEGs through
memoization [17]. For efficiency reasons PetitParser
does not memoize each rule, but only selected ones [1].

PetitParser is implemented in Pharo Smalltalk1. A detailed
description of the API and instructions on how to download
the framework and examples can be found in a blog article
of the first author2. Grammars are specified by composing
primitive parser objects using a series of overloaded operators
forming an internal domain-specific language. For example,
the grammar of identifiers is implemented as follows:

identifier := #letter asParser ,
(#letter asParser / #digit asParser) star.

The expressions #letter asParser and #digit asParser return
parsers that accept a single character of the respective charac-
ter class; the ‘,’ operator combines two parsers to a sequence;

1
http://www.pharo-project.org/

2
http://www.lukas-renggli.ch/blog/petitparser-1/

1

http://scg.unibe.ch/
http://rmod.lille.inria.fr/
http://www.sw-eng.ch/
http://scg.unibe.ch/
http://www.pharo-project.org/
http://www.lukas-renggli.ch/blog/petitparser-1/

the ‘/’ operator combines two parsers to an ordered choice;
and the ‘star’ operator accepts zero or more instances of an-
other parser. As a result we end up with a graph of connected
parser objects that can be used to parse input:

identifier parse: 'id12'. ”consumes input and returns a default AST”
identifier parse: '123'. ”returns parse failure: letter expected at 1”

At all times the graph of parser objects remains accessible
and mutable. We are able to recompose, transform and
change an existing grammar, as we shall see in upcoming
examples.

3. PETITPARSER IN PRACTICE
In the remainder of this paper we use a Smalltalk grammar

as the running example. The grammar consists of 242 prim-
itive parser objects that are grouped into 78 productions.
One of these productions is the identifier rule we have seen
in the previous section. The parser produces a standard
Smalltalk AST and passes all 296 unit tests of the original
hand-written parser.

3.1 Grammar Specialization
Although complex grammars can be defined using a script,

we provide a convenient way to define grammars as part
of a class. Each production is implemented using an in-
stance variable and a method returning the grammar of the
rule. Productions within the grammar are referred to by
accessing the instance variable. This allows us to resolve
mutually recursive productions by initializing all slots with
a forward reference that is resolved by subsequently calling
the production methods [3].

Furthermore, defining grammars in classes enables devel-
opers to take advantage of the existing development tools.
Additionally, we gain the ability to extend grammars by
subclassing, as proposed by Bracha [3]. For example, the
Smalltalk grammar is split into various classes inheriting
from SmalltalkGrammar, which defines the language grammar
only. The subclass SmalltalkParser adds production actions to
build the abstract syntax-tree (AST):

SmalltalkGrammar>>variable
ˆ identifier

SmalltalkParser>>variable
ˆ super identifier ==> [:token | VariableNode token: token]

As described in our previous work [14], subclassing gives us
the possibility to reuse the same grammar with different tools,
such as compiler, editor (syntax highlighting, code comple-
tion) and debugger (code evaluation). In a statically typed
language this would be more difficult, as each of the grammar
subclasses returns its own dedicated data structures.

3.2 Grammar Composition
PetitParser is built around composition: simple parsers are

combined into more complex ones. Grammars can arbitrarily
be reused and composed. For example, to reuse the gram-
mar for a Smalltalk method declaration we can ask for its
production, which is a working parser by itself. Furthermore
we can then combine this production with the grammar of
another language, such as SQL:

SmalltalkGrammar new methodDeclaration , SqlGrammar new.

Language Boxes [13] implement an adaptive language
model for fine-grained language changes and language com-
position. The Language Box implementation is built on top
of PetitParser and performs a dynamic grammar composition
of the host language and the language extensions active in
the given compilation context.

Composing grammars is difficult using traditional table
based grammars, as the tables need to be merged while
resolving possible conflicts. Dynamically recompiling table
based grammars is often not viable due to space and time
concerns.

3.3 Grammar Conflicts
The downside of being able to arbitrarily compose gram-

mars is that this might lead to subtle problems. In the
following example we use a language extension that makes it
possible to put SQL expressions anywhere in Smalltalk code.
The problem in the following example is that the embedded
SQL expression could also be parsed as a valid Smalltalk
expression3:

Person>>load
ˆ SELECT ∗ FROM ”Person”

While the parse is always unambiguous (because of the or-
dered choice), the result of the above expression depends on
the order in which the two languages have been composed. In
previous work [13] we argued that this specific language em-
bedding is relatively safe, since SQL is a restrictive language
that cannot parse typical Smalltalk expressions. While this
works well in practice for this particular example, it might
not be feasible for other examples and emerging problems
might stay unnoticed.

To avoid this problem we introduced an unordered choice
at the merge points. This enforces that exactly one of the
two grammar fragments parses. Interestingly the unordered
choice ‘|’ is trivial to implement using the semantic negation
predicate ‘!’ of PEG parsers (‘not’ in our implementation),
however to our knowledge has not been documented.

Parser>>| aParser
”Answer a new parser that either parses the receiver or aParser,

fail if both pass (exclusive or).”

ˆ (self not , aParser) / (aParser not , self)

The resulting parser enforces that only one of the two
choices parses. Contrary to the unordered choice in CFGs
our implementation does not work statically, but dynamically
at parse-time. Note that the unordered choice should not
be used as the default choice operator as it can lead to
exponential parse times if both choices are followed on each
parse.

On top of that we can define other operators such as a
dynamicChoice:, which lets the user disambiguate and poten-
tially change the grammar on-the-fly:

Parser>>dynamicChoice: aParser
ˆ self | aParser / [:stream |

| resolution |
resolution := UIManager default

chooseFrom: { self name. aParser name }
values: { self. aParser }
title: 'Resolve ambiguity at ' , stream position asString.

resolution parseOn: stream] asParser

3In Smalltalk the expression would represent the multiplica-
tion of the variables SELECT and FROM, and ”Person” would
be a comment.

2

With these extensions, the difference between CFGs and
PetitParser is similar to the difference between statically
and dynamically typed languages. In both PetitParser and
dynamically typed languages, static errors (such as grammar
ambiguities or type errors) are detected at run-time only, at
the gain of additional flexibility at run-time.

3.4 Grammar Transformations
The ability to transform grammars is powerful and goes

beyond static extensibility by single inheritance: transforma-
tions can be applied on-demand and multiple transformations
can be chained.

To highlight code, we can instantiate the basic grammar
definition and wrap all parsers that create a token with an
action block that highlights the character range in the editor.
The backtracking that might occur during the parse is not
a problem, because the method highlight:range: overrides the
style if set previously. In any case the highlighting purely
happens as a side-effect of the parsing.

grammar := SmalltalkGrammar new.
highlighter := grammar transform: [:parser |

parser class = TokenParser
ifTrue: [parser ==> [:token |

anEditor highlight: token style range: token interval]]
ifFalse: [parser]].

The transform: method walks over the complete grammar,
replacing each parser it finds by the result of evaluating the
transformation block. Here, token parsers are transformed
to perform the highlighting action.

A problem with this solution is that highlighting only works
for valid source code, and stops after the first syntax error.
With another transformation we can make the grammar
“fuzzy” and try to skip to the next statement separator in
case an error arises while parsing expressions:

fuzzyHighlighter := highlighter transform: [:parser |
parser name = #expression

ifTrue: [parser / [:stream | stream upTo: $.] asParser]
ifFalse: [parser]].

In a similar manner other kinds of common errors can be
skipped and the user can be warned while writing the code.

PetitParser also provides a query interface to reflect on
parsers: aParser allParsers returns a collection of all parsers in
the grammar; aParser firstSet returns the parsers that consume
input first in aParser; aParser followSet returns the parsers that
follow aParser; etc. We can combine the same transformation
techniques and the reflective facilities to dynamically generate
a grammar to answer other questions, such as what could
possibly follow at a specific point in a source file:

PPParser>>whatFollows: aString at: anInteger
| stream |
stream := aString asPetitStream.
(self transform: [:parser |

parser ==> [:node |
stream position < anInteger

ifTrue: [node]
ifFalse: [ˆ parser followSet]]])

parseOn: stream.
ˆ #()

Furthermore grammars can be searched and transformed
using a declarative transformation engine. We are using an
unification algorithm on the grammar graph that tries to
substitute the patterns in a search expression with actual

parsers. If a match is found, the replacement rule is instanti-
ated with the matched parsers and inserted into the grammar.
This allows us to concisely specify grammar optimizations.

3.5 Tool Support
Figure 1 displays a grammar workspace which provides a

rich set of static and dynamic tools that directly work on
the object model of PetitParser.

Figure 1: The PetitParser grammar workspace dis-
playing the currently selected production.

The static tools consist of all elements that work on the
specification of the grammar. The source tab enables editing
of productions; the graph tab displays the graphical structure
of productions; the example tab displays random examples
for the selected production, which is useful to spot errors in
the grammar definition; the cycles tab lists direct cycles that
could cause inefficient grammars; and the first and follow
tabs display the respective set of parsers that consume input
first and that follow the selected production.

Figure 2: Progress
of an example parse
with backtracking in
choice operator.

The dynamic tools work on
the currently selected produc-
tion and an input to parse:
The parse tab displays and
optionally opens an inspec-
tor on the resulting AST; the
tally tab displays the absolute
and relative activation count
of each production; the profile
tab displays absolute and rela-
tive time spent in each produc-
tion; the progress tab visual-
izes the progress of the parser
through the input — from left-
to-right the input string is de-
picted (whitespaces in white),
from top-to bottom the time
(see Figure 2 for an example);
and the debugger tab gives the
possibility to step forwards and backwards through the in-
put while highlighting the consumed text and the active
productions.

3.6 Performance
Parser Combinators, PEGs, and even Packrat parsers are

often accused of being slow, due to their dynamic nature.
Our experience however has shown the contrary: when the
grammar is carefully written PetitParser can compete with
a highly optimized LALR table based parser. Efficient gram-
mars can be achieved with automatic grammar optimization
tramsformations (Section 3.4) and the help of the static and
dynamic tools (Section 3.5).

3

Parser characters/sec

Hand-Written Parser 553 492
PetitParser 138 053
LALR Parser 122 888

Table 1: Average throughput in characters per sec-
ond parsing the Smalltalk collection hierarchy on a
MacBook Pro 2.8 GHz Intel Core 2 Duo.

In Table 1 we list the average throughput of different Small-
talk parsers producing an identical AST. The hand-written
recursive descent parser is a clear winner, being almost 5
times as fast as the other two parsers. We expected the LALR
parser [4] to perform better, given the sophisticated opti-
mization algorithms implemented in this compiler-compiler.
Profiling the parsers reveals that the LALR parser spends
most of its time looking up, decoding and dispatching values
from its tables. PetitParser on the other hand shows a deep
nesting of message sends, something a dynamic language
language like Smalltalk can do very efficiently.

4. RELATED WORK
OMeta [18] is an object-oriented pattern matcher based on

a variant of PEGs. OMeta uses itself to transform grammar
specifications to host language code. Rats! [9] is a packrat
parser framework that provides a sophisticated infrastructure
to transform and optimize grammars using the visitor design
pattern. Both frameworks support grammar composition,
but due to their code generation make it impossible to change
the grammar after compilation.

Various other object-oriented frameworks for parser com-
binators have been proposed: JParsec, Scala Parser Com-
binators [12], and Newspeak [3]. All implementations use
the host language to build an object model of parser objects.
Extensibility is achieved through subclassing or mixing mech-
anisms of the respective host languages. Although we expect
that grammar transformations are possible on these models,
we are unaware if this has actually been done in practice.

Composing and reusing table based parsers is an ongoing
research topic [10, 2, 5]. All approaches have limitations
in composability and can be described as difficult at best.
Grammar changes require an expensive recompilation of the
new grammar. Schwerdfeger et al. [15] propose a solution to
efficiently compose table based grammars at specific exten-
sion points.

5. CONCLUSION
Our work on language embedding made us wonder why

grammar definitions in dynamic languages are still mostly
hard-coded statically. In this paper we advocate the use of
dynamic grammars. We have presented several examples and
some basic performance analysis that show the benefit of
having grammars be accessible and changeable at run-time.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project“Bringing Models
Closer to Code” (SNF Project No. 200020-121594, Oct. 2008

– Sept. 2010). We also like to thank Jorge Ressia and the
anonymous reviewers for their feedback on this paper.

6. REFERENCES
[1] R. Becket and Z. Somogyi. DCGs + Memoing =

Packrat parsing, but is it worth it? In Practical Aspects
of Declarative Languages, volume LNCS 4902, pages
182–196. Springer, Jan. 2008.

[2] C. Brabranda and M. I. Schwartzbach. The metafront
system: Safe and extensible parsing and transformation.
Science of Computer Programming, 68(1):2–20, 2007.

[3] G. Bracha. Executable grammars in Newspeak.
Electron. Notes Theor. Comput. Sci., 193:3–18, 2007.

[4] J. Brant and D. Roberts. SmaCC, a Smalltalk
Compiler-Compiler.
http://www.refactory.com/Software/SmaCC/.

[5] M. Bravenboer and E. Visser. Parse table composition.
In Software Language Engineering, volume LNCS 5452,
pages 74–94. Springer, 2009.

[6] J. Earley. An efficient context-free parsing algorithm.
Commun. ACM, 13(2):94–102, 1970.

[7] B. Ford. Packrat parsing: simple, powerful, lazy, linear
time, functional pearl. In ICFP 2002, volume 37/9,
pages 36–47. ACM, 2002.

[8] B. Ford. Parsing expression grammars: a
recognition-based syntactic foundation. In POPL 2004,
pages 111–122. ACM, 2004.

[9] R. Grimm. Better extensibility through modular
syntax. In PLDI 2006, pages 38–51. ACM, 2006.

[10] J. Heering, P. Klint, and J. Rekers. Incremental
generation of parsers. In PLDI 1989, pages 179–191.
ACM, 1989.

[11] G. Hutton and E. Meijer. Monadic parser combinators.
Technical Report NOTTCS-TR-96-4, Department of
Computer Science, University of Nottingham, 1996.

[12] A. Moors, F. Piessens, and M. Odersky. Parser
combinators in Scala. Technical report, Department of
Computer Science, K.U. Leuven, Feb. 2008.

[13] L. Renggli, M. Denker, and O. Nierstrasz. Language
boxes: Bending the host language with modular
language changes. In Software Language Engineering,
volume LNCS 5969, pages 274–293. Springer, 2009.

[14] L. Renggli, T. Gı̂rba, and O. Nierstrasz. Embedding
languages without breaking tools. In ECOOP 2010,
LNCS. Springer, 2010. To appear.

[15] A. Schwerdfeger and E. V. Wyk. Verifiable parse table
composition for deterministic parsing. In Software
Language Engineering, volume LNCS 5969, pages
184–203. Springer, 2010.

[16] E. Visser. Scannerless generalized-LR parsing.
Technical Report P9707, Programming Research
Group, University of Amsterdam, July 1997.

[17] A. Warth, J. R. Douglass, and T. Millstein. Packrat
parsers can support left recursion. In PEPM 2008,
pages 103–110. ACM, 2008.

[18] A. Warth and I. Piumarta. OMeta: an object-oriented
language for pattern matching. In DLS 2007, pages
11–19. ACM, 2007.

4

	Introduction
	PetitParser
	PetitParser in Practice
	Grammar Specialization
	Grammar Composition
	Grammar Conflicts
	Grammar Transformations
	Tool Support
	Performance

	Related Work
	Conclusion
	References

